Annex 40.2

Geophysical Survey of land at Cherry Cobb Sands, East Yorkshire

(Allen Archaeology Ltd)
ARCHAEOLOGICAL EVALUATION REPORT:

GEOPHYSICAL SURVEY OF LAND AT CHERRY COBB SANDS IN EAST YORKSHIRE

Planning Reference: Pre-Planning
Field NGRs: TA 23149 19367, TA 22690 20046, TA 22363 20563 and TA 22129 20910
AAL Site Code: CCSA 11
OASIS Reference: allenarc1-99880

Report prepared for AC Archaeology Ltd
On behalf of Able UK Ltd

By
Allen Archaeology Ltd
Report Number 2011024

April 2011
List of Figures

Figure 1: Site location at scale 1:25,000, with proposed development area outlined in blue and the surveyed fields outlined in red
Figure 2: Field 1 processed linear greyscale plot at scale 1:2,500
Figure 3: Field 1 trace plot at scale 1:2,500
Figure 4: Field 1 simplified graphic interpretation at scale 1:2,500
Figure 5: Field 2 processed linear greyscale plot at scale 1:2,500
Figure 6: Field 2 trace plot at scale 1:2,500
Figure 7: Field 2 simplified graphic interpretation at scale 1:2,500
Figure 8: Field 3 processed linear greyscale plot at scale 1:2,500
Figure 9: Field 3 trace plot at scale 1:2,500
Figure 10: Field 3 simplified graphic interpretation at scale 1:2,500
Figure 11: Field 4 processed linear greyscale plot at scale 1:2,500
Figure 12: Field 4 trace plot at scale 1:2,500
Figure 13: Field 4 simplified graphic interpretation at scale 1:2,500
Figure 14: Processed linear greyscale plots of Fields 1 to 4 in real space at scale 1:5000
Figure 15: Graphic interpretation of data from Fields 1 to 4 in real space at scale 1:5000

Document Control

<table>
<thead>
<tr>
<th>Element</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report prepared by:</td>
<td>David Hibbitt and Mark Allen</td>
<td>21/04/2011</td>
</tr>
<tr>
<td>Illustrations prepared by</td>
<td>Tom Smith and David Hibbitt</td>
<td>21/04/2011</td>
</tr>
<tr>
<td>Report edited by:</td>
<td>Chris Clay</td>
<td>21/04/2011</td>
</tr>
<tr>
<td>Report reviewed by:</td>
<td>Peter Cox, AC Archaeology</td>
<td>26/04/2011</td>
</tr>
</tbody>
</table>

Allen Archaeology Limited reports are printed double-sided and on 100% recycled paper to reduce our carbon footprint.

Cover image: Field 1 during surveying, with radar tower in background, looking south
Executive Summary

- A 32.5 hectare fluxgate gradiometer geophysical survey was undertaken by Allen Archaeology across four fields on land at Cherry Cobb Sands in the East Riding of Yorkshire for AC Archaeology, on behalf of Able UK Ltd.

- The survey has identified a number of former channels and field boundaries that are depicted on 18th – 20th century mapping for the area, forming a landscape of deliberately flooded land to improve agricultural productivity.

- A number of the linear anomalies, especially in the north-westernmost field (Field 4) have particularly high magnetic signatures, indicating that they have been backfilled with highly magnetic or ferrous material, perhaps associated with modern land fill episodes known to have occurred in the area.

- Several areas of magnetic noise appear to correlate with structures identified on 19th century mapping and aerial photographs, and may be evidence of materials associated with their demolition.

- There are many dipolar responses in the magnetic data which are likely to have been caused by modern ferrous detritus or other highly fired material on or close to the surface.
1.0 Introduction

1.1 A fluxgate gradiometer geophysical survey was undertaken at Cherry Cobb Sands in the East Riding of Yorkshire by Allen Archaeology for AC Archaeology on behalf of Able UK Ltd as part of a scheme for the creation of a Marine Energy Park and deep water port facility.

1.2 The site works and reporting conform to current national guidelines, as set out in the Institute for Archaeologists ‘Draft Standard and Guidance for Archaeological Geophysical Survey’ (IfA 2010) and ‘Standard and guidance for archaeological evaluations’ (IfA 1994, revised 2001 and 2008) and the English Heritage document ‘Geophysical Survey in Archaeological Field Evaluation’ (English Heritage 2008). A project brief was also produced for the works by the AC Archaeology (2011).

2.0 Site Location and Description

2.1 The site is located in the administrative borough of Holderness in the East Riding of Yorkshire, approximately 5.6km south-south-west of Keyingham and c.14.5km south-east of the centre of Hull.

2.2 The proposed development area comprises a block of land of approximately 150 hectares, immediately to the north-east of the River Humber and south-west of Cherry Cobb Sands Road. The survey area comprises four fields totalling approximately 65 hectares (Figure 1). The central grid reference for each field is:

- Field 1: NGR TA 23149 19367
- Field 2: NGR TA 22690 20046
- Field 3: NGR TA 22363 20563
- Field 4: NGR TA 22129 20910

2.3 The ground conditions for each field comprised mainly short arable winter crops and ploughed soil, on relatively flat ground between 2m and 3m above Ordnance Datum. The area comprises artificially drained warpland (land deliberately flooded to deposit silt and clay to improve agricultural productivity) that was reclaimed during the 18th and 19th centuries (Neave and Neave 1990). The superficial geology is therefore recorded as marine and estuarine alluvial silts, overlying the solid geology of Cretaceous deposits of Flamborough Chalk (British Geological Survey 1991).

3.0 Planning Background

3.1 An application for the construction of a Marine Energy Park and deep water port facility at North Killingholme in North Lincolnshire is in preparation and will be submitted to the Infrastructure Planning Commission shortly. The site at Cherry Cobb Sands is in the East Riding of Yorkshire and has been identified as a potential new foreshore compensation area to replace the statutorily designated habitat lost as part of the proposed development.

3.2 As part of this application, an archaeological desk-based assessment of the proposed foreshore compensation site has been prepared (AC Archaeology 2010). This programme of work comprises a detailed magnetometer survey of 50% of the survey area (c.32.5 hectares).
4.0 Archaeological and Historical Background

4.1 An historic environment desk-based assessment has previously been prepared for the proposed impact area (AC Archaeology 2010); therefore the results of this assessment are presented in a summarized form below.

4.2 Salthaugh Grange belonged to the Abbey of Meaux, and was established in the 12th century (AC Archaeology 2010, Site 17). Its present location is to the north-east of the site, however it was originally positioned closer to the river and was moved in the mid 13th century due to flooding. The original location of the grange remains unknown and it is possible that it lay within the footprint of the proposed site.

4.3 The desk-based assessment has also shown that there are four sites within the site. A single structure shown adjacent to Cherry Cobb Sands Road on the Ordnance Survey map of 1824 (AC Archaeology 2010, Site 1), and aerial photographs show several small rectangular structures that may be dock decoys (AC Archaeology 2010, Sites 3 and 4). A possible road network of medieval date is also noted for the area, however the exact location of this complex remains unknown (AC Archaeology 2010, Site 2).

5.0 Methodology

5.0.1 A Level II Evaluation survey (Gaffney and Gater 2003) using fluxgate gradiometer was chosen as the most appropriate type of survey for the site. Although there can be no preferred recommendation of which technique to use until the merits of the individual site have been assessed, gradiometer survey should usually be the prime consideration (English Heritage 2008).

5.0.2 The response to magnetic surveying over alluvium deposits is normally good although the magnetic response may be reduced as alluvial soils typically have a very low magnetic susceptibility leading to potentially very weak magnetic variations. The response over Cretaceous Chalk is generally good although a very variable response can be expected (English Heritage 2008, Gaffney and Gater 2003 and Clark 1996).

5.0.3 Magnetic surveying measures very small changes in the Earth's magnetic field which can be created by man-made or geological changes in the magnetic properties of the soil and/or underlying geology. Magnetic surveying can usually detect magnetically enhanced features such as areas of anthropogenic activity (for example pits, ditches, hearths and kilns), but also will react to buried 'modern' items such as nails, agricultural equipment fragments, wire fences and generally any ferrous material in the immediate area.

5.0.4 The geology of the site can play an important role in how successful a magnetic survey will be. If the local geology is inherently magnetic then it may not be practicable or possible to undertake a magnetic survey. Similarly, buried services can have an adverse effect on the data. The magnetic ‘signature’ from certain anomalies, for example from a ditch or kiln, is often very characteristic to that type of known feature. It should be noted that geomorphological features can give both positive and negative responses.

5.0.5 The magnetic survey was carried out using a Bartington Grad601-2 Dual Fluxgate Gradiometer with an onboard automatic DL601 data logger. This instrument is a highly stable magnetometer which utilises two vertically aligned fluxgates, one positioned 1m above the other. This arrangement is then duplicated and separated by a 1m cross bar. The 1m vertical spacing of the fluxgates provides for deeper anomaly detection capabilities than 0.5m spaced fluxgates. The dual arrangement allows for rapid assessment of the archaeological potential of the site. Data
storage from the two fluxgate pairs is automatically combined into one file and stored using the onboard data logger.

5.1 Summary of Survey Parameters

5.1.1 Fluxgate Gradiometer

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>Bartington Grad601-2 Dual Fluxgate Gradiometer</td>
</tr>
<tr>
<td>Sample interval</td>
<td>0.25m</td>
</tr>
<tr>
<td>Traverse interval</td>
<td>1.00m</td>
</tr>
<tr>
<td>Traverse separation</td>
<td>1.00m</td>
</tr>
<tr>
<td>Traverse method</td>
<td>Zigzag</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.1 nT</td>
</tr>
<tr>
<td>Processing software</td>
<td>ArchaeoSurveyor 2</td>
</tr>
<tr>
<td>Surface conditions</td>
<td>Agricultural land. Flat with young crop.</td>
</tr>
<tr>
<td>Area surveyed</td>
<td>32.5ha</td>
</tr>
<tr>
<td>Surveyors</td>
<td>Tom Smith and Robert Evershed</td>
</tr>
<tr>
<td>Data interpretation</td>
<td>David Charles Hibbitt and Mark Allen</td>
</tr>
<tr>
<td>Dates of survey</td>
<td>23rd March to 15th April 2011</td>
</tr>
</tbody>
</table>

5.2 Data Collection and Processing

5.2.1 The brief for the geophysical survey specified a 50% sampling strategy of the four fields to be surveyed using alternate 10 metre wide recorded transects (AC Archaeology 2010). The transects were positioned parallel to Cherry Cobb Sands Road that runs immediately to the north-east of the site.

5.2.2 Each grid was marked out using tapes, measuring from known fixed boundaries within each of the surveyed fields. The collection of magnetic data using a north – south traverse pattern is preferable for a magnetic survey, as enhancements to the magnetic field caused by buried features is mapped increasingly stronger the closer the traverse direction can get to a magnetic north – south direction (Scollar et al. 1990). On this occasion magnetic data was able to be collected close to the preferred alignment due to the orientation of the site and specified traverse direction by the client. Data was collected by making successive parallel traverses across each grid in a zigzag pattern. Several key points of the survey grid were tied in to known/fixed features and these are recorded in the surveyor’s site notes.

5.2.3 The data collected from the survey has been analysed using the current version of ArchaeoSurveyor 2. The resulting dataset plots are presented with positive nT/m values as black and negative nT/m values as white. The data sets have been subjected to processing using the following filters:

- De-stripe (also known as Zero Mean Traverse or ZMT)
- Clipping

5.2.4 The de-stripe process is used to equalise underlying differences between grids or traverses. Differences are most often caused by directional effects inherent to magnetic surveying instruments, instrument drift, instrument orientation (for example off-axis surveying or heading errors) and delays between surveying adjacent grids. The destripe process is used with care however as it can sometimes have an adverse effect on linear features that run parallel to the orientation of the process.
5.2.5 The clipping process is used to remove extreme datapoint values which can mask fine detail in the data set. Excluding these values allows the details to show through.

5.2.6 Plots of the data are presented in processed linear greyscale with any corrections to the measured values or filtering processes noted, and as a separate simplified graphical interpretations of the significant magnetic anomalies detected.

6.0 Results (See Figures 2 – 15)

6.1 Field 1 (Figures 2 – 4, anomalies in square brackets are shown on Figure 4)

6.1.1 Immediately noticeable in the dataset is a trend of positive magnetic linear anomalies running broadly north-west to south-east throughout the field. These are elements of a land drainage system that has been added to the field running parallel with Cherry Cobb Sands Bank that forms the south-west boundary to the survey area.

6.1.2 A broad curvilinear anomaly [1] which demonstrates a slightly higher magnetic susceptibility than the surrounding soils have been faintly detected. This broad anomaly is likely to represent the course of a former river channel associated with the River Humber. The probable channel does not correlate with any identified on earlier mapping within the desk-based assessment, although it may relate to a former channel immediately to the north-west of the field identified from aerial photographs (AC Archaeology 2010, Figure 1).

6.1.3 An area of magnetic noise [2] at the northernmost corner of the field appears to correlate with Site 1 of the desk-based assessment, a single structure shown on the Ordnance Survey map of 1824, with additional structures added by 1855 (ibid., Appendix 2). There was no evidence for this structure at the locality; however the survey results suggest the presence of near-surface intrusive ferrous or highly-fired material, most likely material associated with the demolition of the 19th century structures.

6.1.4 Site 4 of the desk-based assessment, a small rectangular structure believed to be a dock decoy (ibid., Appendix 2), lies within a further area of slight magnetic noise [3]. The magnetic variation is slight compared to the surrounding alluvial soils however, so it is not clear if the structure has been positively identified.

6.1.5 Scattered randomly throughout the field are a number of strong and weak dipolar responses (the stronger of these being identified by yellow circles on Figure 4). The characteristic dipole response of pairs of positive and negative ‘spikes’ suggests near-surface ferrous metal or other highly fired material (Clarke 1996). As expected, there are high concentrations of dipolar responses spread across the field, and in particular close to gateways and access points into the field. This is usually caused by the dumping of magnetically enhanced material to improve ground conditions in these particular areas. Further areas of magnetic noise (shaded in orange on the interpretation figure), to a greater or lesser extent, have been detected around the edges of the field. These areas of noise are usually caused by ferrous or other highly fired detritus which tends to build up in these areas.

6.2 Field 2 (Figures 5 – 7, anomalies in square brackets are shown on Figure 7)

6.2.1 A linear alignment of anomalies running north-east to south-west [4] may be of potential archaeological significance, and is likely to represent a former field boundary. This is confirmed by the desk-based assessment as a field boundary that was in existence by the 1855 Ordnance Survey map and appears to have still been in use in 1956 (ibid., Appendix 1).
6.2.2 The linear anomalies [5] and [6] are very dipolar and characteristic of buried services; however they correlate with former field boundaries identified on early Ordnance Survey maps (ibid., Appendix 1). Anomaly [5] is shown on the 1855 – 1956 maps, and anomaly [6] appears by the 1892 map. The response of the survey suggests that these may have been backfilled with highly magnetic material, or perhaps a metal pipe prior to backfilling to aid drainage. It is not inconceivable that they may be the responses from an electric cable or other service, but given the location this is unlikely.

6.2.3 A series of broad irregular meandering anomalies [7], [8] and [9] have been faintly detected, which demonstrate a slightly higher magnetic susceptibility than the surrounding soils. These broad anomalies represent the course of former river channels, with anomaly [7] depicted on the 1892 – 1956 Ordnance Survey maps (ibid., Appendix 1).

6.2.4 A possible dock decoy identified as Site 3 in the desk-based assessment (ibid., Appendix 2), is shown on aerial photographs towards the middle of the field, however no trace of this was forthcoming during the geophysical survey.

6.2.5 Strong and weak dipolar responses have been recorded scattered randomly throughout the field. These suggest near-surface ferrous metal or other highly fired material, with further areas of magnetic noise detected around the edges of the field. These areas of noise are usually caused by ferrous or other highly fired detritus which tends to concentrate in these areas.

6.3 Field 3 (Figures 8 – 10, anomalies in square brackets are shown on Figure 10)

6.3.1 At the southern end of the field a large open drain that is depicted on the 1855, 1892 and 1910 Ordnance maps hampered the survey slightly, although not sufficiently to be detrimental to the work.

6.3.2 A series of broad meandering anomalies [10] and [11], which demonstrate a slightly higher magnetic susceptibility than the surrounding soils have been faintly detected and these are likely to reflect former channels running towards the River Humber. Anomaly [10] is first shown on the 1855 Ordnance Survey map, whilst [11] is not drawn on the 1822 enclosure map, but first appears on the 1850 Tithe Map (ibid., Appendix 1).

6.3.3 Although anomalies [12] – [14] show similar magnetic signatures to the former channels, they do not appear on the 19th and 20th century maps so may reflect earlier channels, or subtle geological variations.

6.3.4 Both strong and weak dipolar responses denoting near-surface ferrous metal or other highly fired material are also recorded, with the higher responses noted in the survey. Areas of magnetic noise are also plotted at the edge of the survey.

6.3.5 The desk-based assessment mentions a system of roads linking Keyingham and Sunk Island, believed to have existed in the general area of Field 3 (ibid., Appendix 2), however the survey has not identified any potential tracks or roads. The initial study indicates that the location may be inaccurate and the geophysical survey would appear to support this hypothesis.

6.4 Field 4 (Figures 11 – 13, anomalies in square brackets are shown on Figure 13)

6.4.1 Immediately noticeable and dominating the dataset are three intense magnetic linear anomalies [15], [17] and [18] whose magnetic strength swamps an area of around 10 metres either side of them. These anomalies are likely, given their strength which is in access of 3000 nT/m, to be the
response to a substantial buried service, or possibly former ditches which have been filled with magnetically enhanced material.

6.4.2 Linear anomaly [15] is a former boundary as shown on the 19th and 20th century mapping of the site, including the 1822 enclosure map (ibid., Appendix 1). As mentioned above (See Section 6.4.1) it has provided a particularly high magnetic response suggesting the boundary has probably been backfilled with highly magnetic material.

6.4.3 The ephemeral response for anomaly [16] shows its make up is similar to the surrounding alluvial soil, and although it is also shown on the early mapping (ibid., Appendix 1), its signature is significantly different to the former boundary [15]. The 1855 map shows the boundary was probably a recently built trackway (it does not show on the 1850 Tithe Map), which may explain its slight magnetic variation, especially if the track was not metalled. The post-1855 maps show the track may have reverted to a boundary by the end of the 19th century, perhaps a hedge that has since been removed.

6.4.4 Both anomalies [17] and [18] are shown on the 19th and 20th century mapping as former channels that first appear on the 1855 Ordnance Survey map (ibid., Appendix 1). At some point after the 1956 Ordnance Survey map was compiled the former watercourses appear to have been backfilled with highly magnetic material.

6.4.5 Within the area enclosed by [17] and [18] an ephemeral series of positive magnetic linear anomalies running east to west are likely to represent land drains.

6.4.6 Field 4 appears to be much less magnetically ‘noisy’ than the other three fields investigated, although some strong and weak dipolar responses have still been recorded scattered randomly across the survey area. A single area of magnetic noise adjacent to Cherry Cobb Sands Road has been identified; at the point the probable track [16] intercepts the road. This may reflect ferrous or other highly fired detritus which tends to build up in these areas.

7.0 Discussion

7.1 The site has delivered relatively few faint and tentative anomalies, with the stronger magnetic responses the result of ferrous or highly fired detritus and field drainage. This is not unexpected as alluvial soils usually have a low magnetic susceptibility, resulting in limited variation within the dataset (See Section 5.0.2 above).

7.2 Field 1 has produced a general trend of land drainage running north-west to south-east, broadly parallel with the south-western boundary to the site. A probable former channel was also noted, [1], along with an area of magnetic disturbance, [2] that correlates with structures shown on 19th century mapping. A further building, possibly a dock decoy, was possibly identified as anomaly [3]. Scattered throughout the field were ‘spikes’ in the data that probably reflect ferrous material within the ploughsoil, and several areas of magnetic noise were also noted.

7.3 The survey within Field 2 has proved particularly successful, with former field boundaries shown on the 19th and 20th century mapping represented by anomalies [4] – [6]. Curiously, former boundaries [5] and [6] resemble services, however the most likely explanation is that the ditched boundaries have been backfilled with ferrous or highly fired material, perhaps associated with modern landfilling that is known to have occurred on the site (Peter Cox pers. comm.). In addition, a number of amorphous and sinuous linears are present in the data, anomalies [7] – [9], and these are likely to reflect former channels, of which [7] is shown on the early mapping, including the 1850 tithe and apportionment map. As with Field 1, a number of anomalies are present indicating probable ferrous litter in the ploughsoil.
7.4 Field 3 contained a number of curvilinear anomalies, [10] – [14], identified as probable former channels, with [10] and [11] correlating with watercourses shown on the 1892 Ordnance Survey mapping onwards. A large open channel running north from the south corner of the field was an existing drain on the 1850 Tithe Map. As with previous fields, there was evidence of near surface ferrous litter or highly fired material.

7.5 The fourth field contains several linear anomalies with highly magnetic signatures, [15], [17] and [18]. Of these, anomalies [17] and [18] are former channels shown on the 1855 and later Ordnance Survey maps, and [15] is a field boundary that appears on the 1850 Tithe Map. The strength of the magnetic signatures is surprisingly high, and indicates that they have been backfilled with magnetically-enhanced material in the past 55 years (according to map evidence). This backfilling may be associated with the modern landfilling that is known to have occurred on the site. The faint linear anomaly [16] running perpendicular to boundary [15] appears to be a former track according to the 1855 Ordnance Survey map, possibly becoming a field boundary by 1892. The limited magnetic response for the anomaly in the data would suggest that this potential track was probably not metalled. Overall the field showed only limited evidence of ferrous and highly fired material in the ploughsoil, which was in contrast to Fields 1 – 3.

8.0 Conclusions

8.1 The proposed development area was subject to repeated tidal inundations and changes in the coastline until it was formalised by the development of a sea bank around 1799 (AC Archaeology 2010). This coastal flooding would have deposited large quantities of silt over the earlier ground surface prior to the formation of the sea bank. The area was subsequently developed as an artificial warpland landscape, and in this context the survey results correlate particularly well with the early mapping shown in the previous desk-based assessment, with many anomalies relating to mapped creeks, channels and boundaries (ibid.). The lack of any anomalies that pre-date this landscape indicates that either the area was uninhabited prior to the deliberate flooding to improve the farmland or more likely, earlier deposits may be encountered at depth beneath the alluvial cover.

8.2 There was no evidence for spreads of modern landfill across the fields; however several former field divisions and channels had surprisingly high magnetic signatures. It is possible therefore that these have been backfilled recently as part of the landfill activities.

9.0 Effectiveness of Methodology

9.1 The non-intrusive evaluation methodology employed was appropriate to the scale and nature of the site. Magnetometry surveying was the prospection technique best suited to the identification of archaeological remains. Other techniques would have required justification and may have proved too time consuming or cost-prohibitive.

10.0 Acknowledgements

10.1 Allen Archaeology Limited would like to thank AC Archaeology and their client Able UK Ltd for this commission.
11.0 References

Figure 1: Site location at scale 1:25,000, with proposed development area outlined in blue and the surveyed fields outlined in red.

© Crown Copyright 2006. All rights reserved. Licence Number 100047330
Figure 2: Field 1 processed linear greyscale plot at scale 1:2,500
Figure 3: Field 1 trace plot at scale 1:2,500
Figure 4: Field 1 simplified graphic interpretation at scale 1:2,500

- General trend of land drainage
- Probable former channel
- Areas of magnetic noise
- Examples* of large dipolar responses
 (*weaker responses omitted for clarity)
Figure 5: Field 2 processed linear greyscale plot at scale 1:2,500
Figure 6: Field 2 trace plot at scale 1:2,500
Figure 7: Field 2 simplified graphic Interpretation at scale 1:2,500

- Former boundary
- Former channel
- Areas of magnetic noise
- Examples* of large dipolar responses (*weaker responses omitted for clarity)
Figure 8: Field 3 processed linear greyscale plot at scale 1:2,500
Figure 9: Field 3 trace plot at scale 1:2,500
Figure 10: Field 3 simplified graphic interpretation at scale 1:2,500

Probable former channels
Areas of magnetic noise
Examples of large* dipolar responses
(*weaker responses omitted for clarity)
Figure 11: Field 4 processed linear greyscale plot at scale 1:2,500
Figure 12: Field 4 trace plot at scale 1:2,500
Figure 13: Field 4 simplified graphic interpretation at scale 1:2,500
Figure 14: Processed linear greyscale plots of Fields 1 to 4 in real space at scale 1:5000
(Base mapping provided by AC Archaeology)
Figure 15: Graphic interpretation of data from Fields 1 to 4 in real space at scale 1:5000

Blue linears are probable former channels, green linears are possible field boundaries, and the yellow circles are examples of ferrous or highly fired material (mostly ferrous litter in the ploughsoil) (base mapping provided by AC Archaeology)

© Crown Copyright 2006. All rights reserved. Licence Number 100047330