

Immingham Green Energy Terminal

TR030008 Volume 6 6.4 Environmental Statement Appendices Appendix 16.B: Geophysical Survey Report

Planning Act 2008

Regulation 5(2)(a)

Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 (as amended)

September 2023

Infrastructure Planning

Planning Act 2008

The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 (as amended)

Immingham Green Energy Terminal

Development Consent Order 2023

6.4 Environmental Statement Appendices Appendix 16.B: Geophysical Survey Report

Regulation Reference	APFP Regulation 5(2)(a)
Planning Inspectorate Case Reference	TR030008
Application Document Reference	TR030008/APP/6.4
Author	Associated British Ports
	Air Products BR

Version	Date	Status of Version
Revision 1	21 September 2023	DCO Application

Table of contents

Summary		1
1.	Appendix 16.B: Geophysical Survey Report	
1.1.	Introduction	2
1.2.	Survey Summary	3
1.3.	Equipment Mobilisation	6
1.4.	Data Processing and Interpretation	
1.5.	Results	17
1.6.	Deliverables	21
1.7.	Abbreviations/Acronyms	24

Annexes

Annex A	Geophysical Processing and Results Report	26
Annex B	Daily Progress Reports	75

Tables

Table 1-1.	Summary of key personnel – MBES/SSS/MAG survey operations	5
Table 1-2.	Summary of key personnel – SBP survey operations	5
Table 1-3.	Summary of MBES, SSS and MAG survey operations	7
Table 1-4.	Summary of SBP survey operations	8
Table 1-5.	Vessel sensor offsets	11
Table 1-6.	GAMS antenna baseline vector	12
Table 1-7.	Patch test calibration values	12
Table 1-8.	Geophysical data deliverables	21

Plates

Plate 1-1.	Geophysical survey required area	2
Plate 1-2.	Geophysical survey vessel - Wessex Explorer	3
Plate 1-3.	Outfall at Burcom Sand, Humber Estuary selected for MBES calibration	13
Plate 1-4.	Gridded bathymetry (0.2 m) Z average plots before and after application of calibration values	14
Plate 1-5.	Gridded bathymetry (0.2 m) standard deviation plots before and after application of calibration values	14
Plate 1-6.	Magnetometer verification showing magnetic residual grid with poles aligning with linear target detected in multibeam bathymetry data) 15
Plate 1-7. Plate 1-8.	Multibeam bathymetry overview	19 20

Summary

Associated British Ports (ABP) contracted ABPmer to undertake a marine geophysical seismic survey at the site of the proposed Immingham Green Energy Terminal (IGET). A full spread geophysical survey was required to provide multibeam bathymetry (MBES), sub-bottom profiler (SBP), sidescan sonar (SSS) and magnetometer (MAG) datasets of the proposed site. The data was required to inform the project design and construction phase as well as for physical processes and marine archaeology assessments in the Environmental Statement to support the Development Consent Order (DCO) application.

Survey operations were conducted onboard the survey vessel, Wessex Explorer, in February/March 2023 with data processing and interpretation taking place in April/May 2023. MBES bathymetry and backscatter data processing and reporting has been conducted by ABPmer. The geophysical processing, interpretation and reporting of the SBP, SSS and MAG data was conducted by CMGeomatics Ltd.

Results from a combination of SSS and MBES data show five seabed sediment classifications: Mixed Sediment, muddy SAND, firm CLAY, soft MUD and rock protection. Firm CLAY has been marked tentatively as an increase in soil strength is only supported by an increase in reflectivity, rather than having been verified by ground truthing.

SSS and MBES datasets have revealed a total of 1064 seafloor contacts. A significant number of debris items have been identified, largely in the southern half of the survey area. A total of 317 magnetic contacts have been identified, 44 of which are able to be correlated with seafloor targets based on proximity, size, and magnetometer altitude.

An initial geological model has been developed based on results of the survey inconjunction with background information about the site and geotechnical work that has been carried out previously at or near to the survey area. Four main sub surface units have been identified.

The uppermost unit is comprised of surficial alluvium deposits composed of soft SILT/CLAY and SAND with a depth range between 0.0 m - 4.8 m below seabed. A layer of interpreted boulder clay underlies the alluvium which has been interpreted as the Upper Boulder Clay unit. The Upper Boulder Clay ranges between 0.0 m - 10.6 m below seabed and is largely observed to exist in tandem with the underlying Lower Boulder Clay which appears to completely erode away towards the north. The Lower Boulder Clay unit is observed to exist between 0.0 m - 15.0 m below seabed in the survey area. Discontinuous lenses of SAND/GRAVEL are also noted within this unit. The bedrock has been identified as CHALK from geotechnical data. The surface of the CHALK has been observed in the seismic data at depths between 0.0 m - 15.0 m below seabed. The bedrock level below seabed shoals to the north where it is observed at or close to the riverbed.

Two small, isolated regions of acoustic attenuation are observed, likely caused by moderate accumulation of organic matter within the surficial sediments.

There is good confidence in the geophysical interpretation in the deeper waters (proposed berth area) at the northeast of the survey area due to the chalk horizon being clearly observed reaching the seabed and correlating with results of the recent vibrocore campaign. There is less confidence in the geophysical interpretation of the shallower waters due to lack of geotechnical ground-truth information. If further geotechnical information becomes available, interpretation can be revisited to improve confidence in the results.

1. Appendix 16.B: Geophysical Survey Report

1.1. Introduction

1.1.1. Associated British Ports (ABP) contracted ABPmer to undertake a geophysical survey at the site of the proposed location for the Immingham Green Energy Terminal (IGET) development, at Immingham, UK (Plate 1-1).

Plate 1-1. Geophysical survey required area

1.1.2. A full geophysical survey was required to provide multibeam bathymetry (MBES), sub-bottom profiler (SBP), sidescan sonar (SSS) and magnetometer (MAG) datasets of the proposed site. The data was required to inform the design and construction phase of a proposed berth for bulk hydrogen handling and reception, as well as to provide context for the respective physical processes and marine archaeology assessments that may be required in the area.

- 1.1.3. The requirements of the survey included acquisition of full coverage MBES and SSS datasets within an area east of the existing Immingham Oil Terminal (IOT). Survey extents covered a rectangular area around the proposed new berth layout, extending northwards into the main navigation channel and westwards to the IOT. Additionally, survey extents also covered a corridor section between this area and the shore, extending to the 2 m above Chart Datum (CD) contour. LiDAR data acquired by the Environment Agency in 2019 was used to provide topographical data inshore of the acquired bathymetry data.
- 1.1.4. SBP and MAG data was required within the same survey extents, however extending inshore to the 0 m contour. Required line spacing was 20 m across the full area, and a denser 10 m line spacing directly over the proposed berth footprint and proposed jetty structure. Additional cross lines were required at 100 m spacing.
- 1.2. Survey Summary

Overview

1.2.1. The geophysical survey commenced on 6 February 2023 with mobilisation of the geophysical survey vessel, *Wessex Explorer* (Plate 1-2). The 15 m mono-hull vessel, with a draft of 1.4 m, is owned and operated by 'Hayes Marine Ltd' and regularly used by ABPmer for geophysical surveys, including previously at this survey location for a bathymetry reconnaissance survey in July 2022.

Plate 1-2. Geophysical survey vessel - *Wessex Explorer*

- 1.2.2. The survey vessel transited from Southampton on 3–4 February 2023 to Grimsby Fish Docks. The survey team travelled to Grimsby on 6 February 2023 to commence equipment mobilisation.
- 1.2.3. Alongside equipment mobilisation and static verification procedures were conducted, within Grimsby Fish Docks, between 6–7 February 2023. Upon completion of the alongside mobilisation, the vessel conducted a series of data calibration/verification and data optimisation procedures on 7–8 February 2023 prior to commencing survey operations.
- 1.2.4. The mobilised SBP system was found to be faulty during equipment verification and was demobilised from the vessel on 9 February 2023. Therefore, the SBP element of the project scope was postponed but the MBES, SSS and MAG data acquisition continued as planned.
- 1.2.5. MBES, SSS and MAG survey operations took place on 10 13 February 2023. Full data QA was conducted onboard in real-time by the onboard geophysical processor and by the shore-based processing team, at CM-Geomatics Ltd, for wider review at the end of each survey day. Following initial completion of all survey lines, a full data review and preliminary processing took place to confirm the required coverage had been achieved and the vessel was demobilised on 14 February 2023.
- 1.2.6. The vessel was remobilised on 6 March 2023 with two replacement SBP systems; a Geo Marine systems boomer and a geo marine systems freshwater sparker. Full equipment testing and verification of the two systems took place on 7 March 2023. Both systems were confirmed to be operational and producing good data quality. Survey operations commenced on 7 March 2023 and were completed on 12 March 2023. Following a full data review, the survey was confirmed complete, and the vessel was demobilised on 13 March 2023.

Personnel

1.2.7. A summary of the personnel involved in the data acquisition and processing of the survey are detailed in Table 1-1(MBES/SSS/MAG survey) and Table 1-2 (SBP survey).

Table 1-1. Summary of key personnel – MBES/SSS/MAG survey operations

Role	Personnel
Project Manager / Surveyor	Paul Clement (ABPmer)
Hydrographic surveyor	Tom Alker (ABPmer)
Geophysical surveyor / Engineer	Hugh MacKay (Freelance Contractor)
Geophysical Processor (onboard)	Tim Holgate (CM-Geomatics Ltd)
Geophysical Processing Manager	Kayur Patel (CM-Geomatics Ltd)
GIS Analyst	Oliver Ringwood (ABPmer)
Geophysical Vessel Master	Nick Bush (Hayes Marine Ltd)
Geophysical Vessel Mate/Engineer	James Bush (Hayes Marine Ltd)

Table 1-2. Summary of key personnel – SBP survey operations

Role	Personnel
Project Manager	Paul Clement (ABPmer)
Hydrographic surveyor	Tom Alker (ABPmer)
Geophysical surveyor / Engineer	Hugh MacKay (Freelance Contractor)
Geophysical Processing Manager	Kayur Patel (CM-Geomatics Ltd)
GIS Analyst	Oliver Ringwood (ABPmer)
Geophysical Vessel Master	Nick Bush (Hayes Marine Ltd)
Geophysical Vessel Mate/Engineer	James Bush (Hayes Marine Ltd)

1.3. Equipment Mobilisation

Geodetic control

- 1.3.1. In order to avoid transformation errors during acquisition, all data was acquired relative to UTM30N(ETRS89). The data was then converted to the required OSGB36 coordinate system using the OSTN15 transformation.
- 1.3.2. In the vertical, data was acquired relative to the ETRS89 ellipsoid and offset to CD using a single geoid separation value of 41.82 m. The value was taken from the VORF (Vertical Offshore Reference Frame) ETRS89-CD geoid model. The geodetics for the project are EPSG: 27700 OSGB36/British National grid.

Geophysical survey

Survey summary

1.3.3. A brief summary of the daily activities conducted as part of the project are provided in Table 1-3 (MBES, SSS, Mag survey) and Table 1-4 (SBP survey). Daily Progress Reports are provided as Annex B, which provide a detailed summary of all survey activities.

Table 1-3. Summary of MBES, SSS and MAG survey operations

Date	Daily Summary
06/02/2023	Survey personnel travel to Grimsby.
07/02/2023	Full project brief and HSE discussion held with all survey and vessel personnel.
	Commenced mobilisation of Wessex Explorer.
	MBES pole deployed.
	SBP, SSS and MAG installed.
08/02/2023	Dynamic MBES position calibration conducted within Grimsby Fish Docks.
	Independent static position verification conducted alongside.
	SBP, SSS and MAG systems wet tested.
	Full MBES patch test successfully conducted at outfall location.
09/02/2023	Dynamic SBP, SSS, MAG position verification conducted at outfall location.
	Data quality issue identified with SBP system and replacement deemed required.
10/02/2023	Unable to source replacement boomer SBP system in rental market.
	Mobilise marine sparker SBP system.
	Marine sparker system not operating correctly.
	Without suitable replacements available decision to continue with survey without SBP element.
	Commence running survey lines with MBES, SSS and MAG.
11/02/2023	Continue MBES, SSS and MAG survey.
12/02/2023	Continue MBES, SSS and MAG survey.
13/02/2023	Completed all remaining MBES, SSS, and MAG survey lines. Full data QA prior to demobilisation.
14/02/2023	Data QA confirms requirements coverage achieved.
	Vessel demobilised.
	Survey personnel depart Grimsby.

Table 1-4. Summary of SBP survey operations

Date	Daily Summary
06/03/2023	Survey personnel travel to Grimsby.
07/03/2023	HSE discussion held with all survey and vessel personnel. Commenced mobilisation of boomer SBP system on Wessex Explorer. Conduct SBP position verification at outfall location.
08/03/2023	Further SBP position verifications conducted at outfall location. Commence SBP survey operations. SBP, SSS and MAG systems wet tested. Full MBES patch test successfully conducted at outfall location.
09/03/2023	Continue SBP survey operations. Survey operations suspended due to poor weather conditions. Freshwater sparker SBP system mobilised as secondary system.
10/03/2023	Poor weather conditions throughout day. Freshwater sparker system tests conducted within Grimsby Fish Docks.
11/03/2023	Continue SBP survey operations.
12/03/2023	Completed all remaining SBP survey lines. Full data QA prior to demobilisation.
13/03/2023	Data QA confirms required coverage achieved. Vessel demobilised. Survey personnel depart Grimsby.

Equipment

1.3.4. The *Wessex Explorer* was mobilised with a full suite of geophysical equipment. A port-side pole mounted multibeam (MBES) bathymetry system (and position and orientation system), sidescan sonar (SSS), sub-bottom profiler (SBP) and towed magnetometer (MAG) were mobilised to the vessel.

Multibeam system (with integrated inertial positioning)

- 1.3.5. A Norbit iWBMSh fully integrated multibeam system was mobilised on the port side of the *Wessex Explorer* using a purpose-built over-the-side pole-mount.
- 1.3.6. An Applanix POSMV Oceanmaster is integrated within the Norbit iWBMSh system, providing online RTK positioning of accuracy <0.02 m; and vessel attitude data to apply to the bathymetry.
- 1.3.7. The POSMV Oceanmaster is designed to provide accurate attitude, heading, heave, position and velocity data at the location of the multibeam transducer. The system consists of dual GNSS antennas coupled with the integrated Inertial Measurement Unit (IMU). GNSS data is blended with angular rate and acceleration data from the IMU and heading from the GPS Azimuth Measurement System (GAMS) to produce a robust and accurate full six degreesof-freedom position and orientation solution.
- 1.3.8. The MBES was interfaced into a central acquisition computer running the navigation acquisition software, BeamworX NavAQ.

Sound velocity

- 1.3.9. Correcting for changes in sound velocity through the water column is essential for accurate position of soundings. Therefore, an AML Sound Velocity Sensor (SVS) is installed within the housing of the Norbit iWBMSh MBES system, for real-time sound velocity observations to assist in beam forming.
- 1.3.10. In addition, a Valeport Swift Sound Velocity Profiler (SVP) was used to conduct profiles through the water column at regular intervals during survey operations. The system was deployed over the side of the survey vessel and slowly lowered to the seabed before being hauled back to the vessel. During each deployment, the system observed the sound velocity at 0.2 m intervals throughout the full water column providing a sound velocity profile. The profile was then applied within the acquisition software to correct the positioning of the MBES soundings.

Sub-bottom profiler (SBP)

- 1.3.11. During the first phase of the geophysical survey operations, an Applied Acoustics CSP-P300 High Voltage Boomer system in conjunction with a towed Applied Acoustics High Voltage plate catamaran assembly (source), and an Applied Acoustics AH360/8 Hydrophone (receive) were mobilised to the vessel. SBP data was acquired using a Chesapeake Sonarwiz acquisition system.
- 1.3.12. The boomer catamaran was towed from the stern, with an outrigger installed on the starboard side of the vessel to tow the hydrophone. Both instruments were towed at 20 m astern of the vessel throughout operations, with the centre of the hydrophone array approximately level with the boomer plate. The navigation

software, BeamworX NavAQ was set to output a GGA NMEA message to the CSP-P300 of the midpoint towpoint (halfway between source and receive), with the layback (cable-out) already applied using a layback computation within the navigation software. Data was recorded in full waveform SEGY format.

- 1.3.13. During position verifications of the SBP system data quality issues were identified and were unable to be rectified due to a fault within the boomer itself. The secondary available system, a Geo Marine sparker and streamer was then mobilised, but a power issue meant the system did not trigger correctly in the environment. Without replacement systems available in the rental market, the survey continued without acquiring the SBP element.
- 1.3.14. Suitable replacement SBP systems were sourced in early March and the vessel was remobilised on 6 March 2023 with two replacement SBP systems: a Geo Marine systems boomer and a geo marine systems freshwater sparker. Full equipment testing and verification of the two systems took place on 7 March 2023. Both systems were confirmed to be operational and producing good data quality. Survey operations commenced on 7 March 2023 and were completed on 12 March 2023. Following a full data review, the survey was confirmed complete, and the vessel was demobilised on 13 March 2023.

Sidescan sonar (SSS)

- 1.3.15. An Edgetech 4125 side-scan sonar system was mobilised to the vessel for the SSS aspect of the geophysical survey. The system is designed for shallow water environments and operates at two simultaneous frequencies (400/900 kHz), providing an ideal combination of range and resolution. Due to the shallow nature of the survey area, the SSS was mobilised to enable towing from two locations, from the stern (starboard-stern quarter) for the deeper areas of the site, and in a "bow-mount" configuration, alongside the vessel, for the shallow areas. However, it was found that towing from the stern and adjusting layback (cable-out) enabled good data quality across the site and therefore, the bow-mount option was not required.
- 1.3.16. Data was logged in native JSF format using the Edgetech Discover acquisition software. Both high and low frequency data were logged.

Magnetometer (MAG)

- 1.3.17. A Geometrics G-882 marine magnetometer system was mobilised to the vessel. The system consists of a caesium vapour high performance sensor, increasing the probability of detecting all sized ferrous targets, an altimeter and a depth sensor. The MAG was towed from the centre of the stern of the vessel, at a layback distance of 30 m. Due to the shallow nature of the survey area, in some areas of the site, floatation was fixed to the MAG cable to prevent the instrument from contacting the seabed whilst keeping a suitable separation from the vessel to avoid the vessel's magnetic signature.
- 1.3.18. The magnetometer data was interfaced into the QPS QINSy navigation software. The cable-out was applied within QINSy and a layback system used to compute the magnetometer position. Data was acquired at 10 Hz logging rate.

Equipment offsets

- 1.3.19. Location of sensors on the vessel relative to one another was measured during a dimensional control survey conducted in late January 2023. While sensors have been removed/replaced since this original dimensional control all measurements are repeatable due to fixed antenna mounts and sonar deployment location.
- 1.3.20. Offsets and alignments were recalculated to shift the vessel central reference point (CRP) to the Norbit MBES sonar reference point (SRP) and applied in the Norbit GUI and POSView Software to provide accurate real-time positions. Sensor offsets are listed below in Table 1-5.

Sensor/Location	X (+Forward m)	Y (+ Starboard m)	Z (+ Up m)
CRP (Norbit 'Sonar reference point')	0.000	0.000	0.000
Norbit 'Top of bracket flange'	0.000	0.172	0.070
IMU (Integrated)	0.000	0.248	-0.079
Primary antenna mount point	1.153	-0.687	4.723
Secondary antenna mount point	3.655	-0.909	4.643
Primary antenna phase centre	1.153	-0.687	4.780
Secondary antenna phase centre	3.655	-0.909	4.700
GAMS	2.502	-0.222	-0.080
Waterline	0.000	0.000	0.800
Mag tow point	0.600	-6.005	1.873
Boomer tow point	1.966	-5.628	4.830
SSS tow point	2.974	-6.201	1.873
Hydrophone tow point	5.946	-5.925	2.000
Hydrophone-boomer mid point	3.934	-5.861	2.000

Table 1-5. Vessel sensor offsets

Equipment calibration and verification

Navigation system (POSMV INS and QPS Qinsy) verification

1.3.21. On completion of equipment mobilisation, a GAMS (GPS Azimuth Measurement System) calibration was undertaken, whereby a series of tight turns and figure-ofeights were performed, within Grimsby Fish Docks, to enable the inertial navigation system to compute the alignment of the IMU relative to the GNSS antennas. GAMS antenna baseline vector is displayed below in Table 1-6.

Table 1-6. GAMS antenna baseline vector

Offset Node	X (+Forward m)	Y (+ Starboard m)	Z (+ Up m)
GAMS Antenna Baseline Vector	-0.222	2.502	-0.08

1.3.22. A dynamic positioning verification was also conducted to ensure the positioning accuracy of the entire vessel setup as a single system; accounting for the GNSS accuracy, sensor offsets, and MBES sensor accuracy.

Multibeam echosounder calibration and verification

- 1.3.23. Residual angular misalignment between the MBES and INS system was calibrated for by performing a patch test. A full patch test procedure was conducted on the 8 February 2023. The patch test was conducted at a known outfall location on the Humber Estuary. The outfall near the Burcom Sand sandbank represents an area of seabed with known changing relief suitable for calibration. Prior to commencing the patch test, a sound velocity profile was acquired to ensure that errors in sound velocity did not affect the results.
- 1.3.24. To identify any roll misalignment in the MBES transducer installation, two lines were run adjacent to each other in reciprocal directions over a relatively flat seabed. To identify any pitch misalignment in the MBES transducer installation, two overlapping lines were run in reciprocal directions over the discrete seabed target. To identify any heading misalignment in the MBES transducer installation, two adjacent lines were run in the same direction passing over the discrete seabed target in the outer beams.

Patch Test	Roll (+Port up)	Pitch (+Bow Up)	Yaw (+ Clockwise)
Alignment Angle Offsets	-0.25	0.00	0.20

Table 1-7. Patch test calibration values

Immingham Green Energy Terminal Environmental Statement Appendix 16.B - Geophysical Survey Report

Plate 1-3. Outfall at Burcom Sand, Humber Estuary selected for MBES calibration

Plate 1-4. Gridded bathymetry (0.2 m) Z average plots before and after application of calibration values

Plate 1-5. Gridded bathymetry (0.2 m) standard deviation plots before and after application of calibration values

SBP/boomer verification

1.3.25. During mobilisation, an alongside tap test of the hydrophone array was conducted to confirm the hydrophone sensitivity. A full wet test (pulse test) was then conducted whilst the vessel was alongside with the boomer pinging and hydrophone deployed, to ensure complete system operation prior to verifications. During verifications at the known outfall location on the Humber Estuary, the tow depth of the streamer was monitored, and floats were added to the streamer to ensure optimal tow depth was achieved to reduce ghosting whilst minimizing wave noise. A SBP position verification was conducted to confirm positional accuracy by running two reciprocal lines over the discrete seabed target.

SSS verification

1.3.26. During mobilisation a rub test was performed whilst alongside to confirm communications with the towfish and correct transducer setup. A wet test was undertaken on a suitable target prior to survey to prove data quality and positional accuracy. Whilst at the known outfall location on the Humber Estuary, a SSS position verification was conducted by running two adjacent lines, in reciprocal directions passing the discrete seabed target, confirming the positional accuracy.

Magnetometer verification

1.3.27. Whilst the vessel was alongside in Grimsby Fish Docks, the magnetometer altimeter and depth sensors' scale and bias values were verified to confirm the accuracy. A MAG position verification was conducted by running two reciprocal lines over, and perpendicular to, a discrete seabed target, confirming the positional accuracy (Plate 1-6).

Plate 1-6. Magnetometer verification showing magnetic residual grid with poles aligning with linear target detected in multibeam bathymetry data

1.4. Data Processing and Interpretation

Multibeam bathymetry

Data processing

- 1.4.1. The multibeam bathymetry data was processed by ABPmer using BeamworX AutoClean 2022.3.1.0.
- 1.4.2. Bathymetry data was acquired with RTK positioning accurate to < 0.03 m. RTK corrections were received largely uninterrupted throughout survey operations by the integrated Applanix Wavemaster II GNSS system. However, to improve position quality further, data was post-processed in Applanix POSPac and applied to the bathymetry.
- 1.4.3. The raw XTF bathymetry files were imported into BeamworX AutoClean and a vessel configuration file applied, in order to apply the mobilisation offsets and angular offsets computed from the patch test calibration data. All sound velocity profiles were imported into the project so that raw soundings were corrected for the effects of changes in sound velocity by the profile closest in time, rather than the previous file in time. A coarse filter was applied to automatically remove lone erroneous soundings at extended distances from the seabed. At this site, the hull/keels of several berthed vessels were detected by the MBES but were removed by the coarse filter. The AutoClean inspection feature was then used to manually remove further erroneous soundings. In addition, any structures observed (jetty piles for instance) were removed to ensure that the final bathymetry was a representation of the seabed only.
- 1.4.4. The final processed bathymetry dataset was gridded at a resolution of 0.25 m and exported as an XYZ, FLT and georeferenced sun-illuminated image (GeoTIFF).

Data quality

- 1.4.5. MBES data was of good quality throughout survey operations. All survey lines included in the processing had uninterrupted RTK positioning following application of an Applanix smoothed best estimate of trajectory (SBET). Multiple sound velocity profiles were deployed on each survey day. Data was generally 'clean' with very few outliers required for manual removal in processing. Full coverage was achieved in the required survey area.
- 1.4.6. Following initial processing, data was reviewed by a QA processor before production of final deliverables.

Multibeam backscatter

Data processing

- 1.4.7. The multibeam backscatter data was processed by ABPmer using QPS FMGT (Fledermaus Geocoder Toolbox) 7.10.2.1683 and BeamworX AutoClean 2022.3.1.0.
- 1.4.8. Backscatter .GSF files written in real-time were imported into FMGT and paired with cleaned .GSF bathymetry files and used to generate a time-series backscatter mosaic with minimal nadir coverage (<25%). A reference surface

was also used to help the mosaic process with inclusion of slope angles. The produced mosaic was reviewed manually and lines re-prioritised within the software to provide better overlap and clarity of seabed targets. Line-specific amplitude adjustment was also conducted on outlier lines that had failed to mosaic properly. Final cleaning/review of erroneous points was conducted in BeamworX before production of deliverables.

1.4.9. The final backscatter dataset was gridded at a resolution of 0.10 m and exported as an XYZ, and georeferenced image (GeoTIFF).

Data quality

- 1.4.10. Multibeam Backscatter data was generally of good data quality with acquisition settings maintained consistent online to prevent any data "striping". System power and gain were generally set at values to minimise over-reflective returns.
- 1.4.11. Data generally showed consistent intensity returns on overlapping lines, and nadir data was minimised (<25%) to generate as seamless a mosaic as possible. Some striping and erroneous intensity returns were present due to acoustic noise but have been minimised through the application of the backscatter processing algorithm where possible. This provided a clearer representation of the seabed.</p>

Sidescan sonar

1.4.12. Side Scan Sonar data were processed by CM-Geomatics Ltd. For a summary of the sidescan sonar processing and interpretation methodology, see Annex A, Section 2.2.

Sub bottom profiler

1.4.13. Sub bottom profiler data were processed by CM-Geomatics Ltd. For a summary of the sub bottom processing and interpretation methodology, see Annex A, Section 2.3.

Magnetometer

- 1.4.14. Magnetometer data were processed by CM-Geomatics Ltd. For a summary of the magnetometer processing and interpretation methodology, see Annex A, Section 2.4.
- 1.5. Results

Seabed bathymetry

- 1.5.1. The bathymetry of the site is characterised by a deeper water, flat seabed located offshore of the IOT in the North-East of the site in the main Humber navigation channel. Here, depths are largely consistent around -15 m CD, with some deeper sections observed adjacent to the IOT -21 m CD. Plate 1-7 provides an overview of the bathymetry data.
- 1.5.2. This seabed sharply shallows up a steep slope on its South-Westerly edge that quickly rises (in some locations almost vertically), to a plateau at depths of approximately -5 m CD. Depths at the top of this slope slowly shallow further moving inshore (South-West) before rising quickly shoaling again in the extreme shallows adjacent to the shoreline.

- 1.5.3. Several depressions mark the shallower plateau section of the site approximately 3 m to 4 m in depth relative to adjacent seabed and spaced irregularly. A deeper channel runs perpendicular through the shallow section clearly visible in the MBES bathymetry, backscatter and side-scan datasets.
- 1.5.4. Depth contours run approximately parallel to the shoreline, adjusted irregularly due to the presence of seabed morphology.
- 1.5.5. Average depth within the site was -9.98 m. An overall shallowest and deepest observed depth value of 3.41 m CD and -21.29 m CD were observed respectively.

Seabed backscatter

1.5.6. The multibeam backscatter provides an image similar to a side scan sonar mosaic to assist in seabed characterisation (Plate 1-8).

Geophysical results

- 1.5.7. The processing, interpretation and reporting of the geophysical data (SSS, SBP and MAG) was conducted by CM-Geomatics Ltd. Results summarising the below can be found in Annex A, Section 3.
 - Seabed morphology;
 - Seabed sediments;
 - Seabed contacts;
 - Sub-surface conditions:
 - Geological model;
 - Stratigraphic interpretation.

Plate 1-7. Multibeam bathymetry overview

Immingham Green Energy Terminal Environmental Statement Appendix 16.B - Geophysical Survey Report

Plate 1-8. Multibeam backscatter overview

1.6. Deliverables

Charts

1.6.1. Geophysical data is presented in a series of five 1-panel charts and one 4-panel chart as described below:

1-panel charts:

- 5163_IGET_Geophysical_MBES_Bathy_A0 (Scale 1:2100 Size: A0)
 - Sun-illuminated bathymetric image
 - Bathymetry contours at 1 m intervals
- 5163_IGET_Geophysical_MBES_Backscatter_A0 (Scale 1:2100 Size: A0)
 - o Backscatter mosaic
- 5163_IGET_Geophysical_SSS_A0 (Scale 1:2100 Size: A0)
 - Sidescan Sonar mosaic (Low Frequency)
- 5163_IGET_Geophysical_SBF_Rev0 (Scale 1:1,2100 Size: A0)
 - \circ Interpreted seabed features
 - Seafloor contacts
- 5163_IGET_Geophysical_MAG_Rev0 (Scale 1:1,2100 Size: A0)
 - Magnetic residual field grid
 - Observed magnetic targets

4-panel charts:

- 5163_IGET_Geophysical_SBP_A0 (Scale 1:2100 Size: A0)
 - Panel 1 Sub Bottom Profiler trackplot
 - Panel 2 Base of surficial Alluvium gridded interpretation
 - Panel 3 Top of lower boulder clay gridded interpretation
 - Panel 4 Top of chalk gridded interpretation

Data deliverables

1.6.2. Table 1-8 summarises and describes the geophysical data deliverables that are provided with this report.

Table 1-8. Geophysical data deliverables

System	Deliverable	Description	Format
1a_MBES Bathymetry	1_XYZ	 Gridded bathymetry relative to OSGB36(OSTN15) and CD. 0.25 m resolution 0.5 m resolution 1.0 m resolution 	.XYZ

System	Deliverable	Description	Format
	2_FLT	 Gridded bathymetry relative to OSGB36(OSTN15) and CD. 0.25 m resolution 0.5 m resolution 1.0 m resolution 	.FLT
	3_TIF	 Sun-illuminated bathymetric imagery. 0.25 m resolution 0.5 m resolution 1.0 m resolution 	.TIF / .TFW (GeoTIFF)
	4_Contours	Bathymetric contours (CD) at 1 m intervals.	.SHP
	5_Trackplot	Multibeam survey Trackplot	.SHP
1a_MBES Backscatter	1_TIF	Backscatter imagery at 0.1 m resolution	.TIF/.TFW (GeoTIFF)
2_SBP	1_Processed_Data (processed seismic data [CD +5 m])	Processed and tidally reduced seismic data in SGY format. Data undergone basic signal processing plus deconvolution and demultiple processing.	.SEGY (TWTT with fully populated trace and text headers)
	2_Trackplot	Trackplot showing extent of accepted SBP data.	.SHP
	3_Interpretatation (Horizon interpretation including Geohazards)	Horizons in seconds time relative to tidally corrected SGY data, with seismic trace numbers assigned. For use with seismic interpretation software if further work is required.	Text (X, Y, Line, Trace, Time, Amplitude)
	4_Gridded_Surfaces	Gridded and cleaned horizon data representing the surfaces that the files are named for relative to metres below CD.	Text (X, Y, Depth (below CD) and GIS (single band GeoTIFF)
	5_lsopachs	Gridded and cleaned horizon data representing the surfaces that the files are named for relative to metres below seabed.	Text (X, Y, Depth (below Seabed) and GIS (single band GeoTIFF).
3_SSS	1_Processed_Data (Navigation corrected and seabed tracked)	Navigation and altitude corrected sonar data in XTF format.	.XTF

System	Deliverable	Description	Format
	2_Trackplot	Trackplot showing extent of accepted SSS data.	shp
	3_HF_Mosaic	Georeferenced mosaic image of the high frequency SSS data at 0.1 m resolution.	.TIF / .TFW (GeoTIFF)
	4_LF_Mosaic	Georeferenced mosaic image of the low frequency SSS data at 0.1 m resolution.	.TIF / .TFW (GeoTIFF)
	5_Seafloor_Contacts	Contact list containing target specific data for each interpreted SSS/MBES contact and correlations to other datasets.	.CSV / .SHP
	6_Seabed Features (SBF)	 Polygon shapefiles marking boundary extents of the seabed conditions. Subdivided into: 1_Sediments - describes the predominant interpreted sediment composition at the seabed grouped into a single shapefile with attributes to describe sediment types. 2_Morphology - contains individual polygon shapes to describe various morphological and anthropogenic structures present at the seabed. 	.SHP
4_MAG	1_Processed_Data	Processed magnetic data in text format.	.TXT
	2_Trackplot	Trackplot showing extent of accepted MAG data.	.SHP
	3_Residual_Field_FLT	Gridded interpreted residual magnetic field calculated from the recorded total magnetic field.	.FLT
	4_Residual_Field_Image	Gridded interpreted residual magnetic field calculated from the recorded total magnetic field. Georeferenced image format complete with associated ColourBar.	.TIF / .TFW (GeoTIFF)
	5_MAG_Contacts	Contact lists containing target specific data for each interpreted MAG contact and correlations to other datasets.	.SHP

1.7. Abl	breviations/Acronyms
ABP	Associated British Ports
AML	AML Oceanographic
AutoClean	Bathymetry processing software
BeamworX	BeamworX bv
CD	Chart Datum
CRP	Central Reference Point
CSP	Sub-bottom Profiler Model
CSV	File FORMAT - Comma-Separated Values
DCO	Development Consent Order
EPSG	European Petroleum Survey Group
ETRS89	European Terrestrial Reference System 1989
FLT	Filetype – GIS Float
FMGT	Fledermaus Geocoder Toolbox
GAMS	GPS Azimuth Measurement System
GeoTIFF	Georeferenced Image
GGA	GPS Positioning Message
GIS	Geographic Information System
GNSS	Global Navigation System
GPS	Global Positioning System
GSF	Generic Sensor Format
GUI	Graphical User Interface
HF	High Frequency
HSE	Health and Safety Executive
IGET	Immingham Green Energy Terminal
IMU	Inertial Measurement Unit
INS	Inertial Navigation System
ΙΟΤ	Immingham Oil Terminal
iWBMSh	Integrated Wide-Band Multibeam Sonar
JSF	JavaScript File
LF	Low Frequency
Lidar	Light Detection and Ranging
MAG	Magnetometer
MBES	Multi-Beam Echo Sounder

NavAQ	Navigation and Data Acquisition Software
NMEA	Standard Interfacing Output Message
OSGB36	Ordnance Survey Great Britain 1936
OSTN15	Ordnance Survey Transformation model 2015
POSMV	Applanix Positioning System
POSPac	Applanix Positioning Processing Software
POSView	Applanix Positioning Acquisition Software
QA	Quality Assurance
QINSy	Navigation Acquisition Software
QPS	Quality Positioning Services (Manufacturer of Navigation Software)
RTK	Real-Time Kinematic
SBET	File format - Smoothed Best Estimate of Trajectory
SBP	Sub-Bottom Profiler
SEGY	File format – Sub Bottom Data
SGY	File format – Sub Bottom Data
SHP	File format – GIS Shapefile
Sonarwiz	Sidescan Acquisition Software
SRP	Sonar Reference Point
SSS	Side Scan Sonar
SVP	Sound Velocity Profile
SVS	Sound Velocity Sensor
TFW	File Format - Used to Georeference TIF Files
TIF	File Format – Image
TWTT	Two Way Travel Time
TXT	File Format - Text
UK	United Kingdom
UTM	Universal Transverse Mercator
VORF	Vertical Offshore Reference Frame
Wavemaster	Applanix navigation system model
XTF	File Format – Processed Side Scan Sonar Data
$\lambda \alpha / \overline{\beta}$	

Cardinal points/directions are used unless otherwise stated. SI units are used unless otherwise stated.

Annex A Geophysical Processing and Results Report

Immingham Green Energy Terminal Geophysical Site Survey

Processing and Results Report

26 May 2023

CMG23001-PRR [01] ABPmer

Report issued to:

ABPmer

Quayside Suite Medina Chambers Town Quay Southampton SO14 2AQ

Tel: +44 (0) 2380 711 840

Client's Project Ref No.: 5136

Victoria House Victoria Road Taunton TA1 3FA

CMGeomatics

Report issued by:

Tel: +44 (0) 1823 476 977

CMGeomatics Project Ref No.: CMG-23001

Revision Record

lssue Number	Date	Reason for Issue	Issued To	Compiled By	Approved By
Revision 00	14/04/2023	Draft	ABPmer	Kayur Patel	Dave Cullen
Revision 01	26/05/2023	Final	ABPmer	Kayur Patel	Dave Cullen

EXECUTIVE SUMMARY

MBES, SSS, MAG and SBP data have been successfully acquired across the survey area. The key findings are as follows:

Five seabed sediment classifications have been identified from a combination of SSS and MBES data: Mixed Sediment, muddy SAND, firm CLAY?, soft MUD and rock protection. Firm CLAY has been marked tentatively as an increase in soil strength is only supported by an increase in reflectivity. Sediments classifications have not been verified by ground truthing locations.

In total 1064 seafloor contacts have been identified on SSS and MBES datasets. A significant number of debris items have been identified, largely in the southern half of the survey area.

A total of 317 magnetic contacts have been identified that are >5nT in amplitude, 44 of which are able to be correlated with seafloor targets based on proximity, size, and magnetometer altitude. Magnetic results are only valid for large ferrous targets and not UXO.

Four main sub surface units have been identified. The geological model has been based on background information about the site and geotechnical work carried out previously at or near to the survey area. Some conflicts exist between the interpretation made on this data and the legacy boreholes, however recent vibrocores show good correlation in areas where chalk is observed to be shallow.

The uppermost unit is comprised of surficial alluvium deposits composed of soft SILT/CLAY and SAND with a depth range between 0-4.8m BSB.

A layer of interpreted boulder clay underlies the alluvium which has been interpreted as the "Upper Boulder Clay" unit. The Upper Boulder Clay ranges between 0m-10.6m BSB and is largely observed to exist in tandem with the underlying Lower Boulder Clay which appears to completely erode away towards the north.

A second layer of boulder clay has been interpreted as the "Lower Boulder Clay" unit. This unit is observed to exist between 0-15m BSB in the survey area. Discontinuous lenses of SAND/GRAVEL are also noted within this unit.

The bedrock has been identified as CHALK from geotechnical data. The surface of the CHALK has been observed in the seismic data at depths between 0-15m BSB. The bedrock level below seabed shoals to the north where it is observed at or close to the riverbed.

Two isolated regions of acoustic attenuation are observed, likely caused by moderate accumulation of organic matter within the surficial sediments.

CONTENTS

1. Intro	oduction7
1.1.	Project Description7
1.2.	Scope of Report7
1.3. 1.3.1	Geodetics
1.3.2	Vertical Reduction8
2. Data	a Processing and Interpretation9
2.1. 2.1.1	Bathymetric Data
2.2. 2.2.1	Sidescan Sonar
2.2.2	Data Interpretation9
2.2.3	Data Quality
2.3. 2.3.1	Sub-Bottom Profiler10Data Processing10
2.3.2	Data Interpretation11
2.3.3	Data Quality12
2.4.	Magnetometer12
2.4.1	Data Processing12
2.4.2	Data Interpretation
2.4.3	Data Quality13
3. Resu	ılts14
3.1. 3.1.1	Seabed Conditions
3.1.2	Seabed Sediments17
3.1.3	Contacts23
3.2. 3.2.1	Sub-surface Conditions
3.2.2	Stratigraphic Interpretation31
4. Refe	erences

FIGURES

Figure 1-1: Immingham Green Energy Terminal survey area with survey extents	7
Figure 3-1: Distribution of seabed morphology across the site	. 16
Figure 3-2: Low frequency SSS mosaic of the site	20
Figure 3-3: MBES backscatter mosaic of the site	21
Figure 3-4: Spatial extent of interpreted seabed sediments. Borehole data from previous	
geotechnical investigations have been overlayed	22
Figure 3-5: Seafloor contacts and magnetic contacts across the survey area	25
Figure 3-6: Magnetic residual field grid (nT)	26
Figure 3-7: Diagram of Borehole Sections, I5 geotechnical campaign	. 29
Figure 3-8: Locations of previous geotechnical data collected	30
Figure 3-9: Seismic data example (Boomer72) with borehole MB2	32
Figure 3-10: Distribution of surficial alluvium (depth below seabed)	34
Figure 3-11: Surficial alluvium (H10) data overview (Boomer 7)	36
Figure 3-12: Data example of surficial alluvium (H10) accumulating on the side of a scarp edge	
(Boomer XL12)	37
Figure 3-13: Distribution of interpreted top of Lower Boulder Clay (depth below seabed)	. 39
Figure 3-14: Data overview of Lower Boulder Clay (H50) highlighting a localised channel feature	
(Boomer 74)	40
Figure 3-15: Data example of the top of the Lower Boulder Clay (H50) reflector downlapping onto	
the bedrock (Boomer 19)	41
Figure 3-16: Distribution of interpreted top of chalk (depth below seabed)	42
Figure 3-17: A data overview of the interpreted top of Chalk (H60) (Sparker 41A)	44
Figure 3-18: Data example of the top of Chalk (H60) outcropping at the seabed (Sparker 55)	.45
Figure 3-19: Map demonstrating the spatial location of low confidence interpretation and acoustic	с
attenuation	.46
Figure 3-20: Data example of observed acoustic attenuation (Boomer 7)	47

TABLES

Table 1.1: Horizontal Geodetic Datum OSGB36.	8
Table 3.1: Summary of interpreted seabed morphology	
Table 3.2: Summary of interpreted seabed sediment classifications	
Table 3.3: Breakdown of interpreted SSS/MBES contacts	23
Table 3.4: Examples of interpreted seafloor contact classifications.	23
Table 3.5: Summary of results for borehole MB2	
Table 3.6: Summary of interpretative geomodel	

Abbreviations

BSB	Depth Below Seabed
CD	Chart Datum
INS	Inertial Navigation System
LAT	Lowest Astronomical Tide
MAG	Magnetometer
MBES	Multi-Beam Echo Sounder
РРК	Post-Processed Kinematic
QC	Quality Control
SBP	Sub-Bottom Profiler
SSS	Side Scan Sonar
UTM	Universal Transverse Mercator

1. INTRODUCTION

1.1. PROJECT DESCRIPTION

CMGeomatics was commissioned by ABPmer to provide data processing and interpretation services for their geophysical survey on the proposed Immingham Green Energy Terminal development area. The survey comprised of Multi Beam Echo Sounder (MBES) bathymetric data, high-resolution Side Scan Sonar (SSS), Magnetometry (MAG) and Sub-Bottom Profiler (SBP) geophysical data. The SBP element of the survey comprised of both boomer and sparker sources.

Figure 1-1 shows the survey location and site boundary.

Figure 1-1: Immingham Green Energy Terminal survey area with survey extents.

1.2. SCOPE OF REPORT

This report details the processing applied to each dataset, the results and interpretations made, as well as comparisons between datasets where relevant.

1.3. GEODETICS

1.3.1 Horizontal Datum

Whilst data were logged in ETRS89-UTM30N during acquisition, all data are reported using OSGB36 using the OSTN15 transformation. Details of the OSGB36 projection are detailed in Table 1.1

Table	11.	Horizontal	Geodetic	Datum	OSGB36
Table	1.1.	110112011101	0000000	Datam	0000000.

Geodetic Parameters		Projection Parameters	
Ellipsoid	Airy 1830	Projection	ТМ
Datum	OSGB 1936	Longitude of Central Meridian	-2°
Semi-Major Axis	6 377 563.396 m	Latitude of Origin	49°
Semi-Minor Axis	6 356 256.909 m	False Easting at Central Meridian	400 000 m
Inverse Flattening (1/f)	299.3249646	False Northing	-100 000 m
Eccentricity Squared (e ²)	0.006670539762	Scale Factor	0.999601272

1.3.2 Vertical Reduction

All bathymetric and SBP data were reduced to Chart Datum (CD).

2. DATA PROCESSING AND INTERPRETATION

2.1. BATHYMETRIC DATA

2.1.1 Data Processing

All bathymetric data and positioning were processed by ABPmer.

2.2. SIDESCAN SONAR

2.2.1 Data Processing

Side Scan Sonar data were processed using Sonarwiz 7.09.02.

SSS data were acquired in simultaneous dual-frequency mode. Raw SSS data files in JSF format were then loaded into Sonarwiz. Heading source is usually taken from the towfish heading sensor, but course made good was also employed to improve positional accuracy on some data where an improvement in positional accuracy was observed. Navigation was projected from latitude and longitude into the project datum. A light 'Boxcar' moving average filter was applied to the navigation to remove outliers and smooth the projected sensor track. Bottom-tracking was then carried out on each file to ensure the correct slant-range and thus the correct measurements of contacts in the interpretation phase. A QC of the data was completed at this stage. Any poor data were removed or cropped as required. As both high and low frequency components are utilised in the interpretation, the corrected navigation applied during the processing of the high frequency data was transferred into the low frequency data, ensuring that each dataset has the same navigation.

Gains and a de-stripe filter were applied to the data to correct backscatter amplitudes to create a mosaic with homogeneous gains between all lines, as well as highlighting areas of low and high reflectivity. Upon completion of all SSS processing, the data was layered to aesthetically optimise the presentation of the mosaics. Mosaics were produced and exported for low and high frequency data at the required resolutions.

2.2.2 Data Interpretation

Contacts measuring over 0.5m in any dimension were interpreted on a line-by-line basis to ensure none were missed. Reconciliation between SSS and MBES data were undertaken to ensure best positions were derived for each target where visible on the MBES data. Correlations with any MAG targets were made during contact picking. MAG targets and the total field residual grid were loaded into QGIS for rationalisation and to aid in the correlation process.

CM Geomatics

Localised seabed features were picked to aid in the interpretation of the surficial geology and geohazards model. SSS mosaics and interpretation were loaded alongside the processed MBES data within GIS to finalise the seabed features interpretation. The datasets were then used in conjunction to define boundaries for sediment classes, geo-morphology, and existing infrastructure.

2.2.3 Data Quality

SSS data quality is of generally good quality, with some data affected by strong currents. Crosslines suffered from poor towfish heading due to crabbing of the towfish whilst crossing the prevailing current. In the north of the survey site, the high flow rates of the Humber River within the shipping channel, coupled with the increased depths, resulted in the towfish failing to descend to optimal altitudes. As a result, both frequency components of the data have suffered significant attenuation in deeper water. Further attenuation in some places has been due to high water column turbidity during acquisition, which has affected the maximum range of the high frequency component of the data. In the south of the site, the shallow waters have resulted in much higher data quality. Full coverage has been achieved.

2.3. SUB-BOTTOM PROFILER

2.3.1 Data Processing

RadExPro 2022.1 was used for the processing of all acquired SBP data. IHS Kingdom 2020 was then used to interpret all processed SBP data. Both boomer and sparker datasets underwent the same processing steps (aside from sparker not undergoing debubbling due to the introduction of artefacts), however parameters were tuned for each source.

The following processes were applied during processing:

- Apply trace delay to trace data
- Smoothing of position if required
- Burst noise removal
- Butterworth filtering
- FB picking
- Debubbling (Weiner filtering) Boomer only
- Zero offset de-multiple*
- Swell filtering (if required)

- Amplitude correction
- Top mute
- Trace-by-trace tidal reduction
- Populate textual header

* Demultiple processing had highly variable results and worked well on some lines where source/receiver geometry was stable during acquisition, however some lines did not respond well to this process. As a result, interpretation was carried out on data with and without this process simultaneously to assist in discrimination of deeper reflectors against seabed multiples.

Parameters for processing were tested and optimised during processing. Tidal reductions to CD were undertaken using GPS tide and corrected bathymetry data. However due to shallow nature of the work, some depths were logged above CD which created issues with sgy data as negative times are not supported. To work around this issue the seismic data have been corrected to CD+5m to ensure all times are positive in the data. The 5m offset was removed from interpretation deliverables so that interpretation is presented at CD level.

Processed SGY, vertically corrected to CD+5m, were then exported ready for final QC and subsequent interpretation in IHS Kingdom. Data were then imported into IHS Kingdom using SeismicDirect.

2.3.2 Data Interpretation

Analysis of SBP data, along with relevant data (previous geological data, MBES and SSS mosaic, etc.) were undertaken to build an integrated interpretative model for the site. Preliminary on-site vibrocore logs acquired in 2023 have been utilised to locate the top of chalk in the survey area. Full integration of this data has not been undertaken as the full results were not available at the time of this report, however there is good correlation between the interpretation made for the top of chalk and the preliminary results of these vibrocores. Additionally, boreholes previously drilled in 1965 were used as guidance for interpretation, however some conflicts with these geotechnical locations exist when combined with the chalk interpretation made in this geomodel.

Interpretation in Kingdom involved identifying and digitising regional horizons, as well as any localised geohazards. A seismic velocity of 1650m/s was assumed for subsurface interpretation conversions from time to depth. This value is typical of waterlogged unconsolidated sediments that are thought to make up the shallow soils.

CM Geomatics

Once completed, the interpretation was gridded, and deliverables were exported from IHS Kingdom. Gridding has been undertaken at 5m resolution and includes 20m blanking distance to allow interpretation to tie across adjacent lines.

2.3.3 Data Quality

Data quality for SBP was generally acceptable, with high variability primarily due to current conditions. Some issues with background noise, source-receiver geometry and swell/wave conditions were observed on the data, which reduced quality on some lines or limited advanced processing techniques. These issues are to be expected when working in a confined area with strong currents. Data acquired during periods of slack water show higher data quality, indicating that data quality was mainly affected by environmental conditions.

Maximum data penetration was approximately <20m, limited by the sea surface multiple in places and also the interpretation of chalk causing attenuation beneath this horizon.

Some deviations in navigation were identified during processing. Acoustic seabed location was occasionally observed to conflict with the expected seabed from bathymetry data, whilst in other locations there was very good correlation between the two expected seabed locations. This variability indicated that the likely source of the issue was due to error in calculating the layback for the seismic system caused by localised and general river currents dragging the towed equipment from their expected location. Attempts have been made to improve the positioning using different heading sources, but occasional position degradation are still observed in the final dataset.

2.4. MAGNETOMETER

2.4.1 Data Processing

Oasis Montaj 2022.2 was used for the processing of all acquired MAG data.

Data were imported into Oasis Montaj for processing and interpretation. Raw total field and altitude data were de-spiked, and the altitude smoothed. Raw layback navigation was also assessed and smoothed. Once processed, each line was subject to quality control, and data not meeting the required specification were masked from further processing.

A series of non-linear filters were applied to the total magnetic field data to deduce the background field. The filter selection was undertaken on an iterative basis to identify a scheme that isolates the majority of targets. The background field was assessed against the total field to ensure that no targets were missed or deformed. Due to the prevalence of geological noise

across the survey area, a manual background field was then formed based on the filter derived background. Anomalies were removed from the background on interpretation of the filtered background.

Once QC on the background field was completed, the result was subtracted from the original total magnetic field to give the residual field. The residual field was gridded and underwent QC to ensure that targets observed in profile are similar in both shape and amplitude to the targets present in the total field profile. Once the residual field passed QC, an unsmoothed analytic signal grid was produced.

2.4.2 Data Interpretation

Targets were picked manually on profile data to identify all targets $\geq 5nT$ that showed wavelengths that might be expected of anthropogenic sources, to exclude any geological signals. Full parameters were populated for the final Target Listing. Deliverables were exported directly from Oasis Montaj, with some grid formatting being performed in Global Mapper.

2.4.3 Data Quality

Magnetic data quality was generally good. Due to the nature of the site with large ferrous infrastructure, coupled with anomalies interpreted to be geological in nature, creating a reasonable residual field proved difficult. This led to the creation of a manual background field rather than relying on filters. Additionally, the combined survey difficulties presented by the riverine environment and the proximity of infrastructure resulted in the MAG sensor flying at high altitudes, which has reduced the instrument's sensitivity. The presence of large amounts of ferrous infrastructure has possibly obscured some anomalies in close proximity to the pier in the west and the cardinal buoy in the east. However, the dataset was useable for the broad interpretation of large ferrous targets. It should be noted that UXO's are unlikely to be reliably detected in this dataset.

3. RESULTS

3.1. SEABED CONDITIONS

3.1.1 Seabed Morphology

Interpretation of seabed features has been made from a combination of SSS and bathymetry data. Interpreted features are summarised in Table 3.1 with corresponding data examples.

Table 3.1: Summary of interpreted seabed morphology

Data Example	Description
	Mobile Sediments (Active Ripples)
	Possible Relict Bedforms

Figure 3-1 shows the spatial distribution of each of the interpreted morphologies across the survey area.

A differentiation has been drawn between the active and interpreted inactive relict bedforms in the morphology classifications. This distinction has been made based on the form and texture of the features in MBES data. The bedforms interpreted as active appear well shaped and sharp, whereas the interpreted relict features appear flattened and more textured. It is possible that some interpreted relict bedforms may be thin bands of active bedforms.

Sediment mounds up to 3m in diameter have been interpreted within surficial sediments classified as mixed sediments (Table 3.2). These features lie within the upper clay horizon observed in SBP data and could be caused by localised areas of increased soil cohesion which has left raised mounds of firmer clays within the surrounding clay soil. It is possible that these mounds are biogenic in origin and contain a higher organic content than the surrounding soils, however no direct evidence to support this is available.

Figure 3-1: Distribution of seabed morphology across the site.

3.1.2 Seabed Sediments

Seabed sediments have been interpreted from the low-frequency SSS data and the MBES backscatter mosaic. The surficial geology of the survey site has been classified into five sediment units, the distribution of which is present in Figure 3-4. Classifications have been assigned based on similar sediment interpretations made on the adjacent IERRT survey area conducted in 2021. Additonal classifications have been added where reflectivity changes in the SSS and MBES backscatter have warranted a new class.

Table 3.2 shows a summary of the sediment classifications interpreted with data examples over each type.

Data Example	Description	Morphology Classification
	Medium to high reflectivity	Mixed Sediment
в Ш п	Medium reflectivity, moderately textured	Muddy SAND

Table 3.2: Summary of interpreted sea	abed sediment classifications.
---------------------------------------	--------------------------------

0 <u>10 m</u>	High reflectivity, moderately textured	Firm CLAY?
	Very high reflectivity, highly textured	Rock Protection
0 10 m.	Low reflectivity, minimal textured	Soft MUD

Mixed sediments are interpreted in areas where there are frequent small scale changes in surficial reflectivity which may indicate thin layers of sediment over another and is likely to comprise of CLAY and SAND in various fractions.

Muddy SAND has been identified in the north of the site, where chalk has been interpreted near the surface (Section 3.2.2.4). It is possible that in places sediments may contain a minor gravel component from erosion of the chalk surface.

Firm CLAY has been tentatively interpreted due to an increase in reflectivity and texture when compared to adjacent clays/mixed sediment, however there in uncertainty in this interpretation because an increase in reflectivity is the only variable supporting an increase in soil strength.

The rock protection has been observed to encase the outfall pipes within the south of the site.

Soft MUD has been interpreted in topographical lows across the survey area. The interpretation of soft MUD has been made due to the very low reflectivity observed on both SSS and MBES backscatter. It is possible that this classification may instead be comprised of very fine SAND, whereas the muddy SAND classification may be composed of a coarser SAND fraction.

Geotechnical data acquired during previous site investigations has been used to aid in the classification of surficial sediments. Further information regarding the geotechnical data can be found in section 3.2.1. The location and surface classification of these boreholes are presented in Figure 3-4, along with the interepreted extents of seabed sediments. The boreholes were acquired prior to the construction of the Immingham Oil Terminal, the process of which may have led to significant sediment displacement. This, coupled with the age of the data means the results may not completely reflect the current seabed state.

For the preliminary vibrocore data provided, there was minimal correlation between the core sediments and low frequency SSS and MBES derived backscatter. This resulted in the cores suggesting homogenous seabed sediments across the site, whilst the large variance in seabed reflectivity suggested the presence of multiple sediment units. For this reason, the preliminary vibrocore data has not been used during the interpretation of seabed sediments at this stage. Integration could be performed when the complete results of the vibrocores acquired become available.

Figure 3-2: Low frequency SSS mosaic of the site.

Figure 3-3: MBES backscatter mosaic of the site.

Figure 3-4: Spatial extent of interpreted seabed sediments. Borehole data from previous geotechnical investigations have been overlayed.

3.1.3 Contacts

In total 1064 seafloor contacts have been identified on both SSS and MBES datasets. Where possible, SSS contacts have been reconciled to MBES position to optimise positioning quality. A correlation between the seafloor contacts and the magnetic datasets has been undertaken and any correlations noted in the attributes of the delivered contact lists. In total 48 contacts were correlated between seafloor and magnetic datasets.

Table 3.3: Breakdown of interpreted SSS/MBES contacts

Class	Number of Contacts
Boulder	650
Debris (including clusters of debris and Cable/Ropes)	413
Suspected Mooring Assembly	1

Table 3.4 shows some examples of the interpreted seafloor contacts observed in the SSS dataset.

Figure 3-5 presents the distribution of interpreted seafloor and magnetic contacts. Debris items appear to be concentrated in the southwest and southeast of the survey site. Interpreted boulder targets have been identified across the site and have been classified as such where a target did not appear of obvious anthropogenic nature. It may be the case that some boulder targets are in fact of anthropogenic origin, if investigated further.

Figure 3-5: Seafloor contacts and magnetic contacts across the survey area.

In total 317 magnetic contacts have been identified that are >5nT in amplitude. The targets identified in this dataset are indicative of large ferromagnetic targets.

The processed magnetic total field is presented in Figure 3-6, note the scale has been clipped to ± 5 nT and values above these have been clamped to the colour scale on the image presented for display purposes. The data shows that the area is magnetically noisy and that targets have occasionally been detected on multiple lines, hence requiring reconciliation.

The long linear deviation in the north-western corner on the magnetic anomaly grid is likely generated by infrastructure associated with the pontoon and/or moored vessels at the time of survey. The large negative amplitude target in the eastern side of the site is interpreted to be associated with the mooring system for a navigation buoy. In the nearshore area, south-west of the survey area the magnetic anomalies approaching the shoreline are observed to be associated with an outfall pipe observed in the MBES/SSS data.

Figure 3-6: Magnetic residual field grid (nT).

A total of 44 magnetic targets have been correlated with seafloor targets. Only approximate correlations were possible due to the flying altitude of the magnetometer during acquisition. Correlations were made on an individual assessment based on a combination of target proximity, size, and magnetometer altitude.

3.2. SUB-SURFACE CONDITIONS

3.2.1 Geological Model

The Humber estuary has had a complex history, with glacial erosion during the last ice age scouring the ground back to bedrock and subsequent glacial deposition, followed by a rise in sea-level. The River Humber now runs along the channel of Lake Humber which formed as a result of the preceding glaciation. It is expected that the area will be comprised of glaciogenic sediments overlying bedrock (Jones, 1988), with recent fluvial alluvium accumulating on the riverbed.

The geological model has been built based on observations made in the boreholes/vibrocores acquired during three geotechnical campaigns. All sources of borehole information are listed in the references section in this document (Section 4). The three geotechnical campaigns are:

- I27 borehole campaign in 1965 (British Transport Docks Board, 1965)
- I5 campaign in 1967 (Ground Exploration Ltd, 1967)
- Immingham Green Energy Terminal vibrocore campaign (Fugro, 2023)

At the time writing of this report, only preliminary site results were available for the acquired vibrocores. The preliminary unit thicknesses were recorded at coarser intervals than usually expected and only generalised soil descriptions were provided.

Any subsequent geotechnical references in this report will refer to the campaign identified rather than repeatedly referencing the source document.

An example summary of the findings from MB2, from the I27 campaign, are presented in Table 3.5. This borehole lies adjacent to the existing pontoon on the eastern edge of the survey area and is also shown in profile in Figure 3-9. MB2 was reported in the site investigation report "I27 – Proposed Oil Jetties at Immingham, Lincolnshire".

Depth Seabed (ft)	below	Depth Seabed (m)	below	Descriptions
0.0		0.0		Soft to firm silty CLAY
15.0		4.6		Stiff gravelly silty CLAY
31.0		9.4		Very dense fine to medium SAND with gravel
36.0		11.0		Very stiff gravelly silty CLAY

Table 3.5: Summary of results for borehole ME	32
---	----

CM Geomatics

52.0	15.8	Fissured CHALK
106.0	32.3	End of core

Further detail on the spatial distribution of subsurface units can be derived from the borehole campaign undertaken in 1966 (I5), involving four boreholes: BH1, BH2, BH3 and BH4, shown in Figure 3-8. However, these boreholes are located outside of the Immingham Green Energy Terminal survey area to the west but are still able to provide indicative information about the formations expected. A summary of the findings of these boreholes can be found in Figure 3-7, along with an overview of the locations of all known geotechnical data relative to the survey site in Figure 3-8. The boreholes show an upper layer of alluvial sediments, which overlay an expansive unit of boulder clay formed during a period of glaciation. Within this boulder clay there are isolated lenses of sands, with the base of the younger boulder clay being marked by a thin band of gravel. Beneath this gravel there is seen to be a layer of interglacial clays, deposited during a glacial minimum in a low energy lake environment before a further layer of boulder clay is observed beneath this, marking an older period of glaciation. The bedrock in the area is chalk.

From the I27 boreholes in the Immingham Green Energy Terminal survey area, the presence of the interglacial clays is not observed or differentiated from the boulder clays in the recorded soil descriptions. Also, it is pertinent to note that the interpretation made on the data acquired on this survey does conflict with some legacy borehole information and is further discussed in section 3.2.2.

Figure 3-7: Diagram of Borehole Sections, 15 geotechnical campaign.

Figure 3-8: Locations of previous geotechnical data collected.

3.2.2 Stratigraphic Interpretation

Table 3.6 presents a summary of the interpretive geomodel used during the interpretation of this dataset. Each stratigraphic unit is discussed in the sections following.

Correlation has been undertaken with the preliminary Immingham Green Energy Terminal vibrocores campaign, and the results of these have generally correlated well for the top of chalk and larger accumulation of surficial alluvial deposits along the central east-west axis of the site where the vibrocores are located.

Additionally, correlation with nearby I27 boreholes has been attempted, however some significant discrepancies are observed between observed seismic reflectors and expected formation tops from the borehole data for MB1 and MB2. The observed discrepancies are exemplified in Figure 3-9, which shows I27 borehole MB2 overlapping with a nearby seismic line. At this location the Upper Boulder Clay and Chalk have been interpreted higher than expected. This is due to a lack of correlating reflectors observed in the SBP data at the expected levels, likely due to masking by a shallow sea surface multiple due to the shallow water depths present in this area coupled with reduced seismic penetration in the nearshore area. Figure 3-19 shows the extent of an area where interpretation has been deemed "low confidence" for this lack of correlation, and where the chalk reflector especially, has become difficult to track towards the south.

It is important to state that in this low confidence area, the top of Chalk and the boundary between Upper and Lower Boulder Clay may well be deeper than the interpretation in this report presents. However, moving north, interpretive confidence is high as the chalk horizon is clearly observed reaching the seabed and correlating with the recent vibrocore campaign. For this reason, interpretation of the top of Chalk was initiated in these areas of good correlation and continued on the most likely reflector further to the south where confidence is reduced due to the mis-tie with the expected depth of chalk indicated in the boreholes.

Other discrepancies between interpretation exists which may be due to a number of factors. Primarily, the boreholes were taken almost 50 years prior to this report and since then the current infrastructure has been built. Changes in the near surface levels are to be expected and may provide a source of error on using these boreholes to correlate to newer seismic data. The boreholes are often some distance from the nearest seismic line and hence may not be representative of exact sediment levels and the surveyed location. Additionally positions for the older boreholes were mapped using triangulation and back sighting from known points, methods that have a much larger positional error when compared to modern

DGPS systems used on this survey. Hence, plotted positions of boreholes may not actually tie with positions logged in this survey.

Figure 3-9 shows the correlation between a seismic line and borehole MB2 that plots approximately 18m west of the nearest point on the seismic data. The figure shows that the interpreted horizons and the expected depths in the borehole data partially correlate between the two datasets at this location. However, some expected changes in soil composition indicated by the borehole are not observed in the seismic data. The vertical line shows the borehole location with the labels indicating changes in the sediments identified on the borehole.

Figure 3-9: Seismic data example (Boomer72) with borehole MB2

Table 3.6: Summary of interpretative geomodel

Unit	Horizon Top	Horizon Base	Depth to Base	Interpreted Composition	Seismic Description	Distribution	Depositional Setting
Alluvium Surficial Sediments	Seabed	H10	0.0-4.8m BSB	SILT/CLAY, however, appears sandier towards the north	Low amplitude seabed reflection where this surficial horizon is present in thicknesses above veneer. Some weak laminations in thicker accumulations of the unit	Largely present as a veneer across the site, however thicker accumulations have been interpreted in depressions/topographical lows	Fluvio- estuarine
Upper Boulder Clay	Seabed/ H10	H50/H60	0.0-10.6m BSB	Soft to stiff CLAY with occasional SAND/GRAVEL beds	A generally chaotic structure with occasional internal reflectors	Typically coincides with the interpretation of the Lower Boulder Clay	Glacial
Lower Boulder Clay	H50	H60	0-15.0m BSB	Very stiff CLAY possibly becoming soft to firm where the unit outcrops at the seabed	Weak to moderate undulating reflector with a generally massive structure demonstrating localised internal reflectors. Upper surface contains occasional gravel beds	The greatest abundance is observed in the south of the survey area. North of the pontoon the boulder clay appears susceptible to erosion where the chalk outcrops at the seabed	Glacial
Bedrock	H60	NA	NA	CHALK	Moderate to weak undulating reflector with some weak parallel reflectors directly beneath	Interpreted across a vast majority of the survey area, except where the bedrock is observed to outcrop at the surface in the north of the survey area. A general south- north shoaling trend is apparent.	Marine

3.2.2.1. Alluvium – Surficial Sediments

It is interpreted that surficial sediments are present across most of the site. Where a thickness has not been interpreted it is likely that a thin veneer of this recent sediment may exist. Figure 3-10 shows the interpreted distribution of the base of this unit (H10) as a depth below seabed grid. Depths range from 0m where it is observed to thin out into the seabed reflector, up to a maximum of 4.8m BSB. Increased thickness is associated with topological lows or features that function as a trap of fine sediments.

Figure 3-10: Distribution of surficial alluvium (depth below seabed).

Generally, the surficial alluvium is seen to accumulate as thin veneers on the largely flat-lying topography, as seen in Figure 3-11. Also seen in this figure is the close correlation to nearby vibrocores locations; VC01A and VC02A. Figure 3-12 is representative of data where thicker abundances of surficial alluvium have been interpreted, such as the scarp edge observed in the northern section of Boomer line XL12. In Figure 3-12 the original face of the scarp edge is demonstrated in the data, allowing the laminations of the surficial alluvium to contrast against the more chaotic structure of the Upper Boulder Clay. Topographic features such as this are able to behave as sediment traps which enable the enhanced rate of sediment accumulation.

The surficial sediments are interpreted to be composed of SILT/CLAY and SAND. There appears to be a transition of the primary composition of this unit from finer silts and clays in the south to sandier sediments found towards the north, that are noted in the preliminary vibrocores samples. However, no clear horizon is observed to define this change. In some these accumulations, the surficial sediment demonstrates a bright basal reflector with weaker internal parallel laminations, characteristic of colloidal SILT/CLAY composed sediments. Whereas the mobile bedforms observed are likely composed of primarily SAND.

CM Geomatics

Figure 3-11: Surficial alluvium (H10) data overview (Boomer 7)

VC07Cos

VC15

VC09 VC13

CVC16 VC14 VC10 O VC11

Figure 3-12: Data example of surficial alluvium (H10) accumulating on the side of a scarp edge (Boomer XL12)

M82

В

3.2.2.2. Upper Boulder Clay

The distribution of the Upper Boulder Clay generally exists in tandem with the interpretation of the top of the Lower Boulder Clay, depicted in Figure 3-12. Both units thin towards the north, where the Chalk approaches the riverbed. The Upper Boulder Clay has been interpreted by differentiation of internal structure to the Lower Boulder Clay. This can be seen in Figure 3-14, where the Upper Boulder Clay is seen to have a chaotic internal structure which heavily contrasts to the more massive structure of the underlying Lower Boulder Clay. The chaotic nature of the Upper Boulder Clay is possibly a product of reworking of glacial material, resulting in a heterogeneous clast size composition. Some internal reflectors within this until show some fluvial features within this unit, possible associated with glacial outwash channels, an example of which can be observed in Figure 3-15 at approximately 600m offset.

The erosional nature of this boundary between the Upper and Lower Boulder Clays presents as an undulating reflector and also results in localised accumulation of gravel beds, possibly representative of glacial outwash channels. The gravel beds do not appear spatially continuous in the SBP data acquired and hence the gravel beds have been incorporated as part of the Lower Boulder Clay unit.

3.2.2.3. Lower Boulder Clay

Figure 3-13 shows the distribution of interpretation of the top of Lower Boulder Clay (H50) as a depth below seabed grid, which demonstrates a general south to north thinning of the unit. Basal depths of this unit shoal to 0m in the north of the survey area where the unit thins completely as the underlying Chalk is exposed. Maximum basal depths of 15m BSB are observed within the channelised feature, such as that shown in Figure 3-14. There are two regions, aside from the outcropping in the north, where H50 has not been interpreted: a lobe in the west of the survey area and a small section in the central northern area of interpreted extent. These locations are shown as gaps in the interpreted extent shown in Figure 3-13. At both of these locales the Lower Boulder Clay unit is seen to pinch out against the underlying bedrock, shown by the downlapping H50 reflector in Figure 3-15.

Figure 3-13: Distribution of interpreted top of Lower Boulder Clay (depth below seabed).

Where interpreted, the horizon marking the top of the unit (H50) appears as a weak to moderate amplitude, undulating reflector. The variation in amplitude of the H50 reflector correlates with its DBSB position. Where H50 is deeper, such as in in the south of the survey area the amplitude diminishes in contrast to the northern extent of H50 where the reflector appears brighter where the Lower Boulder Clay becomes more exposed. This is likely due to attenuation associated with increased thickness of overlying boulder clay sediment. This has made the unit difficult to accurately interpret in places and has led to the low confidence classification of the interpretation in the south-western portion of the site.

The seismic data beneath this horizon appears generally acoustically transparent which is characteristic of massive CLAY structures. The unit contains localised lenses of internal reflectors, sometimes shown as a localised increase in H50 reflector amplitude which are likely comprised of gravel beds.

Figure 3-14: Data overview of Lower Boulder Clay (H50) highlighting a localised channel feature (Boomer 74)

Figure 3-15: Data example of the top of the Lower Boulder Clay (H50) reflector downlapping onto the bedrock (Boomer 19)

3.2.2.4. Bedrock

Bedrock within the area is known to be Chalk from nearby boreholes sampled within the bounds of the survey area. The extent of interpretation for the interpreted top of Chalk (H60) is presented in Figure 3-16 as a depth below seabed grid. Depths range from 0m where it is observed to outcrop at the surface in the north of the survey area, up to a maximum of 15m BSB in the south. In places where the Chalk is interpreted to outcrop at the surface it is likely that it is still overlain by a thin veneer of sediment, which is not observed as the veneer is thinner than the seabed reflection in the data.

Figure 3-16: Distribution of interpreted top of chalk (depth below seabed).

The reflector marking the top of Chalk (H60) is a weak to moderate, generally undulating surface. This is typical of Chalk lithologies which are more susceptible to erosional and weathering processes that weaken the upper surface of the unit. An overview of the H60 reflector is shown in Figure 3-17. H60 becomes less distinct in the southern section of the survey area, with this region of uncertainty marked in Figure 3-19. This uncertainty correlates with a thicker accumulation of the Upper and Lower Boulder Clay which act to attenuate acoustic energy therefore diminishing the quality of data underlying it, making H60 a less distinct reflector. The strongly laminated internal structure of the Chalk is most distinguished

in the northern section of the survey area where it is seen to outcrop at the surface, which can be seen in Figure 3-18 dipping down towards the east. Similarly to its upper boundary, the internal structure of the Chalk rapidly deteriorates in the southern section of the survey area, marked as low confidence in Figure 3-19. The reduced data quality of the observed Chalk in the south is also further impeded by the increased DBSB of the unit.

In the northern edge of the survey area where the H60 reflector has interpreted depths <2m BSB (Figure 3-16), the Chalk is overlain by an unknown sediment unit. It is possible that this maybe alluvium or may also be a minor component of the boulder clays. However, due to the lack of observed structure in the overlying sediment and no available geotechnical data in this area it has not possible to differentiate the classification of this sediment. This overlying sediment thickness has not been included in the grids for either Alluvium or Boulder Clay due to the associated uncertainty.

Figure 3-17: A data overview of the interpreted top of Chalk (H60) (Sparker 41A)

CM Geomatics

Figure 3-18: Data example of the top of Chalk (H60) outcropping at the seabed (Sparker 55)

3.2.2.5. Acoustic Attenuation

Acoustic attenuation is observed at two isolated locales in the survey area, the spatial distribution of this is depicted in Figure 3-19. In these areas, seismic resolution is significantly diminished in contrast to adjacent data such that the ability to interpret reflectors is negatively impacted. An example of acoustic attenuation is shown both in Figure 3-11 and in more detail in Figure 3-20. The acoustic attenuation is believed to be caused by localised accumulations of organic material within the surficial sediments. These accumulations are believed to only be moderate as attenuation of the seismic is observed rather than blanking, which would be caused by higher organic concentrations.

Figure 3-19: Map demonstrating the spatial location of low confidence interpretation and acoustic attenuation.

Figure 3-20: Data example of observed acoustic attenuation (Boomer 7)

4. REFERENCES

Ground Exploration Ltd., I5 - Diagram of Borehole Sections (1967)

Ground Exploration Ltd., I5 - Exploration of Ground Conditions at Immingham for British Transport Docks Board (1967)

British Transport Docks Board, I5 - Key Plan of Proposed Borings (1966)

British Transport Docks Board, I19 – Eastern Jetty: Pipe Supports Site Investigation (1980)

British Transport Docks Board, I27 – Boreholes Plan and Logs (1965)

British Transport Docks Board, I27 – Proposed Oil Jetties at Immingham, Lincolnshire. Report on Site Investigation (1965)

Fugro, Preliminary Geotechnical Site Report, 5163_Vibrocore_SampleAnalysis_Rev2.xlsx, (2023)

Jones, N.V. (ed.) A Dynamic Estuary: Man, Nature and the Humber (Hull University Press, 1988)

Sheppard, J.A. The Draining of the Hull Valley (East Yorkshire Local History Soc. Series No. 8, 1958)

Annex B Daily Progress Reports

Daily Progre	ess Report												
Project:	5163 Geoph	ysical						P	me	r			
Vessel:	Wessex Exp	lorer											
Date:	06/02/2023								Rev00	C - 16 /	01/2023		
		PERS	ONNEL		WEATHER FORECAST								
S	urvey Team		Vessel Team		Тие 7 дмт								
	Tom Alker		Nick Bush		00	1	2mph	to	3mph	1c	B		
H	ugh MacKay		James Bush				Zmpn		Smpri	10			
Р	aul Clement				03	1	3mph	to	3mph	1c	B		
		DAIL	Y LOG		06	4	3mah	to	3mah	10	G		
TIME	CODE		EVENT		00	•	Jmpn	00	Jmpn	10	-		
(UTC)					09	×	5mph	to	7mph	3c	0		
10:00 15:00	MOB MOB	Final proje	ect preparations in Southampto	on	12	*	7mph	to	8mph	7c	Ì		
22:00	MOB	Survey pe	ersonnel arrive in Grimsby						ompir		~		
					15	×	5mph	to	8mph	8c	ප		
					18	1	5mph	to	6mph	4c	Ì		
					21	1	5mph	to	6mph	3c	Ì		
				_	Wed 8 GMT								
					00	1	6mph	to	7 _{mph}	2c	G		
				_	03	4	7 _{mph}	to	14 _{mph}	1c	Ì		
					06	4	8mph	to	18mph	0c	Ì		
					09	4	9mph	to	23mph	2c	Ì		
					12	1	14mph	to	23mph	6c	Ì		
					15	1	14mph	to	28mph	6c	ð		
			HSE SUMMA	RY									

No HSE incidents to report. A full project brief and health and safety discussion will be held tomorrow prior to commencing vessel mobilisation.

CL	JMULATIV	E TIME		SURVEY WORK	(PROGRESS					
ITEM	CODE	TODAY	TOTAL	MBES	0%					
Mob/Demob	MOB	12:00	12:00	MBES	078					
Operational	OPS	00:00	00:00	222	0%					
Transit	TRA	00:00	00:00	333	070					
Weather Down Time	WDT	00:00	00:00	SPD	0%					
Equipment Down Time	EDT	00:00	00:00	36F	070					
Vessel Down Time	VDT	00:00	00:00	MAG	0%					
Any Other AO		00:00	00:00	MAG	070					
TOTALS (Day)		1	1	TOTAL	0%					
DAILY SUMMARY										

Final preparations took place in Southampton before the survey team travelled to Grimsby. There were initial concerns that the Sparker system will be challenging to mobilise to the Wessex Explorer at the same time as the other sensors, due to its size. The boomer has a larger power supply unit than previously used so we are hopeful that the boomer will achieve the penetration required. However, the sparker system is available in Grimsby as an alternative option.

UPCOMING PLAN

The survey team will arrive at the Wessex Explorer at 0730 GMT. A full health and safety discussion will be held before vessel mobilisation commences. It is anticipated that the vessel will remain alongside throughout the day.+A6:L53

Daily Progr	ess Report									
Project:	5163 Geoph	ysical				11	P	me)r -	
Vessel:	Wessex Exp	lorer								
Date:	07/02/2023							Rev0	C - 16	/01/2023
		PERS	ONNEL			WEAT	HER	FORE	CAST	
S	Survey Team		Vessel Team			W	ed	8 GMT		
	Tom Alker		Nick Bush	00	1	4 _{kt}	to	5kt	3c	G
H	lugh MacKay		James Bush			~			~	A
F	Paul Clement			03	1	6kt	to	11kt	2c	2
		DAIL	Y LOG	06	4	6 _{kt}	to	12 _{kt}	1c	Ì
(UTC)	CODE		EVENT	09	4	9kt	to	19 _{kt}	2c	Ì
07:30	MOB	Survey pe	ersonnel onboard vessel	40		44		10.	<u> </u>	200
07:45	MOB	Project bi	rief and health and safety discussion	12	7	Tikt	to	Tökt	6C	
07.40	WOD	held prior	to commencing mobilisation	15	1	12 _{kt}	to	23kt	7c	ð
08:30	МОВ	Load equ vessel mo	ipment to vessel and commence obilisation	18	1	13 _{kt}	to	28 _{kt}	4c	Ï
10:30	MOB	MBES ins	stalled on over-the-side pole	21	1	14++	to	30kt	4c	Ð
14:00	MOB	Boomer,	SSS and MAG installed	Thu 0 sur						
14:30	MOB	Commen	ce interfacing of all sensors			- 1	hu	9 GMT		
19:30	MOB	Survey pe	ersonnel depart vessel	00	1	11kt	to	24 _{kt}	3c	න
				03	*	9kt	to	19 _{kt}	5c	Ì
				06	•	7 _{kt}	to	15 _{kt}	2c	Ì
				09	×	8 _{kt}	to	18 _{kt}	3c	Ì
				12	•	12 _{kt}	to	21 _{kt}	7c	ð
				15	•	11 _{kt}	to	20kt	8c	ð

No HSE incidents to report. Project brief and health and safety discussion held prior to commencing vessel mobilisation.

CU	MULATIV	E TIME		SURVEY WORK	(PROGRESS					
ITEM	CODE	TODAY	TOTAL	MBES	0%					
Mob/Demob	MOB	12:00	24:00	MBES	078					
Operational	OPS	00:00	00:00	222	0%					
Transit	TRA	00:00	00:00	333	0 70					
Weather Down Time	WDT	00:00	00:00	SPD	0%					
Equipment Down Time	EDT	00:00	00:00	36F	0 70					
Vessel Down Time	VDT	00:00	00:00	MAG	0%					
Any Other AO		00:00	00:00	MAG	0 70					
TOTALS (Day)		1	2	TOTAL	0%					
DAILY SUMMARY										

Vessel mobilisation of the Wessex Explorer commenced today. The MBES was installed on the over-the-side pole mount and all geophysical sensors were successfully installed. Interfacing of the instruments is now ongoing and expected to be complete tomorrow morning.

UPCOMING PLAN

Interfacing of the instruments will continue tomorrow morning. An alongside position verification will then take place. On completion the vessel will slip ropes to conduct an MBES patch test calibration and dynamic position verifications of the geophysical sensors.

Daily Progr	ess Report										
Project:	5163 Geoph	ysical				11	BP	me)r -		
Vessel:	Wessex Exp	lorer									
Date:	08/02/2023							Rev0	C - 16	5/01/2023	
		PERS	ONNEL			WEAT	ΉE		CAST		
S	Survey Team		Vessel Team	Thu 9 GMT							
	Tom Alker		Nick Bush		10++	to	21.4	30	Ð		
Hugh MacKay			James Bush	00	•	TUNI	10	2 161	50	4	
F	Paul Clement			*	7kt	to	17 _{kt}	4c	න		
		DAIL	Y LOG	06	-	E	ta	12.	2.0	R.	
TIME	CODE		EVENT	00		Okt	10	T∠kt	30	9	
(UTC)	CODE			09	*	7 _{kt}	to	16 _{kt}	3c	ත	
07:30	MOB	Survey pe	ersonnel onboard vessel						-	-	
07:45	MOB	Continue	instrument interfacing	12	+	11kt	to	17kt	7c	1	
11:30	MOB	Instrumer	nt interfacing complete	45		10.		10.	0	-	
11:45	MOB	Alongside	positioning verification conducted	15		TUkt	to	Tökt	9C	*	
15:00	MOB	Vessel in	duction held by skipper	18	-	714	to	16.4	10	A	
15:30	МОВ	TBT held	to discuss equipment deployment	10	-	7 KL	10	TOR	40		
		and recov	very procedures	21	×	7kt	to	18 _{kt}	3c	I	
16:15	МОВ	Vessel sli	ps ropes to conduct positioning	Eri 10 our							
		GAMS ca	libration	Fri 10 GMT							
16:55	MOB	Vessel al	ongside	00	×	7kt	to	19 _{kt}	3c	Ì	
17:00	МОВ	Further a	ongside positioning verification		-				_	B	
		conducte		03		8kt	to	18kt	2c	0	
17:20	MOB	Vessel sli location	ps ropes and transits to patch test	06		10 _{kt}	to	23 _{kt}	3c	Ð	
17:35	MOB	MBES po	le deployed		_	4.0		~~		B	
17:45	MOB	MBES pa	tch test conducted at outfall location	09	.	10kt	to	23kt	4c	\odot	
19:15	MOB	SVP01 de	eployed	12	-	12.4	to	27.4	70	Ð	
19:30	MOB	MBES po	le recovered	12	*	12KL	10	27 KI	10		
19:45	MOB	Vessel al	ongside Grimsby Fish Docks	15	*	15 _{kt}	to	30 _{kt}	9c	ඵ	
19:50	MOB	Survey pe	ersonnel depart vessel								
			HSE SUMMARY								

No HSE incidents to report. Vessel induction held prior to slipping ropes from berth. TBT held to discuss equipment deployment and recovery procedures.

CU	MULATIV	E TIME		SURVEY WORK	K PROGRESS					
ITEM	CODE	TODAY	TOTAL	MRES	0%					
Mob/Demob	MOB	12:50	36:50	IMBES	0 76					
Operational	OPS	00:00	00:00	222	0%					
Transit	TRA	00:00	00:00		0 76					
Weather Down Time	WDT	00:00	00:00	SPD	0%					
Equipment Down Time	EDT	00:00	00:00	SBF	0 78					
Vessel Down Time	VDT	00:00	00:00	MAG	0%					
Any Other	AOB	00:00	00:00	MAG	0 78					
TOTALS (Day)		1	3	TOTAL	0%					
DAILY SUMMARY										

Vessel mobilisation continued today. Interfacing was completed before the GAMS position verification and alongside positioning verifications were conducted. The vessel transited to the calibration site where a full MBES patch test calibration was conducted.

UPCOMING PLAN

The vessel will return to the calibration site to conduct dynamic position verifications of the SSS, SBP and MAG data. The vessel will then transit to the survey site where the SBP (Boomer) data quality will be assessed.

Daily Progress Report

Project: 5163 Geophysical

Vessel: Wessex Explorer

Date:	08/02/2023							Rev)C - 1	<u>6/01/202</u>	3
		PERS	ONNEL			WEA1	ΓHE	r fore	CAST		
u,	Survey Team		Vessel Team			F	ri 1	0 GMT			
Tom A	lker / Paul Clei	ment	Nick Bush			-			-	B	
ŀ	lugh MacKay		James Bush	00	×	/kt	to	1/kt	3c	0	
-	Tim Holegate			03	×	7 _{kt}	to	18 _{kt}	2c	න	
		DAIL	Y LOG								
TIME (UTC)	CODE		EVENT	06	*	7 _{kt}	to	18 _{kt}	2c	0	
06:30	MOB	Survey p	ersonnel onboard vessel	09	1	9kt	to	19 _{kt}	3c	8	
06:45	MOB	Vessel in	duction for Tim Holgate	12	*	11.4	to	23kt	6c	Ð	
07:00	МОВ	Health ar geophysi	d safety discussion held for cal survey operations and equipment	15	-	13kt	to	28kt	8c	Ð	
		deployme	ent/recovery	40	-	10.	4.0	25	0	A	
07:45	MOB	Vessel de	eparts Grimsby	10		TUR	10	ZOkt	oc	<u> </u>	
08:10	MOB	Vessel ar	rives at calibration site	21	×	10 _{kt}	to	24kt	7c	Ì	
09:00	МОВ	Dynamic conducte	position calibrations successfully d for MAG, SSS and SBP			Si	at 1	11 GМТ			
12:00	MOB	Boomer of	lata quality issue identified	0.0	-	11.4	to	264	70	B	
12:45	МОВ	Equipmer to survey	nt recovered and vessel transits site for data optimisation	03	*	10 _{kt}	to	25kt	6c	<u>s</u>	
13:45	MOB	Boomer of	lata optimisation commences						_	A	
16:30	МОВ	Data qua attempts	lity remains poor after multiple at changing the configuration	06	*	9kt 7	to	23kt	5c	ත	
17:20	МОВ	Equipmer Grimsby	nt recovered and vessel transits to	12		/kt	to	21kt	6C	ත්	
18:10	MOB	Vessel al	ongside Grimsby	12		TOR	10	T4KI	100		
18:30	MOB	Survey p	ersonnel depart vessel	15	*	8kt	to	13 _{kt}	11c	න	

HSE SUMMARY

No HSE incidents to report. Vessel induction for new survey team member, Tom Holgate. Full heath and safety discussion held in relation to geophysical survey operations and equipment deployment/recovery procedures.

CU	MULATIV	ETIME		SURVEY WORK	(PROGRESS					
ITEM	CODE	TODAY	TOTAL	MBES	0%					
Mob/Demob	MOB	12:00	48:50	MBES	078					
Operational	OPS	00:00	00:00	222	0%					
Transit	TRA	00:00	00:00	333	070					
Weather Down Time	WDT	00:00	00:00	SPD	0%					
Equipment Down Time	EDT	00:00	00:00	36F	070					
Vessel Down Time	VDT	00:00	00:00	MAG	0%					
Any Other AOB		00:00	00:00	MAG	070					
TOTALS (Day)		1	4	TOTAL	0%					
DAILY SUMMARY										

Dynamic position verifications of the MAG, SSS and SBP were successfully conducted this morning. However, a data quality issue was identified with the Boomer SBP system. Data optimisation took place in the afternoon but data quality was not deemed suitable.

UPCOMING PLAN

It is believed that there may be a fault with the boomer system and therefore options are being considered to source a replacement for delivery tomorrow. Alongside boomer pulse tests will be conducted on the current system. Solutions for mobilisation of the sparker system are also being considered.

Daily Progr	oss Poport					_					
								m	or		
Project:	5163 Geoph	ysical									
Vessel:	Wessex Exp	lorer									
Date:	10/02/2023							Rev()C - 16	6/01/2023	
		PERS	ONNEL			WEAT	ΉEI	R FORE	CAST		
S	Survey Team		Vessel Team	Sat 11 GMT							
Tom Al	ker / Paul Cle	ment	Nick Bush	00	-	10.4	to	234	70	B	
H	lugh MacKay		James Bush	00	-	TURE	10	ZJKI	10	_	
Т	im Holegate			03	×	9kt	to	21kt	6c	Ð	
DAILY LOG						~			~	A	
TIME	CODE			06	-	9kt	to	23kt	5C	2	
(UTC)	CODE			09	*	9kt	to	22kt	6c	Ì	
07:30	MOB	Survey p	ersonnel onboard vessel			0.00				~	
07:45	MOB	Minor rec	onfiguration of boomer installation	12	*	10kt	to	15kt	11c	\mathcal{O}	
08:45	МОВ	Slip rope harbour	s to trial new boomer configuration in	15	*	7 _{kt}	to	11 _{kt}	11c	ð	
09:45	MOB	No data i	mprovement, return to berth	10		~		0	7	as l	
10:00	MOB	TBT for n	nobilisation sparker to vessel	18	-	0kt	to	9kt	/C	0	
12:15	MOB	Sparker r	nobilisation complete	21	*	<u>4</u> k+	to	6kt	6c	Ś	
12:20	MOB	Vessel sl	ps ropes and transits to site			-164		OKL	~~~	_	
13:15	MOB	SVP dep	oyed	Sun 12 GMT							
13:20	MOB	MBES ar	d sparker system deployed	00		4kt	to	5kt	5c	Ś	
13:30	MOB	Problem	with sparker - begin tests			1152		Ont		4	
15:30	MOB	Unable to	solve sparker issue	03		4 _{kt}	to	4 _{kt}	5c	න	
15:40	MOB	Sparker r	ecovered		-	~		0		a	
15:45	OPS	Commen	ce survey with MBES, SSS and MAG	06		3kt	to	3kt	4c	8	
17:35	MOB	All equip	nent recovered	09		3kt	to	/kt	5C	2	
17:40	TRA	Begin ret	urn transit to Grimsby	12	1	5kt	to	6kt	90	- *	
18:30	MOB	Alongside	e Grimsby		•	Unit.		On			
18:35	MOB	Prepare s	sparker for demobilisation	15	1	6kt	to	8kt	10c	÷	
19:00	MOB	Survey p	ersonnel depart vessel		-						
			HSE SUMMARY								

No HSE incidents to report. Full TBT held prior to loading sparker system onto vessel. TBT held prior to deployment of sparker and the other geophysical sensors.

CU	MULATIV	E TIME		SURVEY WORK	K PROGRESS					
ITEM	CODE	TODAY	TOTAL	MBES	5%					
Mob/Demob	MOB	08:50	57:40	MBES	578					
Operational	OPS	01:50	01:50	222	59/					
Transit	TRA	00:50	00:50		576					
Weather Down Time	WDT	00:00	00:00	SPD	0%					
Equipment Down Time	EDT	00:00	00:00	SBF	0 76					
Vessel Down Time	VDT	00:00	00:00	MAG	59/					
Any Other AOB		00:00	00:00	MAG	576					
TOTALS (Day)		1	5	TOTAL	4%					
DAILY SUMMARY										

Some further Boomer tests were conducted within the harbour this morning but no data improvement was made. Therefore the sparker system was mobilised to the vessel. On returning to site, unfortunately the sparker system was unable to trigger reliably and discussions with the manufacturer concluded that the system was likely not suitable for the environment. Therefore survey lines were run acquiring MBES, SSS and MAG data only.

UPCOMING PLAN

An available replacement boomer system has not yet been sourced. We will continue to look for suitable systems but the leading geophysical rental companies do not have anything currently. Therefore MBES, SSS and MAG data will be acquired. SBP data will be acquired when we have a suitable system, either before demobilisation or at a later date.

Daily Prog	ress Report												
Project:	5163 Geopl	hysical							BR	n	nel		
Vessel:	Wessex Exp	olorer											
Date:	11/02/2023									R	ev0C	- 16/0	1/2023
		PERS	ONNEL					WEA	THER	FC	DRECA	ST	
	Survey Team		V	essel Team	т	om	orro		Sun 12	Fe	b out		
	Tom Alker			Nick Bush		Un	IONO		Sun 12	10	U GIVIT		
	Hugh MacKay			James Bush	Ho	ur	W	ind	Avg.		Gust	Temp.	Rain 3h
	Tim Holegate				00:	00	*	WSW	6 mph	to	7 mph	5°C	0 mm
	Thin i loiogaio	DAIL	Y LOG		03:	00	*	WSW	5 mph	to	5 mph	4 °C	0 mm
TIME					06:	00	*	SSW	5 mph	to	5 mph	6 °C	0 mm
(UTC)	CODE		ΕV	ENI	09:	00	1	SSW	5 mph	to	8 mph	7 °C	0 mm
07:30	MOB	Surveyors	s onboard, spa	arker demobilisatio	on 12:0	00	4	SSW	8 mph	to	10 mph	10 °C	0 mm
09:20	TRA	Slip ropes	s for site		15:	00	4	s	7 mph	to	8 mph	11 °C	0 mm
10:00	OPS	Arrive site deployme	e, toolbox talk ent	18:	00	•	s	7 mph	to	7 mph	7 °C	0 mm	
10:10	OPS	Deploy po	ble	21:	00	+	S	7 mph	to	12 mph	6 °C	0 mm	
10:15	OPS	SVP		<u>طر</u>		07:25	▼17:	04					
10:20	OPS	Deploy M	Deploy Mag										
10:30	OPS	Deploy S	Deploy SSS						MT				
10:35	OPS	Commen	ce survey ops		Но	ur	W	ind	Avg.		Gust	Temp.	Rain 3h
13:00	OPS	SVP			00:	00	+	S	7 mph	to	12 mph	5 °C	0 mm
17:15	OPS	Recover	SSS		03:	00	4	s	8 mph	to	16 mph	4 °C	0 mm
17:20	OPS	Recover I	Mag		06:	00	4	s	8 mph	to	14 mph	3 °C	0 mm
17:30	OPS	Recover	Pole		001	20		9	7 mph	to	15 mph	5.00	0.mm
17:35	OPS	SVP			12:0	00	T ∳	s	10 mph	to	15 mph	9°C	0 mm
17:40	TRA	Depart sit	te for Grimsby		15:	00	4	s	10 mph	to	16 mph	10 °C	0 mm
18:10	TRA	Arrive Gri	msby, Lock in		18:0	00	•	s	7 mph	to	13 mph	7°C	0 mm
18:30	TRA	Alongside	e, surveyors of	f vessel	21:	00	+	s	8 mph	to	17 mph	6 °C	0 mm
				HSE SUMMAR	Y								
No HSE ind	cidents to repo	rt. TBT he	ld prior to dep	loyment of pole, to	owed senso	ors	and	SVP.					
	CI	<u>UMUL</u> ATIV	<u>E TIME</u>			SI	JRV	<u>EY</u> W	ORK F	PR	OGRES	SS	
I	TEM	CODE	TODAY	TOTAL			<u>г</u> е				1	00/	
Mob	/Demob	MOB	MOB 02:00 10:50								4	0%	
Ope	erational	OPS	07:35	01:50		52	2.5				Л	.0%	
Т	ransit	TRA	01:25	00:50						070			

Weather Down Time WDT 00:00 00:00 SBP 0% Equipment Down Time EDT 00:00 00:00 Vessel Down Time VDT 00:00 00:00 MAG 40% Any Other AOB 00:00 00:00 TOTAL 40% TOTALS (Day) 5 1 DAILY SUMMARY

Sparker system demobilised from the vessel first thing. Survey operations later conducted at site, for areas in vicinity of IOT mid-deep depth range.

UPCOMING PLAN

Weather and tides remain favourable. Survey of shallow water area on tomorrow's high-tide. Infill of any required areas/reruns.

Daily Progress Report

Date:

Project: 5163 Geophysical

Vessel: Wessex Explorer

12/02/2023

Mon 13 Feb GMT

Rev0C - 16/01/2023 WEATHER FORECAST

3 hr 1 hr

		PERS	ONNEL				
S	urvey Team		Vessel Team				
	Tom Alker		Nick Bush				
H	lugh MacKay		James Bush	Hour			
Г	im Holegate			09:00			
		DAIL	Y LOG	12:00			
TIME	CODE		EVENT	15:00			
(UTC)	CODE		LVENT				
06:00	TRA	Surveyor	Surveyors onboard				
06:10	TRA	Lock out		ᆇ			
06:20	TRA	Lock out	complete, transit to site				
06:50	OPS	Arrive site	e, toolbox talk for shallow water work	Hour			
06:55	OPS	Deploy P	ole	00:00			
07:05	OPS	SVP		03:00			
07:25	OPS	Deploy S	SS	06:00			
07:30	OPS	Deploy M	lag	09:00			
07:35	OPS	Commen	ce survey ops - shallow water	12:00			
09:35	AOB	Acquisitio	on PC crash, restart	15:00			
09:45	OPS	Resume	survey ops	18:00			
13:10	OPS	Recover	SSS and Mag, reconfigure for deep	21:00			
13:15	OPS	SVP in sł	nallow water	<u></u> × 1			
13:20	OPS	SVP in de	eep water				
13:30	OPS		y 555 and May, commence survey				
14:20	AOB	Acquisitio	on PC crash, restart				
14:30	OPS	Resume	survey ops				
17:35	OPS	Recover	SSS and Mag				
17:45	OPS	Recover	Pole				
17:50	OPS	SVP					
17:55	TRA	Transit to	Grimsby				
19:00	TRA	Alongside	9				

Hour	V	/ind	Avg.		Gust	Temp.	Rain 3h		Cloud	Press.
09:00	ŧ	S	8 mph	to	16 mph	5 °C	0 mm	۰	0 %	1034 mb
12:00	ŧ	S	10 mph	to	14 mph	8 °C	0 mm	۰	0 %	1033 mb
15:00	ŧ	S	9 mph	to	14 mph	10 °C	0 mm	٠	0 %	1032 mb
18:00	ŧ	S	7 mph	to	14 mph	6 °C	0 mm	G	0 %	1031 mb
21:00	ŧ	S	7 mph	to	15 mph	5 °C	0 mm	G	0 %	1031 mb
م	07:24	4 🔻 17:0	06							
		٦	Fue 14	Fe	b смт				3	hr 1 hr
Hour	V	/ind	Avg.		Gust	Temp.	Rain 3h		Cloud	Press.
00:00	4	S	8 mph	to	18 mph	4 °C	0 mm	G	10 %	1031 mb
03:00	1	SSW	8 mph	to	17 mph	3 °C	0 mm	Ì	94 %	1030 mb
06:00	1	SSW	8 mph	to	17 mph	3 °C	0 mm	Ì	94 %	1029 mb
09:00	1	SSW	8 mph	to	20 mph	4 °C	0 mm	ð	63 %	1030 mb
12:00	1	SSW	9 mph	to	15 mph	9 °C	0 mm	۰	2 %	1029 mb
15:00	1	SSW	9 mph	to	15 mph	11 °C	0 mm	ð	57 %	1027 mb
18:00	1	SSW	7 mph	to	15 mph	7 °C	0 mm	Ð	100 %	1027 mb
21:00	1	S	7 mph	to	14 mph	6 °C	0 mm	Ì	82 %	1026 mb

☆ ▲07:22 ▼17:08

No HSE incidents to report. TBT held prior to deployment of shallow water work and deployment of pole, towed sensors and SVP.

HSE SUMMARY

CU	MULATIV	E TIME		SURVEY WORK	(PROGRESS
ITEM	CODE	TODAY	TOTAL	MBES	95%
Mob/Demob	MOB	00:00	59:40	MBES	9078
Operational	OPS	10:40	20:05	222	05%
Transit	TRA	02:00	04:15	333	90 /0
Weather Down Time	WDT	00:00	00:00	SPD	0%
Equipment Down Time	EDT	00:00	00:00	SBF	078
Vessel Down Time	VDT	00:00	00:00	MAG	9 09/
Any Other	AOB	00:20	00:20	MAG	00 /6
TOTALS (Day)		1	7	TOTAL	85%
			DAILY SUMMA	RY	

Survey operations conducted across the shallow section of the site in the AM and deep water section in the PM. Coverage complete over most of the survey area for MBES and SSS. Remaining areas include crosslines, and infill/re-run lines. Several acquisition PC crashes today lost some acquisition time, cause unknown but continuing to investigate

UPCOMING PLAN

Conduct crosslines, infill and re-runs tomorrow (2023/02/13) and expected completion of survey ops.

Daily Prog	ess Report						
Project:	5163 Geopl	hysical				1BI	mer 🚤
Vessel:	Wessex Exp	olorer					
Date:	13/02/2023						Rev0C - 16/01/2023
		PERS	ONNEL			WEATHE	RFORECAST
:	Survey Team		V	essel Team			
	Tom Alker			Nick Bush			
ŀ	lugh MacKay		,	lames Bush			
	Tim Holegate						
		DAIL	Y LOG				
TIME (UTC)	CODE		EV	ENT			
07:30	TRA	Surveyor	s onboard, wa	iting for lock			
07:45	TRA	Slip					
07:50	TRA	Lock out					
08:00	TRA	Lock out	complete, tran				
08:45	OPS	Arrive site	e, Toolbox talk	ons			
08:50	OPS	Deploy po	ole and SVP				
08:55	OPS	Deploy to	wed gear				
09:10	OPS	Commen	ce survey ops				n/a
10:20	OPS	Recover	towed gear for	MBES infill			
10:25	OPS	MBES inf	ill				
11:05	OPS	SVP shal	low				
11:10	OPS	SVP dee	c				
11:15	OPS	Deploy be	oomer				
11:20	EDT	Boomer t	roubleshooting)			
12:10	OPS	Recover	boomer				
12:25	OPS	Deploy m	ag and SSS, i	esume infill			
12:40	OPS	Commen	ce survey ops				
17:05	OPS	Recover	towed gear				
17:10	OPS	Recover	pole and SVP				
17:15	AOB	Man over	board drill				
17:20	TRA	Transit to	Grimsby				
18:00	TRA	Arrive Gri	imsby, lock in				
18:30	TRA	Alongside	e, surveyors of	f vessel			
				HSE SUMMAR	RY		
No HSE inc conducted f	idents to repo ollowing equip	rt. TBT he	eld prior to dep very at end of	loyment of pole, t day. Fender reco	owed se vered fol	ensors and SVP. Mai llowing vessel proce	n overboard drill dure without incident.
1-				TOTAL		SURVEY WORK	VPRUGRESS
Mah	I EIVI	MOP		101AL		MBES	100%
	rational		00.00	09.40 28.15			
оре Ті	ansit	TRA	01:55	06:10		SSS	100%

UPCOMING PLAN

00:00

00:50

00:00

00:05

1

Weather Down Time

Equipment Down Time

Vessel Down Time

Any Other

TOTALS (Day)

WDT

EDT

VDT

AOB

Survey operations and infill completed for MBES, SSS and Mag data.

Demobilisation tomorrow following lack of available, and suitable rental SBP system. Remobilise when available to complete SBP work scope.

00:00

00:50

00:00

00:25

8 DAILY SUMMARY SBP

MAG

TOTAL

0%

100%

75%

Daily Progr	ess Report						
Project:	5163 Geoph	ysical				ABR	mer
Vessel:	Wessex Expl	lorer					
Date:	14/02/2023						Rev0C - 16/01/2023
		PERS	ONNEL			WEATHER	R FORECAST
ક્	Survey Team		Ve	essel Team			
	Tom Alker		I	Nick Bush			
ŀ	- Jugh MacKav	I		ames Bush			
-	Tim Holegate						
		DAIL	Y LOG				
TIME (UTC)	CODE		EVE	ENT			
07:00	OPS	Surveyor	sonboard tool	box talk for demok			
07:10	MOB	Beain der	nobilisation		,		
		Demobilis	sation complete	e. survevors and cr	rew		
11:00	MOR	departing	site. Vessel st	ood-down.			
	ļļ						n/a
	↓	 					
	╀────┤	 					
 	┼──── ┦						
	┨────┦	l					
	┼───┤	<u> </u>					
	 	i					
	1 1	l l					
		L					
				HSE SUMMARY			
No HSE inci	idents to report	:					
							PROCRESS
7		CODE		τοται		SURVET WORK	PROGRESS
Mob/	/Demob	MOB	03:55	63:35	٨	<i>MBES</i>	100%
Ope	rational	OPS	00:05	28:20			
Tr	ansit	TRA	00:00	06:10		SSS	100%
Weather	Down Time	WDT	00:00	00:00		000	<u></u>
Equipmen	t Down Time	EDT	00:00	00:50		SBP	U%
Vessel [Jown Time	VDT	00:00	00:00		MAG	100%
Any	Other	AOB	00:00	00:25			10070
т	OTALS (Day)		1	9	T	OTAL	75%
				DAILY SUMMARY	Y		
All equipme	nt demobilised	and trans	ported back to	rental provider.			

UPCOMING PLAN

Vessel stood-down in Grimsby. Surveyors and crew off-site. Sourcing appropriate rental SBP system to resume works.

Daily Progr	ess Report													
Project:	5163 Geoph	vsical							BR	m	e	r	-	
Vessel:	Wessex Exp	lorer												
Date:	07/03/2023									Re	VOC	- 16	5/01/	2023
		PERS	ONNEL				١	NEA	THER	FOF	RECA	ST	<i></i>	2020
	Survey Team		V	essel Team										
	Tom Alker			Nick Bush										
L				amos Ruch	To	morrov	M \	Ned 8 I					3	hr 1 hr
I	lugitiviacitay		J	ames bush	Hour	Win	nd	Avg.	Gust	Temp	Rain 3h		Cloud	Press.
		DAIL	V L OG		00:00	*	ssw	6 mph	to 8 mpl	-1 °C	0 mm	ð	100 %	998 mb
		DAIL			03:00	1	s	5 mph	to 6 mpl	-1°C	0 mm	B	100 %	996 mb
(UTC)	CODE		EVI	ENT	09:00	-	E	5 mpn 10 mph	to 7 mpr	h 3°C	0.1 mm	ð	100 %	994 mb
07:45	MOB	Survevor	onboard, TBT	for mobilisation	12:00	+	Е	14 mph	to 16 mp	h 4 °C	0.1 mm	ð	100 %	994 mb
09:00	МОВ	Commen	ce mobilisation		15:00	*	Е	14 mph	to 16 mp	h 4 °C	0.1 mm	Ø	100 %	993 mb
16:43	TRA	Slip (freef	low)		18:00	*	ENE	12 mph	to 18 mp	h 2°C	0 mm	Ø	100 %	994 mb
17:10	МОВ	Arrive at o	calibration loca	ation. TBT	21.00	▲06:32	▼17:	50	to to mp	20	0 mm	0	100 %	990 Mb
17:15	MOB	Deploy st	reamer and po	ble	Th	u 9 Ma	C GMT						3	hr 1.hr
17:35	MOB	Equipmer	nt deployed, co	ommence cals	Hour	Win	nd	Avg.	Gust	Temp	Rain 3h		Cloud	Press.
18:45	MOB	Recover e	equipment		00:00	*	ENE	8 mph	to 13 mp	h 2 °C	0 mm	Ì	93 %	996 mb
19:00	TRA	Transit to	Grimsby		03:00	*	ENE	6 mph	to 8 mpł	1 °C	0 mm	Ì	98 %	997 mb
19:30	MOB	Alongside	e, surveyors of	f vessel	06:00	*	ENE	6 mph	to 7 mpl	1°C	0 mm	ð A	94 %	999 mb
			•		12:00		ESE	9 mpn 13 mph	to 10 mp	n 4°C h 5°C	0.1 mm	Ø	100 %	1000 mb
					15:00	-	E	15 mph	to 22 mp	h 3°C	2.4 mm	Ő	100 %	998 mb
					18:00	*	Е	18 mph	to 29 mp	h 2 °C	3.5 cm	٢	100 %	996 mb
					21:00	+	Е	21 mph	to 31 mp	h 2°C	2.9 cm	Ş	100 %	994 mb
					<u>×</u>	▲06:30	▼ 17:	52	= Snov	1				
				HSE SUMMAR	Y									
No HSE inc	idents to repor	t. Toolbox	talk for equipn	nent mobilisation	and deployn	nent	for	calib	ratior	IS.				
	CU	JMULATIV	E TIME			SUR	RVE	Y W	ORK	PRO	GRE	SS		
[]	ГЕМ	CODE	TODAY	TOTAL	٨	IBES	S				1	00%	,)	
Mob/	/Demob	MOB	10:48	74:23										
Ope	rational	OPS	00:00	28:20		sss					1	00%	D	
Tr	ansit	TRA	00:57	07:07										
Weather	Down Time	WDT	00:00	00:00		SBP						0%		
Equipmen	t Down Time	EDT	00:00	00:50		•								
Vessel [Down Time	00:00	I	MAG					1	00%	5			
Any	Other	AOB	00:00	00:25	_									
T	OTALS (Day)		1	10	Т	ΟΤΑ	L				7	/5%		
				DAILY SUMMAI	τY									
Boomer and	d nav system n	nobilised o	nto vessel. Init	tial verifications co	onducted at	Outf	all	outsi	de of	Grim	sby.			
				UPCOMING PL	AN									
Pending rev	view of verificat	tion data c	ommence surv	vey ops on site.										

Daily Progr	ess Report													
Project: Vessel:	5163 Geoph Wessex Exc	nysical blorer						73	<u>_</u>	m	e	r -	~	
Date:	08/03/2023									Re	v0C	- 1	6/01/	2023
		PERS	ONNEL			1	WEA	Tŀ	HER	FO	REC	\S T		
S	Survey Team		Vessel Team											
	Tom Alker		Nick Bush											
F	lugh MacKay		James Bush	Tom	orrow	., 7	Thu O N	lor					2 h	r 1 br
	-			Hour	Win	nv i nd	Avg.	lai	GMT	Temp.	Rain 3h		Cloud	Press.
		DAIL	Y LOG	00:00	+	Е	9 mph	to	16 mph	1°C	0 mm	ð	100 %	995 mb
TIME	0005			03:00	*	Е	8 mph	to	14 mph	1 °C	0 mm	Ø	100 %	995 mb
(UTC)	CODE		EVENI	06:00	*	E	8 mph	to	16 mph	2 °C	0.1 mm	0	100 %	996 mb
07:00	MOB	Surveyor	onboard, review boomer setup	09:00		ESE	15 mph	to	21 mph	3.0	3.9 mm	EOG	100 %	995 mb
07:41	TRA	Slip (free	flow), for verifications at outfall	15:00	*	E	20 mph	to	30 mph	2°C	9.7 mm	FOG	100 %	990 mb
07:56	MOB	Arrive at o	outfall, TBT for deployment	18:00	+	Е	23 mph	to	35 mph	3°C	5.7 mm	FOG	100 %	987 mb
08:00	МОВ	Deploy ed	quipment	21:00	+	E	18 mph	to	24 mph	5 °C	2 mm	Ţ	100 %	983 mb
08:09	МОВ	Commen	ce verifications	- <u></u>	06:30	▼17:8	52							
08:46	МОВ	Equipmer	nt recovery	Fri 1	0 Ma	r GMT							3 h	r 1 hr
08:58	TRA	Transit to	site	Hour	Win	hd	Avg.		Gust	Temp.	Rain 3h		Cloud	Press.
09:20	OPS	Arrive site	e, deploy equipment	03:00	2	NE	21 mph	to	26 mph	5 °C	2.3 mm	FOG	100 %	981 mb
09:34	OPS	Equipmer	nt deployed	06:00	*	NNE	33 mph	to	44 mph	2 °C	4 cm	Ø	100 %	985 mb
12:25	OPS	Streamer	adjustments	09:00	+	N	29 mph	to	40 mph	2 °C	2.6 cm	Ş	100 %	993 mb
17:34	OPS	Weather	declining, lift gear	12:00	۲	Ν	21 mph	to	32 mph	2 °C	0.7 cm	Ô	91 %	998 mb
17:47	TRA	Gear reco	overed, depart site for Grimsby	15:00		NNW	20 mph	to	28 mph	3 °C	0.1 mm	¢ A	12 % 1	1001 mb
18:25	TRA	Arrive Gri	msby, wait for lock in	21:00		WNW	14 mpn 12 mph	to	23 mpn 22 mph	-1 °C	0 mm	e G	32 % 1 19 % 1	1005 mb
19:15	TRA	Alongside)	<u>**</u>	06:27	▼17:8	54	-	= Snow					
			HSE SUMMARY											

No HSE Incidents to report. TBT conducted for equipment deployment/recovery with specific reference to declining weather conditions, cold, and snow on deck.

CU	MULATIV	E TIME		SURVEY WORK	K PROGRESS
ITEM	CODE	TODAY	TOTAL	MRES	100%
Mob/Demob	MOB	01:43	76:06	WBE3	100 %
Operational	OPS	08:27	36:47	222	100%
Transit	TRA	02:05	09:12	333	100 %
Weather Down Time	WDT	00:00	00:00	SPD	40%
Equipment Down Time	EDT	00:00	00:50	3BF	4970
Vessel Down Time	VDT	00:00	00:00	MAG	100%
Any Other	AOB	00:00	00:25	MAG	100%
TOTALS (Day)		1	10	TOTAL	75%
			DAILY SUMMA	RY	

Additional verifications conducted at Outfall location before transit to site. Survey operations were conducted within the survey extents Inshore of the IOT. Areas of SBP penetration blanking observed and variable results due to weather conditions. Data to be processed and reviewed to determine quality, however pending quality assessment SBP workscope is 49% complete.

UPCOMING PLAN

Continue survey operations tomorrow (Thursday 9th March) within suitable weather conditions with possible early equipment recovery due to weather. Possible weather standby on Friday.

Daily Progress Report

Date:

Project: 5163 Geophysical

Vessel: Wessex Explorer

09/03/2023

Rev0C - 16/01/2023

		PERS	SONNEL							NE/	A I	HE	K FC	DREC	:AS		
S	Survey Team			Ves	ssel Team	า											
	Tom Alker			Ni	ick Bush												
H	lugh MacKay			Jar	mes Bush												
	-						Tom	norro	w	Fri 10	M	ar GMT	Г			3	hr 1 hr
		DAIL	Y LOG				Hour	W	/ind	Avg.		Gust	Temp.	Rain 3h		Cloud	Press.
TIME (UTC)	CODE			EVEN	NT		00:00 03:00 06:00	* * *	ENE NE NE	21 kt 22 kt 23 kt	to to to	30 kt 31 kt 31 kt	2 °C 1 °C 1 °C	4.8 cm 2 cm 0.7 cm	\$* \$ \$	100 % 100 % 100 %	989 mb 990 mb 993 mb
06:50	AOB	Surveyor	onboar	d, wait fo	or flood ga	tes	09:00	+	Ν	17 kt	to	24 kt	2 °C	0.6 cm	Ø	99 %	998 mb
07:20	TRA	Slip					12:00	+	Ν	17 kt	to	24 kt	3 °C	0.2 mm	Ø	71 %	1001 mb
08:00	AOB	Arrive at a	site, TB	T for dep	oloyment/r	ecovery	15:00	*	NNW	15 kt	to	21 kt	4 °C	0.1 mm	Ø	87 %	1004 mb
08:05	OPS	Deploy e	quipmer	nt			18:00 21:00	-	NW WNW	8 kt 8 kt	to to	15 kt	1 °C	0.1 mm 0 mm	හ	100 % 98 %	1006 mb
08:12	OPS	Equipmer	nt deplo	yed, com	nmence si	urvey ops	<u>*</u>	06:27	7 ▼17:	54		= Sn	ow				
10:31	OPS	Weather	declinin	g			Sat	11 N	/ar ca	AT.						3	hr 1 hr
12:37	OPS	Condition	ns unsuit	table for	data, reco	over gear	Hour	W	/ind	Avg.		Gust	Temp.	Rain 3h		Cloud	Press.
12:47	WDT	Gear reco weather	overed,	standby	on site ,re	eview	00:00 03:00	*	w	7 kt 7 kt	to to	12 kt 12 kt	-1 °C -2 °C	0 mm 0 mm	8 1	37 % 11 %	1008 mb 1009 mb
13:34	WDT	Weather	declinin	g further	, depart fo	or Grimsby	06:00	+	W	7 kt	to	14 kt	-2 °C	0 mm	G	21 %	1010 mb
14:15	WDT	Arrive Gri	imsby, le	ock in			09:00	*	W	5 kt	to	7 kt	2 °C	0 mm	Ø	57 %	1011 mb
14:29	WDT	Lock in co	omplete				12:00	-	WNW	4 kt	to	5 kt	5°C	0 mm	හ	97%	1012 mb
14:40	MOB	Alongside	e, spark	er mob			18:00	4	s	3 kt	to	4 kt	2°C	0.2 cm	Ø	100 %	1012 mb
17:32	MOB	Sparker r	nobilise	d, pendir	ng saltwat	er reservoir	21:00	4	s	5 kt	to	8 kt	2 °C	1 cm	ø	100 %	1011 mb
17:32	WDT	Surveyors	s off ves	ssel, wea	ther down	ntime	<u>×</u>	▲ 06.25	5 17	56		= Sn	ow				
19:00	AOB	Surveyors	s off shi	ft													
					HSE SUN	IMARY											

No HSE incidents to report, TBT for equipment deployment/recovery.

CU	IMULATIV	E TIME		SURVEY WORK	(PROGRESS
ITEM	CODE	TODAY	TOTAL	MRES	100%
Mob/Demob	MOB	02:52	78:58	WBE3	100 %
Operational	OPS	04:42	41:29	222	1009/
Transit	TRA	00:40	09:52	333	100%
Weather Down Time	WDT	03:21	03:21	SPD	65% (pending OA)
Equipment Down Time	EDT	00:00	00:50	36r	
Vessel Down Time	VDT	00:00	00:00	MAG	100%
Any Other	AOB	00:35	01:00	MAG	100%
TOTALS (Day)		1	12	TOTAL	80% (pending QA)
			DAILY SUMMA	RY	

Survey operations suspended due to poor weather. Spare-sparker system mobilised while alongside to test seabed penetration through consolidated mud sections.

UPCOMING PLAN

Survey operations to resume tomorrow (10th March 2023) pending suitable weather. Use of sparker system to complete remaining lines, conduct infill, and test over consolidated mud areas within the site.

Daily Progr	ess Report					
Project:	5163 Geoph	iysical			ABP mer 👡	
Vessel:	Wessex Exp	lorer				
Date:	10/03/2023				Rev0C - 16/01/2	2023
		PERS	ONNEL		WEATHER FORECAST	
S	Survey Team		V	essel Team		
	Tom Alker			Nick Bush	Tomorrow Sat 11 Mar GMT 3 hr	1 hr
H	lugh MacKay		J	lames Bush	Hour Wind Avg. Gust Temp. Rain 3h Cloud F 00:00 → W 6 kt to 9 kt -2 ℃ 0 mm 25 86 % 10	Press. 009 mb
					03:00 🛩 WSW 6 kt to 9 kt -2 °C 0 mm 🖄 87 % 10	008 mb
		DAIL	Y LOG		06:00 - WSW 6 kt to 8 kt -2 °C 0 mm 🖄 98 % 10	009 mb
(UTC)	CODE		EV	ENT	09:00 WSW 7 kt to 9 kt 1 °C 0 mm 25 91% 10 12:00 WSW 8 kt to 10 kt 4 °C 0 mm 25 88% 10	010 mb
07:10	AOB	Surveyor	onboard, asse	ess weather	18:00 SSE 4 kt to 5 kt 3 °C 0.3 mm @ 100 % 10	dm 800
07:15	WDT MOB	Fresh wa	unsultable, sta	andby	21:00 k SSE 8 kt to 16 kt 2 °C 2.5 cm 🐢 100 % 10	007 mb
14.00	MOB	Sparker t	oete		▲06:25 ▼17:56 = Snow	
10.00		Survevor	s off vessel		Sun 12 Mar GMT 3 hr	1 hr
19.00	VVD1	Guiveyon			Hour Wind Avg. Gust Temp. Rain 3h Cloud F	Press.
					00:00 k SE 7kt to 13kt 2 °C 0.6mm FOG 100% 10	005 mb
		1			06:00 + W 10 kt to 24 kt 4 °C 0.1 mm FOG 100 % 10	003 mb
					09:00 + W 12 kt to 26 kt 6 *C 0 mm 🖉 100 % 10	006 mb
					12:00 * WSW 12 kt to 19 kt 7 °C 0 mm * 100 % 10	007 mb
					18:00 ♠ S 10 kt to 23 kt 8 °C 0.2 mm 2 100 % 10	003 mb
					21:00 🛧 S 16 kt to 31 kt 8 °C 5.7 mm 🌮 100 % 9	98 mb
					▲06:22 ▼17:58	
				HSE SUMMAR	RY	
No HSE inci	dents to repor	t, TBT for	equipment dep	oloyment/recovery	ry.	
	CU	ΙΜUΙ ΑΤΙν	E TIME		SURVEY WORK PROGRESS	
IT	EM	CODE	TODAY	TOTAL	1/050	
Mob/	Demob	MOB	05:00	83:58	MBES 100%	
Oper	ational	OPS	00:00	41:29	SSS 100%	
Tra	ansit	TRA	00:00	09:52		
Weather	Down Time	WD1	06:45	10:06	SBP 65% (pending QA	۹)
			00.00	00.50		
Anv	Other	AOB	00:05	01:05	MAG 100%	
T	OTALS (Day)		1	13	TOTAL 80% (pending Q/	A)
				DAILY SUMMA	ARY	
Vessel alonç	gside on weatl	her. While	waiting sparke	er system mobilise	sed and tested	
				UPCOMING PL	LAN	
Survey oper	ations tomorro	ow (11th M	arch 2023)			

Daily Progr	ess Report												
Project:	5163 Geoph	ysical						BP	n	1e	r	~	
Vessel:	Wessex Exp	lorer											
Date:	11/03/2023								R	ev0C	; - 1	6/01	/2023
		PERSC	DNNEL				WEA	THE	r fc	OREC	AST	-	
ę	Survey Team		١	/essel Team									
	Tom Alker			Nick Bush	Terr		0.10						
ŀ	Hugh MacKay			James Bush	lon	Wind	Sun 12	Mar G	MT	Bain 2h		Cloud	Broop
					00:00	SSE	Avg.	o 29 kt	1 °C	1.7 mm	FOG	100 %	1003 mb
		DAILY	′ LOG		03:00	🖌 sw	12 kt 1	o 29 kt	4 °C	0.1 mm	ð	100 %	1001 mb
TIME (UTC)	CODE		ΕV	'ENT	06:00 09:00	🗶 wsw	15 kt 1 14 kt 1	0 28 kt 0 24 kt	6 °C 7 °C	0.1 mm 0.1 mm	D D	100 % 100 %	1002 mb 1003 mb
06:00	OPS	Surveyor c	nboard, slip		12:00	🛹 wsw	15 kt 1	o 23 kt	9 °C	0 mm	Ø	87 %	1003 mb
06:05	VDT	Waiting on	traffic		15:00	WSW	14 kt 1	o 23 kt	11 °C	0 mm	ත	100 %	1002 mb
06:15	OPS	Depart Gri	msby for site		21:00	ssw	14 kt 1	o 27 kt	9°C 10 °C	2.7 mm	<u>_</u>	100 %	996 mb
06:45	OPS	Arrive on s	ite, TBT for o	deployment/recovery	<u>×</u>	06:22 ▼17	:58						
06:50	OPS	Deploy sur	vey gear		Mor	13 Mar	GMT					3	hr 1 hr
07:10	OPS	Commenc	e survey ops		Hour	Wind	Avg.	Gust	Temp.	Rain 3h		Cloud	Press.
09:00	VDT	Waiting on	traffic		00:00	🕈 ssw	15 kt 1	o 30 kt	10 °C	1.3 mm	Þ	100 %	990 mb
09:07	OPS	Resume s	urvey ops		03:00	💉 SW	21 kt	o 37 kt	11 °C	1.1 mm	Ţ	100 %	987 mb
10:11	VDT	Waiting on	traffic		06:00	🗶 SW	22 kt 1	o 38 kt	12 °C	0.1 mm	Ì	68 %	986 mb
10:24	OPS	Resume s	urvey ops	09:00	🗶 SW	22 kt 1	o 39 kt	11 °C	0.1 mm	Ø	77 %	986 mb	
10:52	OPS	Swap to or	ne-way opera	12:00 15:00	sw sw	22 kt 1 23 kt 1	o 39 kt o 41 kt	11 °C	0.3 mm 0.4 mm		100 % 100 %	984 mb	
12:10	VDT	Waiting on	traffic	21:00	sw sw	17 kt	0 29 kt	9°C	1.3 mm	er e	100 %	978 mb	
12:27	OPS	Resume s	urvey ops		<u>×</u>	06:20 ▼18	:00						
14:57	EDT	Sparker ba	ang-box HV ´	l error, investigating									
15:25	EDT	Recover g	ear										
15:45	TRA	Transit to (Grimsby										
16:20		Lock In											
16:35	EDI	Alongside	ong hov		_								
16:40		Swap out i	Dang-box	f vegeel	_								
18:30	EDI	MODIIISEd,	surveyors of	TVESSEI	_								
					_								
				HOL SUMMART									
No HSE inc	idents to repor	t, TBT for e	quipment de	ployment/recovery.									
	CL	JMULATIVE	TIME			SURVE	EY W	ORK	PR	OGRE	SS		
Г	ГЕМ	CODE	TODAY	TOTAL		IBES		T			1009	%	
Mob/	Demob	MOB	00:00	83:58	IV						.00	/0	
Ope	rational	OPS 08:10 49:39				SSS					1009	%	
Tr	ansit	TRA								-			
Weather	Down Time	WDT	3	SBP					85%	6			
Equipmen	t Down Time	EDT	02:43	03:33							,		
Vessel I	Jown Time		00:47	00:47	٨	ЛАG					100	%	
Any -		AOR	00:00	01:05				-+			0.20	/	
I	UTALS (Day)		1			JIAL			_		927	0	
				DAILY SUMMARY									
Successful supply failur	survey operati e to sparker e	ons with the nded opera	sparker sys tions early he	tem conducting the r owever a spare syste	majority of em was m	remaii obiliseo	ning l d upo	ines. n reti	Une urn te	xpect o Grin	ed p nsby	oowe /	r

UPCOMING PLAN

Finish survey operations tomorrew (12thMarch 2023) completing the remaining 10 lines any addiitional required infill and water sampling. Pending final QA, demobilisation on the 13th March 2023.

Daily Progress Report															
Project:	5163 Geoph	ysical						11	BP	n	10		~		
Vessel:	Wessex Exp	lorer													
Date:	12/03/2023									R	ev00	1	6/01	1/2023	
		WEATHER FORECAST													
Survey Team Vessel Team															
	Tom Alker	Nick Bush													
	Hugh MacKay					Tomorrow Mon 13 Mar GMT 3 hr 1 hr							3 hr 1 hr		
Jailles Dusii							Hour Wind Avg. Gust Temp. Rain 3h Cloud Press.								
			YLOG		00:00	🔰 ss	W 18	kt to	35 kt	11 °C	1 mm	P	100 %	989 mb	
TIME					03:00	🔰 SI	N 21	kt to	39 kt	11 °C	0.1 mm	@ 	100 %	986 mb	
(UTC)	CODE	EVENT				x SI	N 24	kt to	45 KI	12°C	0.1 mm	ð	94 %	985 mb	
06:30	MOB	Surveyor	12:00	💉 SI	N 27	kt to	47 kt	11 °C	0.7 mm	Þ	100 %	982 mb			
06:45	TRA	Transit to	15:00	📕 SI	// 26	kt to	46 kt	11 °C	0.2 mm	Ð	99 %	981 mb			
07:45	OPS	Arrive site	18:00	📕 S1	N 21	kt to	35 kt	10 °C	0.4 mm	ð	100 %	980 mb			
08:00	OPS	Water sar	21:00	🔰 SI	N 21	kt to	34 kt	9°C	0.4 mm	Ð	98 %	979 mb			
08:15	OPS	Deploy to		- 400.20 T 10.00											
08:30	OPS	Comment	Tue	Tue 14 Mar GMT 3 hr 1 hr											
12:25	OPS	Recover t	owed gear		Hour	Wind	Av	g.	Gust	Temp.	Rain 3h		Cloud	Press.	
12:40	OPS	Continue	water sampling	g	00:00		W 19	kt to	28 kt	4 °C	0.7 mm	MIST	100 %	982 mb	
17:40	TRA	Depart sit	e for Grimsby		06:00	- WN	W 16	kt to	27 kt	0°C	0 mm	G	5 %	995 mb	
18:20	TRA	Arrive Gri	msby		09:00	🔺 wr	IW 18	kt to	28 kt	2 °C	0 mm	Ċ	28 %	999 mb	
19.20	ТРА	Alongside			12:00	🗙 WN	IW 18	kt to	24 kt	5 °C	0 mm	Ì	90 %	1002 mb	
10.30	IKA	Alongside				🐐 NN	W 7	kt to	9 kt	5 °C	0.3 mm	Ø	97 %	1005 mb	
18:40	TRA	Surveyors	Surveyors off vessel				N 3	kt to	5 kt	2 °C	0.1 cm	ð	89 %	1008 mb	
					21:00	→ V	V 4	kt to	5 kt	1 °C	0 mm	Ø	26 %	1011 mb	
						▲U0.15 ¥	18.02		= 51	low					
				HSE SUMMAR	Y										
No HSE inc	idents to repor	t, TBT for e	equipment dep	loyment/recovery	and water s	sampl	ing.								
	CI														
						SURVET WORK PROGRESS									
Moh	/Demob	MOB	00:15	84·13	٨	MBES				100%					
Operational		OPS	09:55	59:34					-+						
Т	ransit	TRA	02:00	12:42		SSS				100%					
Weather	Down Time	WDT	00:00	10:06											
Fauipment Down Time		FDT	00:00	03.33		SBP				100% (pending QA)					
Vessel	Down Time	VDT	00:00	00:47											
Any	/ Other	AOB	00:00	01:05	MAG				100%						
7.11	OTALS (Dav)	NOD	1	15	TOTAL			_	100% (pending QA)			QA)			
			<u> </u>		2Y						• /• (4.4	
Remaining	SBP lines com	pleted, clo	sing out work a	scope following fir	nal QA, Wat	er sar	noli	na :	at re	qula	r inter	rvale	son	site	
is			sat work t				ייקיי			30.0		· arc			
				UPCOMING PLA	N										
				1	1 0000°										
Penaing fin		ommence	Lemobilisation	tomorrow (13th N	narch 2023)	•									

Daily Prog	ress Report											
Project:	5163 Geoph	nvsical		p mer 🚤								
Vessel:	Wessex Exp	olorer										
Date:	13/03/2023											
		PERS	ONNEL		WEAT	HER FORECAST						
	Survey Team		V	essel Team								
	Tom Alker			Nick Bush								
	Hugh MacKay		J	lames Bush								
	1	DAIL	r log									
TIME (UTC)	CODE		EVE	ENT								
07:30	MOB	Surveyor o	onboard, TBT	for vessel demob								
07:45	45 MOB Commence vessel demobilisation 45 MOB Demobilisation complete surveyors off											
11.45	Vessel											
						1						
						n/a						
		<u> </u>										
												
	-	+										
	-	+										
		<u>† </u>										
		<u> </u>										
												
					V							
				HSE SOMMAR								
No HSE inc	cidents to repor	rt, TBT for e	quipment der	nobilisation								
	CL	JMULATIV	ETIME		SURVEY WC	ORK PROGRESS						
 	TEM	CODE	TODAY	TOTAL	MBES	100%						
)/Demod	MUB	04:15	14:21 03:33								
<u>оре</u> Т	iransit	TRA	00.00	00.33	SSS	100%						
Weathe	r Down Time	WDT	00:00	01:05								
Equipme	nt Down Time	EDT	00:00	360:00	SBP	100%						
Vessel	Down Time	VDT	00:00	00:00	MAG	100%						
An	y Other	AOB	00:00	00:00	IVIAG	10070						
TOTALS (Day)			1	15	TOTAL	100%						
				DAILY SUMMAR	RY							
Voccol dor	nobilized of equ	vinment Su	invovore and c	row off_eita								
Vessei uen	IODIIISEU OI Equ	ipment. Su	IVEYUIS and c	Tew on-site								
				UPCOMING PL								
n/a												
11/ 2												