

Immingham Green Energy Terminal

TR030008

Volume 6

6.4 Environmental Statement Appendices

Appendix 6.A: Construction Dust Assessment Method

Planning Act 2008

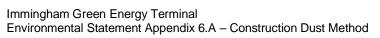
Regulation 5(2)(a)

Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 (as amended)

September 2023

Infrastructure Planning

Planning Act 2008


The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 (as amended)

Immingham Green Energy Terminal Development Consent Order 2023

6.4 Environmental Statement Appendices Appendix 6.A: Construction Dust Assessment Method

Regulation Reference	APFP Regulation 5(2)(a)
Planning Inspectorate Case Reference	TR030008
Application Document Reference	TR030008/APP/6.4
Author	Associated British Ports
	Air Products BR

Version	Date	Status of Version		
Revision 1	21 September 2023	DCO Application		

Table of contents

Cha	apter	Pages
1	Introduction	1
2	Step 1: Screen the requirement for a detailed assessment	2
3	Step 2: Assess the Risk of Dust Impacts	3
4	Step 3: Identify the need for Site-Specific Mitigation	9
5	Step 4: Define Impacts and Their Significance	10
6	References	11
Tab		
	ble 1: Definition of Significance of Fugitive Dust and PM ₁₀ Effects	
	ble 2: Potential Demolition Works Dust Emission Classification	
	ble 3: Potential Earthworks Dust Emission Classification	
	ble 4: Potential Construction Dust Emission Classification	
	ble 5: Potential Track-Out Dust Emission Classification	
	ble 6: Sensitivity of the Area to Dust Soiling Effects on People and Property	
	ble 7: Sensitivity of the Area to Human Health Impacts	
	ble 8: Sensitivity of the Area to Ecological Impacts	
Tah	ole 9: Rick of Duct Impacts	Ω

Immingham Green Energy Terminal Environmental Statement Appendix 6.A – Construction Dust Method

1 Introduction

1.1.1 This appendix describes the technical method by which the impact of the Project from construction phase particulate emissions on air quality has been assessed.

2 Step 1: Screen the requirement for a detailed assessment

- 2.1.1 Sensitive receptors were identified and the distance to the Site and construction routes were determined according to the examples of sensitivity shown in **Table 1**. According to the IAQM (Ref 1-1), an assessment will normally be required where there are sensitive receptors within 250 m of the boundary of a site and/or within 50m of route(s) used by construction vehicles on the public highway, up to 250m from the site entrance.
- 2.1.2 A human receptor, as considered within the IAQM guidance, is any location where a person or property may experience:
 - a. The annoyance effects of airborne dust or dust soiling e.g. dwellings, industrial or commercial premises such as a vehicle showroom, food manufacturers, electronics manufacturers, amenity areas and horticultural operations.
 - b. Exposure to PM₁₀ over a period relevant to the air quality objectives.
- 2.1.3 Ecological receptors within 50m of the boundary of the site or routes used by construction vehicles on the public highway, up to 250m from the site entrance, also need to be identified.

Table 1: Definition of Significance of Fugitive Dust and PM₁₀ Effects

Sensitivity	Dust Soilings	Human Health	Ecological
High	Dwellings Museum and other culturally important collections, Medium- and long-term car parks Car showrooms	Residential Properties Hospitals Schools Residential care homes	Locations with an international or national (e.g. SAC) and the designated features may be affected by dust soiling
Medium	Parks Places of work	Office and shop workers, but will generally not include works occupationally exposed to PM ₁₀ as protection is covered by Health and Safety at Work legislation.	Locations with a national designation (e.g. SSSI) where the features may be affected by dust deposition
Low	Playing fields Farmland (unless commercially sensitive horticulture) Footpaths Short term car parks Roads	Public footpaths Playing fields Parks Shopping streets	Locations with a local designation where the features may be affected by dust deposition, such as an LWS with dust sensitive features.

Notes: SAC = Special Area of Conservation / SSSI = Site of Special Scientific Interest / LWS = Local Wildlife Site

3 Step 2: Assess the Risk of Dust Impacts

- 3.1.1 The risk of dust arising in sufficient quantities to cause annoyance and/or health effects was determined for each activity (demolition, earthworks, construction works and track out), taking account of:
 - a. The scale and nature of the works, which determines the potential dust emission magnitude (small, medium or large) (Step 2A).
 - b. The sensitivity of the area (low, medium or high) (Step 2B).
- 3.1.2 These factors were then combined to give the risk of dust effects with no mitigation applied, as Negligible, Low, Medium or High.
- 3.1.3 It should be noted that where detailed information was not available to inform the risk category, professional judgement and experience was used and a cautious approach adopted, in accordance with the guidance.

Step 2A: Determine the Dust Emissions Magnitude

Demolition

3.1.4 **Table 2** presents the demolition works dust emission classification. Demolition works will be minimal given the current state of the site.

Table 2: Potential Demolition Works Dust Emission Classification

Emission Class	Criteria						
Large	Total building volume >75,000 m ³						
	Potentially dusty construction material (e.g. concrete)						
	On-site crushing and screening						
	Demolition activities >12m above ground level						
Medium	Total building volume 12,000m ³ – 75,000m ³						
	Potentially dusty construction material						
	Demolition activities 6 – 12m above ground level						
Small	Total building volume <12,000m ³						
	Construction material with low potential for dust release (e.g. metal cladding or timber)						
	Demolition activities <6m above ground						
	Demolition during wetter months						

Planning Inspectorate Scheme Ref: TR030008 Application Document Ref: TR030008/APP/6.4

Earthworks

3.1.5 Earthworks will primarily involve excavating material, haulage, tipping and stockpiling. The classifications in **Table 3** are based on examples of suitable criteria. Factors such as existing land use, topography, seasonality, duration and scale were also taken into consideration, where possible.

Table 3: Potential Earthworks Dust Emission Classification

Emission Class	Criteria
Large	Total site area: >110,000m² Potentially dusty soil type (e.g. clay) >10 heavy earth moving vehicles at any one time Formation of bunds >6m in height
Medium	Total site area: 18,000 – 110,000m ² Moderately dusty soil type (e.g. silt) 1 – 10 heavy earth moving vehicles active at any one time Formation of bunds 3 – 6m in height
Small	Total site area: <18,000m² Soil type with large grain size (e.g. sand) <5 heavy earth moving vehicles active at any one time Formation of bunds <3m in height Earthworks during wetter months

Construction

3.1.6 The key factors when determining the potential dust emission magnitude during the construction phase include the size of the building(s)/ infrastructure, method of construction, construction materials and duration of build. The classifications in **Table 4** are based on examples of suitable criteria. Factors such as seasonality, building type, duration and scale were also taken into consideration, where possible.

Table 4: Potential Construction Dust Emission Classification

Emission Class	Criteria
Large	Total building volume >75,000 m ³
	Onsite concrete batching
	Sandblasting

Emission Class	Criteria
Medium	Total building volume 12,000m³ – 75,000m³ Potentially dusty construction material (e.g. concrete) Onsite concrete batching
Small	Total building volume <12,000 m ³ Material with low potential for dust release (e.g. metal cladding or timber)

Track-out

3.1.7 Track-out is the transport of dust and dirt from the construction/demolition site onto the public road network, where it may be deposited and then re-suspended by vehicles using the local road network. The classifications in **Table 5** are based on examples of suitable criteria. Factors such as vehicle size, speed, numbers, geology and duration were also taken into consideration, where possible.

Table 5: Potential Track-Out Dust Emission Classification

Emission Class	Criteria
Large	50 HGV (>3.5t) outward movements in any one day Potentially dusty surface material Unpaved road length >100m
Medium	25 – 100 HGV (>3.5t) outward movements in any one day Moderately dusty surface material Unpaved road length 50 – 100m
Small	<25 HGV (>3.5t) outward movements in any one day Surface material with low potential for dust release Unpaved road length <50m

Step 2B: Define the Sensitivity of the Area

- 3.1.8 The sensitivity of the area takes account of the following factors:
 - a. The specific sensitivities of receptors in the area.
 - b. The proximity and number of those receptors.
 - c. In the case of PM₁₀, the local background concentrations.
 - d. Site specific factors, such as whether there are natural shelters, such as trees to reduce the risk of wind-blown dust.

3.1.9 The sensitivity of the area is determined separately for dust soiling impacts on people and properties (**Table 6**), human health impacts (**Table 7**) and ecology impacts (**Table 8**).

Table 6: Sensitivity of the Area to Dust Soiling Effects on People and Property

Receptor Sensitivity	Number of Receptors	Distance from Source				
		<20m	<50m	<100m	<350m	
High	>100	High	High	Medium	Low	
Medium	10 – 100	High	Medium	Low	Low	
Low	1 – 10	Medium	Low	Low	Low	

The IAQM construction dust guidance was updated in August 2023 (Ref 1-1). The updated guidance reduced the distance criteria within which dust impacts are considered from 350m to 250m (see **Paragraphs 2.1.1 and 2.1.3**. However, in error, this change did not carry through to Table 2 of updated IAQM guidance on which **Table 6** is based. As such, the distance from source criteria provided in **Table 6** remains based on distance criteria as published in the superseded version of the IAQM construction dust guidance (Ref 1-2). This reference to the distance from source criteria from the old guidance does not affect the conclusions of the assessment reported in **Chapter 6**: **Air Quality**.

 Table 7: Sensitivity of the Area to Human Health Impacts

Receptor Sensitivity	Annual Mean PM ₁₀ Conc. (µg/m³)	Number of	Distance from Source			
		Receptors	<20m	<50m	<100m	<350m
High	>32	>100	High	High	High	Medium
		10 – 100	High	High	Medium	Low
		1 – 10	High	Medium	Low	Low
	28 – 32	>100	High	High	Medium	Low
		10 – 100	High	Medium	Low	Low
		1 – 10	High	Medium	Low	Low
	24 – 28	>100	High	Medium	Low	Low
		10 – 100	High	Medium	Low	Low
		1 – 10	Medium	Low	Low	Low
	<24	>100	Medium	Low	Low	Low
		10 – 100	Low	Low	Low	Low

Planning Inspectorate Scheme Ref: TR030008 Application Document Ref: TR030008/APP/6.4

Immingham Green Energy Terminal
Environmental Statement Appendix 6.A – Construction Dust Method

Receptor Sensitivity	Annual Mean PM ₁₀ Conc. (μg/m³)	Number of	Distance from Source			
		Receptors	<20m	<50m	<100m	<350m
		1 – 10	Low	Low	Low	Low
Medium	>32	>10	High	Medium	Low	Low
		1 – 10	Medium	Low	Low	Low
	28 – 32	>10	Medium	Low	Low	Low
		1 – 10	Low	Low	Low	Low
	24 – 28	>10	Low	Low	Low	Low
		1 – 10	Low	Low	Low	Low
	<24	>10	Low	Low	Low	Low
		1 – 10	Low	Low	Low	Low
Low	-	1 – 10	Low	Low	Low	Low

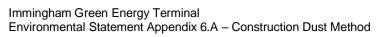

The IAQM construction dust guidance was updated in August 2023 (Ref 1-1). The updated guidance reduced the distance criteria within which dust impacts are considered from 350m to 250m (see **Paragraphs 2.1.1 and 2.1.3**. However, in error, this change did not carry through to Table 3 of updated IAQM guidance on which **Table 7** is based. As such, the distance from source criteria provided in **Table 7** remains based on distance criteria as published in the superseded version of the IAQM construction dust guidance (Ref 1-2). This reference to the distance from source criteria from the old guidance does not affect the conclusions of the assessment reported in **Chapter 6**: **Air Quality**.

Table 8: Sensitivity of the Area to Ecological Impacts

Receptor Sensitivity	Distance from Source		
	<20m	<50m	
High	High	Medium	
Medium	Medium	Low	
Low	Low	Low	

Step 2C: Define the Risk of Impacts

3.1.10 The dust emission magnitude determined at Step 2A should be combined with the sensitivity of the area determined at Step 2B to determine the risk of effects with no mitigation applied (**Table 9**). This Step is undertaken for each activity undertaken on site.

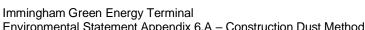
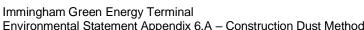


Table 9: Risk of Dust Impacts

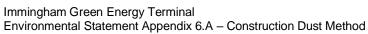
Activity	Sensitivity of Area	Dust Emissions Classification		
		Large	Medium	Small
Demolition	High	High	Medium	Medium
	Medium	High	Medium	Low
	Low	Medium	Low	Negligible
Earthworks	High	High	Medium	Low
	Medium	Medium	Medium	Low
	Low	Low	Low	Negligible
Construction	High	High	Medium	Low
	Medium	Medium	Medium	Low
	Low	Low	Low	Negligible
Track-out	High	High	Medium	Medium
	Medium	Medium	Low	Negligible
	Low	Low	Low	Negligible



Environmental Statement Appendix 6.A – Construction Dust Method

Step 3: Identify the need for Site-Specific Mitigation 4

Based on the risk of effects determined in Step 2C for each activity, appropriate 4.1.1 site-specific mitigation measures were recommended. Appropriate mitigation measures are set out in the IAQM Guidance.



Environmental Statement Appendix 6.A – Construction Dust Method

Step 4: Define Impacts and Their Significance 5

Finally, the significance of the potential residual dust impacts, i.e. after mitigation, 5.1.1 was determined. According to the IAQM Guidance the residual impacts assumes that all mitigation measures (recommended in Step 3) to avoid or reduce impacts are adhered to, and therefore the residual impacts should be 'not significant'.

References 6

- Ref 1-1 Holman et al. (2023), Guidance on the assessment of dust from demolition and construction. Version 2.1.
- Ref 1-2 Holman et al. (2014), Guidance on the assessment of dust from demolition and construction. Version 1.1.