

Lower Thames Crossing

6.3 Environmental Statement Appendices Appendix 14.2 – Water Features Survey Factual Report (2 of 2)

APFP Regulation 5(2)(a)

Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009

Volume 6

DATE: October 2022

Planning Inspectorate Scheme Ref: TR010032 Application Document Ref: TR010032/APP/6.3

VERSION: 1.0

Lower Thames Crossing

Appendix 14.2 – Water Features Survey Factual Report

List of contents

Page number

1	Introd	duction	1						
	1.1	Objectives	1						
	1.2	Scope	1						
2	Wate	r Features Survey site work and desk study	3						
3	Photo	ographs	4						
	3.2	South of the River Thames	5						
	3.3	Filborough Marshes	11						
	3.4	North of the River Thames	13						
4	Mano	r Farm, North Ockendon	16						
5	Filbo	rough and Shorne Marshes	17						
	5.1	Introduction	17						
	5.2	Habitats and condition	17						
	5.3	Surface water features	17						
	5.4	Surface water level management	18						
	5.5	Shorne Marshes RSPB reserve	19						
	5.6	Filborough Marshes	19						
6	Wate	r quality monitoring	21						
	6.2	In situ monitoring	23						
	6.3	Water quality summary	24						
	6.4	Surveys of the Western Ditch	25						
Ann	ex A V	Vater features tables	29						
Ann	ex B V	Vater features location plans	50						
Ann	ex C S	Surface Water Management Plan – RSPB Shorne Marshes	86						
Ann	ex D V	Vater Quality Field Monitoring Results	87						
Annex E Photographs from Manor Farm Site Walkover, May 202190									
Annex F Manor Farm Drainage Network Survey Reports									
Ann	Annex G Western Ditch water quality data from laboratory analysis112								

List of tables

Page number

Table 6.1 Surface water features water quality monitoring	21
Table 6.2 Western Ditch field water quality monitoring results	26
Table 6.3 Summary of Western Ditch laboratory analysis results for sites 5 to 8	27

List of plates

Page number

Plate 5.1 Main rivers within and near the Ramsar (Environment Agency, 2015)	18
Plate 6.1 Water quality monitoring locations	24
Plate 6.2 Western Ditch sampling locations	25

Annex C Surface Water Management Plan – RSPB Shorne Marshes

Annex D Water Quality Field Monitoring Results

D.1.1 The plots below present the water quality field monitoring results for sample sites A to K, recorded during Project ground investigations, excluding data for sites F and I, where there were insufficient water depths.

Surface Water Temperature

PW03001 - Redox Potential

89

Annex E Photographs from Manor Farm Site Walkover, May 2021

Photo ref. 1 – Direction north. Pea Lane and M25 – adjacent headwall. Pipework beneath manhole cover related to irrigation system that takes water by gravity to a reservoir in the west and can also act in reverse to pump water back east to supply abstraction points to the east of the M25.

Photo ref. 2 – Direction north-east. Irrigation reservoir. Pipe shown is main pipe that supplies the irrigation system and goes out to the raft structure in the reservoir shown in Photo 3.

92

Photo ref. 8 – Direction west. Moat (south pond from east). Project ground investigation temporary accommodation shown in background of photo. Temporary Project standpipe and water level data logger in water.

Photo ref. 9 - Direction west. Moat (south pond at western end).

Photo ref. 11 – Moat (south pond at western end).

background.

possibly a baptism channel.

before pond edge - evidence of channel being decorative only.

Annex F Manor Farm Drainage Network Survey Reports

LOWER THAMES CROSSING Ditch survey –

an in the and the second

metal-

Ditch Survey

- ponds and nearby trenches were visited on:
 - 13 October,
 - 19 November
 - 16 December 2021
 - 25 January 2022
 - 24 February 2022 and
 - 22 March 2022
 - 28 April 2022
 - 24 May 2022
- A significant part of the areas ditch network was just heavily vegetated with no flow. The trenches are generally dry or some standing water is present (Figure 2 to Figure 9).
- In December 2021, there were a few spots of water with few cm depth (blue circular marks on the map) none of which appeared to have any significant measurable flow.
- Mild flow was noted in deep drain from December 2021 to April 2022 (Figure 2, Point 2). Water was seeping and
 disappearing within 10 meters (to west). After April 2022, this position was not accessible due to heavy vegetation.
 Stagnant water noted in the main ditch, just near the fishing pond (same level with pond, Point 4) only on December 2021.
- The ditch leading towards the M25 from the east had several spots with standing water (Points 5 and 6), during winter and spring. After April 2022 this ditch was completely dry.
- N-S ditch on the North of fishing pond has some stagnant water at base, but no flow (Point 8).

Ditch Survey

- Figure 1 shows the locations visited.
- Figure 2 provides details about the southern ditch.
- Figure 3 provides details about northern ditch and downstream part on the west of M25.
- Figure 4 provides the details from the visit on 16 December, mainly on M25 culvert and Deep Drain on the East.
- Figure 5 provides the details from the visit on 25 January 2022, for the selected positions. M25 Culvert was not accessible at the time of survey (access license was not agreed with the landowner). The downstream part of the culvert was accessed from footpath and no flow was recorded.
- Figure 6, Figure 7 and Figure 8 provides the details from the visits completed on 24 February, 22 March and 28 April respectively. Mild flow was noted on the northeastern ditch. No flow was recorded on any other ditches.
- On 28 April, mild flow noted (0.013 l/s) on the ditch between two ponds (orange pipes).
- On 24 May, mild flow noted (0.012 l/s) on the ditch between two ponds (orange pipes). One week later on 31 May 2022, ther was no flow (only seepage under the pipes).

Visited Locations

Ditch

Positions where ponding occurs / depressions

Figure 1. Visited Locations

Figure 2. Southern Ditch

Figure 3. Northern Ditch and W of M25

patch of stagnant water at base

19 November 2021

Figure 4. M25 Culvert and Deep Drain (East)

Figure 5. 25 January 2022 Visit

24 February 2022

Figure 8. 28 April 2022Visit

28 April 2022

Figure 9.

Second visit on 31 May 2022, no flow, only seepage underneath the pipes 31 May 2022

24 May 2022 Visit

Annex G Western Ditch water quality data from laboratory analysis

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

ARCADIS ECHQ 34 York Way London N1 9AB

CERTIFICATE OF ANALYSIS

Date of report Generation Customer: Sample Delivery Group (SDG): Your Reference: Location Report No: Order Number: 02 December 2021 ARCADIS 211126-43 LTC Gravesend, Kent 624001

We received 8 samples on Friday November 26, 2021 and 8 of these samples were scheduled for analysis which was completed on Thursday December 02, 2021. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By

Operations Manager

CERTIFICATE OF ANALYSIS

SDG: 211126-43 Client Ref.: LTC Report Number: 624001 Location: Gravesend, Kent Superseded Report

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
25408173	1			24/11/2021
25408174	2			24/11/2021
25408176	3			24/11/2021
25408178	4			24/11/2021
25408179	5			24/11/2021
25408180	6			24/11/2021
25408182	7			24/11/2021
25408183	8			24/11/2021

Only received samples which have had analysis scheduled will be shown on the following pages.

.

CERTIFICATE OF ANALYSIS

Validated

SDG Client Ref.	: 211126-43 : LTC			Rep	ort N Lo	umbe catio	r: 62 n: Gi	24001 raves	end, k	Kent			Super	sedeo	l Repo	rt					
Results Legend X Test N No Determination	Lab Sample No(s)				25408173			25408174			25408176			25408178			25408179			25408180	25408182
	Custome Sample Refer	r rence			1			2			з			4			σ			6	7
Sample Types - S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	nce																			
PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m)																			
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Containe	r	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)
	Sample Ty	pe	Ч,	UN L	UNL	UNL	UNL	UNL	UNL	UN L	UNL	UNL	С <mark>Х</mark>	UN	UN	С <u>Ч</u>	UN	UN L	Г Г	UN L	UN L
Ammoniacal Nitrogen	All	NDPs: 0 Tests: 8			x			x			x			x			x			x	
BOD True Total	All	NDPs: 0 Tests: 8	x			x			x			x			x			x			x
pH Value	All	NDPs: 0 Tests: 8		x			x			x			x			x			x		
Phosphate by Kone (w)	All	NDPs: 0 Tests: 8		x			x			x			x			x			x		
Suspended Solids	All	NDPs: 0 Tests: 8		x			x			x			x			x			x		
Turbidity in waters	All	NDPs: 0 Tests: 8		x			x			x			x			x			x		

	25408182			25408183
	7			8
500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244
UNL	UNL	UNL	UNL	UNL
	x			x
		x		-
x			x	
x			x	
x			x	
x			x	

SDG: 211126-43 Client Ref.: LTC

CERTIFICATE OF ANALYSIS

FICATE OF	ANALISIS		
Report Number:	624001	Superseded Report	
Location:	Gravesend, Kent		

Results Legend IS01782 accredited. M mCRTR 3 accredited. Aqueous / settled cample. Aqueous / settled cample. tot.unfit Total / unf kered sample. tot.unfit Total / unf kered sample. Subcontrasted -refer to subcontractor report for accreditation stature. W recovery of the surrogate standard to oheck the efficiency of the method. The results of individual compounds within samples aren's corrected for the recovery of the corrected for the recovery of the corrected for the recovery of the corrected for the recovery of evaluation (example). (F) Trigger breach confirmed (449)@ Sample deviation (see appendix)	8	Cus	Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref Lab Sample No.(s) AGS Reference	1 Unspecified Liquid (UNL) 24/11/2021 08:50:00 26/11/2021 21/126-43 25408173	2 Unspecified Liquid (UNL) 24/11/2021 09:30:00 26/11/2021 21/1126-43 25408174	3 Unspecified Liquid (UNL) 24/11/2021 10:30:00 26/11/2021 211126-43 25408176	4 Unspecified Liquid (UNL) 24/11/2021 11:00:00 26/11/2021 2111/26:43 254081/78	5 Unspecified Liquid (UNL) 24/11/2021 12:00:00 26/11/2021 211126-43 25408179	6 Unspecified Liquid (UNL) 24/1/2021 12:30:00 26/11/2021 211126-43 25408180
Component	LOD/U	Inits	Method						
Suspended solids, Total	<2000) hð\l	TM022	148000	56700	5300	939000	93200	28900
BOD, unfiltered	<1 n	ng/l	TM045	<1	<1	<1	\$	5.98	5.14
Ammoniacal Nitrogen as N	<200	µg/l	TM099	234	<200	<200	<200	731	<200
Ammoniacal Nitrogen as NH3	<200	µg/l	TM099	284	<200	<200	<200	888	<200
Free Ammonia as N	200	µg/l	TM099	200	200	200	200	200	200
Phosphate (Ortho as PO4)	<50	µg/l	TM184	628	1460	486	69	91	189
Turbidity	<0.1	ntu	TM195	65.8	28.1	3 36	380	39.9	11
рН	<1 pH	Units	TM256	7.95	7 98	8.11	7.49	7.53	7.53
		-							

Turbidity

pН

SDG: 211126-43

CERTIFICATE OF ANALYSIS Report Number: 624001

Superseded Report

S) _____Client Ref.: LTC Location: Gravesend, Kent
 Results Legend

 IB017025 accredited.

 W mCERTS accredited.

 aq.acoust / settled sample.

 disc.sft Discoved filtered sample.

 usc.strip Total / unif terred sample.

 sccreditation status.

 Subcontrasted -refer to subcontrastor report for accreditation status.

 Subcontrast - refer to subcontrastor report for accreditation status.

 Subcontrast - refer to subcontrastor report for accreditation status.

 Subcontrast - refer to subcontrastor report for accreditation status.

 Subcontrast - refer to subcontrastor report for accreditation status.

 Subcontrast - refer to subcontrastor report for accreditation status.
 Results Legend Customer Sample Ref 7 8 Depth (m) Sample Type Date Sampled Sample Time Date Received Unspecified Liquid (UNL) 24/11/2021 Unspecified Liquid (UNL) 24/11/2021 13:30:00 13:45:00 26/11/2021 26/11/2021 211126-43 SDG Re 211126-43 (F) Trigger brach confirmed 1445@ Sample deviation (see appendix) Component Lab Sample No.(s) AGS Reference 25408182 25408183 LOD/Units Method uspended solids, Total <2000 µg/l TM022 252000 5500 BOD, unfiltered <1 mg/l TM045 15.2 3 34 Ammoniacal Nitrogen as N <200 µg/l TM099 <200 <200 Ammoniacal Nitrogen as NH3 <200 µg/l TM099 <200 <200 Free Ammonia as N TM099 200 200 200 µg/l Phosphate (Ortho as PO4) TM184 <50 µg/l <50 <50 <0.1 ntu TM195 46.8 1.79 ٠ <1 pH Units TM256 7.69 7.75

Report Number: 624001 Location: Gravesend, Kent

Superseded Report

Validated

Superseded R

Table of Results - Appendix

Method No	Reference	Description
TM022	Method 2540D, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part120 1981;BS EN 872	Determination of total suspended solids in waters
TM045	MEWAM BOD5 2nd Ed HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999; SCA Blue Book 130	Determination of BOD5 (ATU) Filtered by Oxygen Meter on liquids
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM184	EPA Methods 325.1 & 325 2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM195	Colour and Turbidity of water. Methods for the Examination of Waters and Associated Materials. HMSO, 1981, ISBN 0 11 751955 3.	Determination of Turbidity in Waters & Associated Matrices
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

Report Number: 624001 Location: Gravesend, Kent Superseded Report

Test Completion Dates

Lab Sample No(s)	25408173	25408174	25408176	25408178	25408179	25408180	25408182	25408183
Customer Sample Ref.	1	2	3	4	5	6	7	8
AGS Ref.								
Depth								
Туре	Unspecified Liq							
Ammoniacal Nitrogen	01-Dec-2021							
BOD True Total	02-Dec-2021	02-Dec-2021	01-Dec-2021	01-Dec-2021	02-Dec-2021	02-Dec-2021	01-Dec-2021	01-Dec-2021
pH Value	29-Nov-2021	29-Nov-2021	29-Nov-2021	30-Nov-2021	30-Nov-2021	29-Nov-2021	29-Nov-2021	29-Nov-2021
Phosphate by Kone (w)	29-Nov-2021							
Suspended Solids	30 Nov 2021	28 Nov 2021	28 Nov 2021	28 Nov 2021	28 Nov 2021	30 Nov 2021	29 Nov 2021	28 Nov 2021
Turbidity in waters	26-Nov-2021	29-Nov-2021	29-Nov-2021	29-Nov-2021	29-Nov-2021	26-Nov-2021	26-Nov-2021	29-Nov-2021

Report Number: 624001 Location: Gravesend, Kent Superseded Report

ASSOCIATED AQC DATA

Ammoniacal Nitrogen

Component	Method Code	QC 2583
Ammoniacal Nitrogen as N	TM099	97.6 91.04 : 105.68

BOD True Total

Component	Method Code	QC 2590	QC 2515
BOD	TM045	97.58	95.17
		84.16 : 126.71	72.19 : 121.74

pH Value

Component	Method Code	QC 2577
pН	TM256	100 4
		99.33 : 102.54

Phosphate by Kone (w)

Component	Method Code	QC 2574	QC 2582
Phosphate (Ortho as PO4)	TM184	100.4 96.40 : 109.60	100.8 96.40 : 109.60

Suspended Solids

Component	Method Code	QC 2500	QC 2512	QC 2515
Total Suspended Solids	TM022	98.41 93.62 : 102.78	100.53 93.62 : 102.78	99.47 93.62 : 102.78

Turbidity in waters

Component	Method Code	QC 2574	QC 2531
Turbidity	TM195	95.25 83.75 : 121.25	100.5 83.75 : 121 25

Superseded Report

SDG: 211126-43 Client Ref.: LTC

Report Number: 624001

Client Ref.: LTC Location: Gravesend, Kent
The above information details the reference name of the analytical quality control sample (AQC) that has been run with the

samples contained in this report for the different methods of analysis.

The figure detailed is the percentage recovery result for the AQC.

The subscript numbers below are the percentage recovery lower control limit (LCL) and the upper control limit (UCL). The percentage recovery result for the AQC should be between these limits to be statistically in control.

211126 43	Client Reference:	LTC	Report Number:	624001
n: Gravesend, Kent	Order Number:	5220-2-0	Superseded Report	4 5 2 M 2 M 4 S A
1	211126 43 Gravesend, Kent	211126 43 Client Reference: m: Gravesend, Kent Order Number:	211126 43 Client Reference: LTC n: Gravesend, Kent Order Number:	211126 43 Client Reference: LTC Report Number: in: Gravesend, Kent Order Number: Superseded Report

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35° C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6. NDP - No determination possible due to insufficient/unsuitable sample.

7. Results relate only to the items tested.

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

9. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury.

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Aslastce Type	Common Name
Chrysoile	White Asbestos
Amosite	BrownAsbestos
Cipicidolite	Blue Asbestos
Fibrous Acinolite	
Rib io us Anhophyll ite	¥ ()
Fibrous Tremolite	÷

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

ARCADIS ECHQ 34 York Way London N1 9AB

CERTIFICATE OF ANALYSIS

Date of report Generation Customer: Sample Delivery Group (SDG): Your Reference: Location Report No: Order Number: 11 January 2022 ARCADIS 211218-66 LTC Gravesend, Kent 628981

We received 8 samples on Saturday December 18, 2021 and 8 of these samples were scheduled for analysis which was completed on Tuesday January 11, 2022. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

By

Operations Manager

SDG: 211218-66 Client Ref.: LTC

Validated

Superseded Report

Received Sample Overview

Location: Gravesend, Kent

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
25560917	LTC 1			
25560918	LTC 2			
25560919	LTC 3			
25560920	LTC 4			
25560921	LTC 5			
25560922	LTC 6			
25560924	LTC 7			
25560925	LTC 8			

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG: 211218-66

CERTIFICATE OF ANALYSIS

ALS SDG: Client Ref.:	211218-66 LTC	218-66				umbe catio	r: 62 n: G	28981 raves	end, k	Kent			Super	sedeo	i Repo	ort					
Results Legend X Test N No Determination	Lab Sample N	lo(s)			25560917			25560918			25560919			25560920			25560921			25560922	25560924
Possible	Custome Sample Refer	r ence			LTC 1			LTC 2			LTC 3			LTC 4			LTC 5			LTC 6	LTC 7
Sample Types - S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	nce													-						
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m)																			
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Containe	r	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)
	Sample Ty	pe	UN L	UNL	UNL	UNL	UNL	UNL	UNL	UNL	UNL.	UNL	UNL	UNL	UNL	UNL	UNL	P	UN L	UNL	UNL
Ammoniacal Nitrogen	All	NDPs: 0 Tests: 8	_		x			x			x			x			x			x	
BOD True Total	All	NDPs: 0 Tests: 8	x			x			x			x			x			x			x
pH Value	All	NDPs: 0 Tests: 8		x			x			x			x			x			x		
Phosphate by Kone (w)	All	NDPs: 0 Tests: 8		x			x			x			x			x			x		
Suspended Solids	All	NDPs: 0 Tests: 8		x			x			x			x			x			x		
Turbidity in waters	All	NDPs: 0 Tests: 8		x			x			x			x			x			x		

	25560924			25560925
	LTC 7			LTC 8
500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244
UNL	UNL	UNL	UNL	UNL
	x			x
_		x		
x			x	
x			X	
x			x	
x			x	

SDG: 211218-66 Client Ref.: LTC

CERTIFICATE OF ANALYSIS

 Report Number:
 628981
 Superseded Report

 Location:
 Gravesend, Kent

Results Legend		Cu	stomer Sample Ref	LTC 4	170.2	170.3	1704	170.5	170.6
# ISO17025 accredited.			acomor campio ren.	LIGT	LIGZ	LICS	LIC4	LICS	LICO
aq Aqueous / settled sample.									
diss filt Dissolved / filtered sample.			Depth (m)						
tot.unfilt Total / unfiltered sample. Subcontracted - refer to subcontractor report for			Sample Type	Unspecified Liquid (UNL)					
accreditation status.			Date Sampled	-	-	-	-	-	-
** % recovery of the surrogate standard to check the efficiency of the method. The results of individual			Date Received	18/12/2021	18/12/2021	18/12/2021	18/12/2021	18/12/2021	18/12/2021
compounds within samples aren't corrected for the			SDG Ref	211218-66	211218-66	211218-66	211218-66	211218-66	211218-66
(F) Trigger breach confirmed			Lab Sample No.(s)	25560917	25560918	25560919	25560920	25560921	25560922
1-4+§@ Sample deviation (see appendix)			AGS Reference				100000		1000000
Component	LOD/L	Jnits	Method						
Suspended solids, Total	<2000) µg/l	TM022	274000	33600	25100	75900	77900	19200
				ş	ş	§	ş	ş	§
BOD, unfiltered	<1 n	na/l	TM045	3.28	1.86	<1	1.98	6.09	5.66
				3	3	3	3	8	3
Ammenianal Nitranan an N	<000		T1/000	<000	3	<000	<000	3	<000
Ammoniacai Nitrogen as N	<200	µg/I	1M099	<200	<200	<200	<200	<200	<200
				ş	§	ş	§	§	ş
Free Ammonia as N	<200	µg/l	TM099	<200	<200	<200	<200	<200	<200
				ş	ş	ş	ş	ş	6
Phosphate (Ortho as PO4)	50	ual	TM184	592	425	449	160	142	112
		P.9"		3	8	3	3	8	3
				9	9	3	3	8	3
lurbidity	<0.1	ntu	IM195	152	18.8	15 5	15 9	10.6	4./5
				ş	§	ş	ş	§	ş
pH	<1 pH	Units	TM256	7.85	7 98	7 97	7.74	7.75	7.93
				8	8	8	8	8	8
				3	3				
		-							
					d				
		-							
		-							

SDG: 211218-66 Client Ref.: LTC

CERTIFICATE OF ANALYSIS

Validated

Report Number: 628981 Location: Gravesend, Kent Superseded Report

a 🔁 ana atau panana a	1					_		 	
Results Legend SIS017025 accredited. MI mCERTS accredited ted. aq Aqueous / settled sample.		Cu	stomer Sample Ref.	LTC 7	LTC 8				
diss.filt Dissolved / filtered sample. tot.unfilt Total / unf Itered sample. * Subcontracted - refer to subcontractor report for			Depth (m) Sample Type	Unspecified Liquid (UNL)	Unspecified Liquid (UN	IL)			
accreditation status. * % recovery of the surrogate standard to check the efficiency of the method. The results of individual			Sample Time Date Received	18/12/2021	18/12/2021				
compounds within samples aren't corrected for the recovery (F) Trigger breach confirmed	•1		SDG Ref Lab Sample No.(s)	211218-66 25560924	211218-66 25560925				
1-4+§@ Sample deviation (see appendix)	100/	Inita	AGS Reference						
Suspended solids, Total	<2000) µg/l	TM022	14300	68800	•			
BOD, unfiltered	<1 n	ng/l	TM045	6.68	1 92	8			
Ammoniacal Nitrogen as N	<200	µg/l	TM099	<u>ح</u> 200	<200	8		 	
Free Ammonia as N	<200	µg/l	TM099	<200 8	<200	8		 	
Phosphate (Ortho as PO4)	50	µg/l	TM184	50 50	80	3		 	
Turbidity	<0.1	ntu	TM195	4.69	2.47	8		 	
pH	<1 pH	Units	TM256	7.96	7.79	5		 	
				3		3			
							-		

Report Number: 628981 Location: Gravesend, Kent Superseded Report

Validated

Table of Results - Appendix

Method No	Reference	Description
TM022	Method 2540D, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part120 1981;BS EN 872	Determination of total suspended solids in waters
TM045	MEWAM BOD5 2nd Ed HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999; SCA Blue Book 130	Determination of BOD5 (ATU) Filtered by Oxygen Meter on liquids
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM184	EPA Methods 325.1 & 325 2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM195	Colour and Turbidity of water. Methods for the Examination of Waters and Associated Materials. HMSO, 1981, ISBN 0 11 751955 3.	Determination of Turbidity in Waters & Associated Matrices
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4, Standard Methods for the examination of waters and wastewaters 20th Edition, PHA, Washington DC, USA. ISBN 0-87553-235-7 and The Determination of Methods in the under the MOO 1081. ISBN 011 751601 5	Determination of pH, EC, TDS and Alkalinity in Aqueous samples

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

Report Number: 628981 Location: Gravesend, Kent Superseded Report

Test Completion Dates

Lab Sample No(s)	25560917	25560918	25560919	25560920	25560921	25560922	25560924	25560925
Customer Sample Ref.	LTC 1	LTC 2	LTC 3	LTC 4	LTC 5	LTC 6	LTC 7	LTC 8
AGS Ref. Depth								
Туре	Unspecified Liq							
Ammoniacal Nitrogen	24-Dec-2021							
BOD True Total	11-Jan-2022	05-Jan-2022	04-Jan-2022	04-Jan-2022	11-Jan-2022	04-Jan-2022	05-Jan-2022	05-Jan-2022
pH Value	24-Dec-2021							
Phosphate by Kone (w)	24-Dec-2021	24-Dec-2021	24-Dec-2021	24-Dec-2021	24-Dec-2021	24-Dec-2021	23-Dec-2021	23-Dec-2021
Suspended Solids	24 Dec 2021	23 Dec 2021	23 Dec 2021					
Turbidity in waters	22-Dec-2021	22-Dec-2021	22-Dec-2021	22-Dec-2021	22-Dec-2021	22-Dec-2021	23-Dec-2021	23-Dec-2021

Report Number: 628981 Location: Gravesend, Kent Superseded Report

Validated

ASSOCIATED AQC DATA

BOD True Total

Component	Method Code	QC 2549	QC 2545	QC 2523	QC 2525
BOD	TM045	100.0 72.19 : 121.74	73.91 72.19 : 121.74	80.68 72.19 : 121.74	103.86 72.19 : 121.74

pH Value

Component	Method Code	QC 2544	QC 2550
pН	TM256	101.07	101.34
		99.33 : 102.54	99.33 : 102 54

Phosphate by Kone (w)

Component	Method Code	QC 2511	QC 2518	QC 2550
Phosphate (Ortho as PO4)	TM184	100 4 95.60 : 107.60	99 6 95.60 : 107.60	100 0 95.60 : 107.60

Suspended Solids

Component	Method Code	QC 2509	QC 2580	QC 2591
Total Suspended Solids	TM022	101.06 93.62 : 102.78	97.61 93.62 : 102.78	98.94 93.62 : 102.78

Turbidity in waters			
Component	Method Code	QC 2596	QC 2500
Turbidity	TM195	103.0 83.75 : 121.25	99.5 83.75 : 121 25

The above information details the reference name of the analytical quality control sample (AQC) that has been run with the samples contained in this report for the different methods of analysis.

The figure detailed is the percentage recovery result for the AQC.

The subscript numbers below are the percentage recovery lower control limit (LCL) and the upper control limit (UCL). The percentage recovery result for the AQC should be between these limits to be statistically in control.

	SDG:	211218 66	Client Reference:	LTC	Report Number:	628981
(ALS)	Location:	Gravesend, Kent	Order Number:		Superseded Report	

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6. NDP - No determination possible due to insufficient/unsuitable sample.

7. Results relate only to the items tested.

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

9. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury.

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Aslæstæ Type	Common Name
Chrysoile	White Asbestos
Amosite	BrownAsbestos
Cipicidolite	Blue Asbestos
Fibrous Acimolite	-
Roous Anhophylite	×
Fibrous Tremolite	÷

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

ARCADIS ECHQ 34 York Way London N1 9AB

CERTIFICATE OF ANALYSIS

Date of report Generation Customer: Sample Delivery Group (SDG): Your Reference: Location Report No: Order Number: 29 January 2022 ARCADIS 220121-52 LTC Gravesend, Kent 631344

We received 7 samples on Friday January 21, 2022 and 7 of these samples were scheduled for analysis which was completed on Saturday January 29, 2022. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By

Operations Manager

25680332

Validated

Report Number: 631344 Location: Gravesend, Kent Superseded Report

Received Sample Overview Customer Sample Ref. LTC 2 AGS Ref. Lab Sample No(s) Depth (m) Sampled Date 25680326 LTC 3 25680327 LTC 4 25680328 LTC 5 25680329 LTC 6 25680330 LTC 7 25680331

Only received samples which have had analysis scheduled will be shown on the following pages.

LTC 8

DO: 000404 50

CERTIFICATE OF ANALYSIS

SDG: Client Ref.:	220121-52 LTC			Rep	Lo	umbe catio	r: 63 n: Gi	31344 raves	end, k	Kent			Super	sedec	i Repo	ort					
Results Legend X Test N No Determination	Lab Sample N	lo(s)			25680326			25680327			25680328			25680329			25680330			25680331	25680332
	Custome Sample Refer	r ence			LTC 2			LTC 3			LTC 4			LTC 5			LTC 6			LTC 7	LTC 8
Sample Types - S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate PL - Prepared Leachate	AGS Refere	nce																			
PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m)																			
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Containe	r	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)
	Sample Ty	pe	Ч,	UN L	UNL	UNL	UNL	UNL	UNL	UN L	UNL	PL L	С <mark>Х</mark>	UN L	Г Ч	UN-	UN L	P.	Г Ч	Ч,	P
Ammoniacal Nitrogen	All	NDPs: 0 Tests: 7	_		x			x			x	_		x			x			x	
BOD True Total	All	NDPs: 0 Tests: 7	x			x			x			x			x			x			x
pH Value	All	NDPs: 0 Tests: 7		x			x			x			x			x			x		
Phosphate by Kone (w)	All	NDPs: 0 Tests: 7		x			x			x			x			x			x		
Suspended Solids	All	NDPs: 0 Tests: 7		x			x			x			x			x			x		
Turbidity in waters	All	NDPs: 0 Tests: 7		x			x			x			x			x			x		

	25680332
	LTC 8
500ml Plastic (ALE208)	H2SO4 (ALE244
UNL	S
	x
1000	
X	
x	
x	
x	

SDG: 220121-52 Client Ref.: LTC

CERTIFICATE OF ANALYSIS Report Number: 631344

Location: Gravesend, Kent

Superseded Report

\$ ISO17025 accredited.	1	Cu	stomer oampie ker.	LTC 2	LTC 3		LTC 4	LTC 5	LTC 6	LTC 7
mCERIS accred ted. aq Aqueous / settled sample.			Death (a)							
diss hit Dissolved / hitered sample. tot.unfilt Total / unfiltered sample.			Sample Type	Unspecified Liquid (UNL)	Unspecified Liquid (U	INL)	Unspecified Liquid (UNL)	Unspecified Liquid (UNL)	Unspecified Liquid (UNL)	Unspecified Liquid (UNL)
Subcontracted - refer to subcontractor report for accreditation status.			Date Sampled	-	-		-	-	-	-
efficiency of the method. The results of individual			Date Received	21/01/2022	21/01/2022		21/01/2022	21/01/2022	21/01/2022	21/01/2022
compounds within samples aren't corrected for the recovery	8		SDG Ref	220121-52 25680326	220121-52 25680327		220121-52 25680328	220121-52 25680329	220121-52 25680330	220121-52 25680331
1-445@ Sample deviation (see appendix)			AGS Reference							
Component	LOD/U	Inits	Method	20800	6650	_	0050	12000	C1E0	45200
uspended solids, rotal	~2000	' µy⁄i	TIVIUZZ	20000 8	0000	8	3030	12000	6150	15200 8
OD, unfiltered	<1 m	ng/l	TM045	<1	<1		<1	4.26	29	4.4
				ş		ş	§	ş	ş	§
mmoniacal Nitrogen as N	<200	µg/l	TM099	496	<200	93	<200	<200	<200	<200
	-000		714000	§		§	§	§	§	§
mmoniacal Nitrogen as NHO	<200	hðu	10099	602	<200	8	<200 8	<200	<200 8	<200
ree Ammonia as N	200	µq/l	TM099	200	200	3	200	200	200	200
				§		§	§	§	§	§
hosphate (Ortho as PO4)	<50	µg/l	TM184	1080	533	23	120	123	92	67
	-0.4		THEOT	§	F 70	§	§	§	§	§ .
urbially	\$0.1	ntu	TM190	11.3	5.73	8	623	5.76	4.00	6.06
н	<1 pH	Units	TM256	8,19	8.12	3	7.66	8.41	8.21	8,13
	10000			ş		§	ş	ş	ş	ş
						_				
		-				-				
		_				-				
						-				
						_				
						-				
	_									
						-				
						_				
						-				
		-				-				
	-	_				_				

ALS)

SDG: 220121-52 Client Ref.: LTC

CERTIFICATE OF ANALYSIS Report Number: 631344

Location: Gravesend, Kent

Superseded Report

Validated

 Résults Legend

 3
 ISO17/025 accrefited.

 W mCERTS accrefited.
 W mCERTS accrefited.

 a Aqueous I cetted sample.
 discalifit Dissolved / filtered sample.

 discalifit Dial / und Itered sample.
 accreditation status.

 Subcontrader -refer to subcontractor report for accreditation status.
 % recovery of the surrought standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery
 Customer Sample Ref LTC 8 Depth (m) Sample Type Date Sampled Sample Time Date Received Unspecified Liquid (UNL) 21/01/2022 SDG Ref 220121-52 recovery (F) Trigger breach confirmed 1445@ Sample deviation (see appendix) Component Lab Sample No.(s) AGS Reference 25680332 LOD/Units Method ended solids, Total <2000 µg/l TM022 2950 usp § BOD, unfiltered <1 mg/l TM045 <1 § Ammoniacal Nitrogen as N TM099 <200 µg/l <200 § Ammoniacal Nitrogen as NH3 <200 µg/l TM099 <200 § Free Ammonia as N TM099 200 200 µg/l § Phosphate (Ortho as PO4) TM184 73 <50 µg/l § Turbidity <0.1 ntu TM195 1.47 § pН <1 pH Units TM256 7.88 §

SDG: 220121-52 Client Ref.: LTC

Report Number: 631344 Location: Gravesend, Kent

Superseded Report

Table of Results - Appendix

Method No	Reference	Description
TM022	Method 2540D, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part120 1981;BS EN 872	Determination of total suspended solids in waters
TM045	MEWAM BOD5 2nd Ed HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999; SCA Blue Book 130	Determination of BOD5 (ATU) Filtered by Oxygen Meter on liquids
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM184	EPA Methods 325.1 & 325 2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM195	Colour and Turbidity of water. Methods for the Examination of Waters and Associated Materials. HMSO, 1981, ISBN 0 11 751955 3.	Determination of Turbidity in Waters & Associated Matrices
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4, Standard Methods for the examination of waters and wastewaters 20th Edition, PHA, Washington DC, USA. ISBN 0-87553-235-7 and The Determination of Alkelinity and Acidity in waters HMSO. 1881. USBN 0.11 751601 5	Determination of pH, EC, TDS and Alkalinity in Aqueous samples

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

Report Number: 631344 Location: Gravesend, Kent Superseded Report

Test Completion Dates

Lab Sample No(s)	25680326	25680327	25680328	25680329	25680330	25680331	25680332
Customer Sample Ref.	LTC 2	LTC 3	LTC 4	LTC 5	LTC 6	LTC 7	LTC 8
AGS Ref.							
Depth							
Туре	Unspecified Liq						
Ammoniacal Nitrogen	27-Jan-2022	27-Jan-2022	27-Jan-2022	27-Jan-2022	28-Jan-2022	28-Jan-2022	27-Jan-2022
BOD True Total	29-Jan-2022						
pH Value	26-Jan-2022	26-Jan-2022	26-Jan-2022	26-Jan-2022	27-Jan-2022	27-Jan-2022	26-Jan-2022
Phosphate by Kone (w)	24-Jan-2022						
Suspended Solids	25 Jan 2022	24 Jan 2022					
Turbidity in waters	24-Jan-2022						

Report Number: 631344 Location: Gravesend, Kent Superseded Report

ASSOCIATED AQC DATA

Ammoniacal Nitrogen

Component	Method Code	QC 2573	QC 2588
Ammoniacal Nitrogen as N	TM099	101.2 97.60 : 105.28	100.4 97.60 : 105 28

BOD True Total

Component	Method Code	QC 2529
BOD	TM045	115.46
		78.41 : 124.93

pH Value

Component	Method Code	QC 2541	QC 2544	QC 2542	QC 2545
pН	TM256	101 87 99.33 : 102.54	102 01 99.33 : 102 54	101 6 99 33 : 102.54	101 74 99.33 : 102.54

Phosphate by Kone (w)

Component	Method Code	QC 2573	QC 2583
Phosphate (Ortho as PO4)	TM184	102.0 95.60 : 107.60	102.4 95.60 : 107.60

Suspended Solids

Component	Method Code	QC 2569	QC 2584	QC 2504
Total Suspended Solids	TM022	96.55 93.62 : 102.78	94.96 93.62 : 102.78	97.88 93.62 : 102.78

Turbidity in waters

Component	Method Code	QC 2576	QC 2599
Turbidity	TM195	92.75 83.75 : 121.25	102.5 83.75 : 121 25

Superseded Report

SDG: 220121-52 Client Ref.: LTC

CERTIFICATE OF ANALYSIS Report Number: 631344

Location: Gravesend, Kent

The above information details the reference name of the analytical quality control sample (AQC) that has been run with the samples contained in this report for the different methods of analysis.

The figure detailed is the percentage recovery result for the AQC.

The subscript numbers below are the percentage recovery lower control limit (LCL) and the upper control limit (UCL). The percentage recovery result for the AQC should be between these limits to be statistically in control.

	SDG:	220121 52	Client Reference:	LTC	Report Number:	631344
AIS	Location:	Gravesend, Kent	Order Number:	500000	Superseded Report	94.95, 279.957 (343.95)

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6. NDP - No determination possible due to insufficient/unsuitable sample.

7. Results relate only to the items tested.

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

9. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury.

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Asta stos Type	Common Name
Chrysoile	White Asbestos
Amosite	BrownAsbestos
Cio d dolite	Blue Asbestos
Fibrous Acimolite	×
Roous Anhophylite	¥
Fibrous Tremolite	÷

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700

ARCADIS ECHQ 34 York Way London N1 9AB

CERTIFICATE OF ANALYSIS

Date of report Generation Customer: Sample Delivery Group (SDG): Your Reference: Location Report No: Order Number: 11 March 2022 ARCADIS 220304-56 LTC Gravesend, Kent 637236

We received 7 samples on Friday March 04, 2022 and 7 of these samples were scheduled for analysis which was completed on Friday March 11, 2022. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By

Operations Manager

Validated

Superseded Report

Report Number: 637236 Location: Gravesend, Kent

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
25915428	LTC 2			
25915430	LTC 3			
25915431	LTC 4			
25915432	LTC 5			
25915434	LTC 6			
25915436	LTC 7			
25915437	LTC 8			

Only received samples which have had analysis scheduled will be shown on the following pages.

SDC: 220304 56

CERTIFICATE OF ANALYSIS

SDG: Client Ref.:	220304-56 LTC			Rep	Lo	umbe catio	r: 63 n: Gi	37236 raves	end, k	Kent			Super	rsedeo	d Repo	ort					
Results Legend X Test N No Determination	Lab Sample I	No(s)			25915428			25915430			25915431			25915432			25915434			25915436	25915437
Sample Types -	Customer Sample Reference				LTC 2			LTC 3			LTC 4			LTC 5			LTC 6			LTC 7	LTC 8
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate PL - Prenared Leachate	AGS Reference																				
PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m)																				
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Containe	r	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)
	Sample Ty	ре	Į.	UNL.	UNL	UNL	UNL	UNL	UNL	UNL	UNL	UNL	UN L	UNL	UNL	UNL	UNL	UN	UN L	UNL	Г <mark>Р</mark>
Ammoniacal Nitrogen	All	NDPs: 0 Tests: 7			x			x			x			x			x			x	
Anions by Kone (w)	All	NDPs: 0 Tests: 7		x			x			x			x			x			x		
BOD True Total	All	NDPs: 0 Tests: 7	x			x			x			x			x			x			x
pH Value	All	NDPs: 0 Tests: 7		x			x			x			x			x			x		
Phosphate by Kone (w)	All	NDPs: 0 Tests: 7		x			x			x			x			x			x		
Suspended Solids	All	NDPs: 0 Tests: 7		x			x			x			x			x			x		
Turbidity in waters	All	NDPs: 0 Tests: 7		x			x			x			x			x			x		

	25915437
	LTC 8
500ml Plastic (ALE208)	H2SO4 (ALE2
	44
UNL	UNL
UNL	UNL X
UNL	44 UNL ×
	UNL X
UNL X	UNL X
UNL X	UNL X
V VNF	
X X	
x x x	44 UNL ×
VUNF X X X	44 UNL ×
x x x	44 UNL X

Turbidity

pН

SDG: 220304-56

CERTIFICATE OF ANALYSIS

Validated

Report Number: 637236 Superseded Report Client Ref.: LTC Location: Gravesend, Kent S) Results Legend Results Legend
 ISO17053 scredied.
 ISO17053 scredied.
 InCERTS scredied.
 aq Aqueous / settled sample.
 studied / filtered sample.
 studied / filtered sample.
 subcontracted - refer to subcontractor report for
 ascreditation status.
 % recovery of the subcod the results of individual
 compounds within samples aren't corrected for the
 recovery Customer Sample Ref LTC 2 LTC 3 LTC 4 LTC 5 LTC 6 LTC7 Depth (m) Sample Type Date Sampled Unspecified Liquid (UNL) Sample Time Date Received 04/03/2022 04/03/2022 04/03/2022 04/03/2022 04/03/2022 04/03/2022 220304-56 220304-56 SDG Re 220304-56 220304-56 220304-56 220304-56 recovery (F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix) 25915428 25915430 25915431 25915432 25915434 25915436 Lab Sample No.(s) AGS Reference Component LOD/Units Method nded solids, Total <2000 µg/l TM022 12400 16900 957000 5600 43300 12800 § Ş § Ş BOD, unfiltered <1 mg/l TM045 2.24 1 96 20 9 5.07 17.6 14.1 § § Ş Ş Ş Ammoniacal Nitrogen as N <200 TM099 <200 549 <200 <200 <200 <200 µg/l § § § 8 § Free Ammonia as N <200 µg/l TM099 <200 <200 <200 <200 <200 <200 § § § § 8 Phosphate (Ortho as PO4) TM184 151 161 50 50 50 50 µg/l 50 S Ş Ş Ş 8 Nitrate as NO3 <300 µg/l TM184 20900 20100 <300 18100 12600 30200 § ş Ş Ş 8 <0.1 ntu TM195 10.6 6.81 730 1.34 10.1 3.7 § § 8 8 <1 pH Units TM256 8.05 8.04 7 33 8.2 7.97 7.89 Ş 8 8

(ALS)	

CERTIFICATE OF ANALYSIS Report Number: 637236

Location: Gravesend, Kent

Superseded Report

1	ISO17025 accredited.		Cu	stomer Sample Ref.	LTC 8			
aq	mCERTS accred ted. Aqueous / settled sample.			127710-0017				
diss.filt tot.unfilt	Dissolved / filtered sample. Total / unfiltered sample.			Depth (m)	Democratical Social (DND)			
	Subcontracted - refer to subcontractor report for			Date Sampled	Unspecinea Liquia (UNL)			
	accreditation status. % recovery of the surrogate standard to check the			Sample Time	· · · ·			
	efficiency of the method. The results of individual compounds within samples aren't corrected for the	a		Date Received	04/03/2022			
(F)	recovery Trioner breach confirmed			SDG Ref Lab Sample No (a)	25915437			
1-4+5@	Sample deviation (see appendix)			AGS Reference				
Comp	onent	LOD/U	Jnits	Method	5050	 	 	
Suspend	led solids, I otal	<2000) µg/l	1M022	5850			
200	filtered	<1 n	na/l	TM045	2 3 3	 	 	
oob, ur	mitereu	510	ilg/i	TIMU4J	2.00			
mmoni	acal Nitrogen as N	<200 µg/l		TM099	<200		 	
		200 pgn		1111000	8			
ree Arr	imonia as N	<200 µg/l		TM099	<200			
		1.000			ş			
hospha	ate (Ortho as PO4)	50	µg/l	TM184	7			
					ş			
litrate a	is NO3	<300 µg/l		TM184	27900			
	0				§	 	 	
urbidity	0	<0.1	ntu	TM195	3.67			
0				THORS	§	 	 	
		<1 pH	Units	TM256	1.63			
		-			3			
			Ĩ					
			-			 	 	
			_				 	
			-				 	
						 -	 	
			-				 	
			_			 	 	
			-				 	

Report Number: 637236 Location: Gravesend, Kent Superseded Report

Validated

Table of Results - Appendix

Method No	Reference	Description
TM022	Method 2540D, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part120 1981;BS EN 872	Determination of total suspended solids in waters
TM045	MEWAM BOD5 2nd Ed HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999; SCA Blue Book 130	Determination of BOD5 (ATU) Filtered by Oxygen Meter on liquids
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM184	EPA Methods 325.1 & 325 2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM195	Colour and Turbidity of water. Methods for the Examination of Waters and Associated Materials. HMSO, 1981, ISBN 0 11 751955 3.	Determination of Turbidity in Waters & Associated Matrices
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4, Standard Methods for the examination of waters and wastewaters 20th Edition, PHA, Washington DC, USA. ISBN 0-87553-235-7 and The Determination of Meticitik and Acidity in water FMSO. 1981. ISBN 0.11 7516015	Determination of pH, EC, TDS and Alkalinity in Aqueous samples

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

Report Number: 637236 Location: Gravesend, Kent Superseded Report

Test Completion Dates

Lab Sample No(s)	25915428	25915430	25915431	25915432	25915434	25915436	25915437
Customer Sample Ref.	LTC 2	LTC 3	LTC 4	LTC 5	LTC 6	LTC 7	LTC 8
AGS Ref.							
Depth							
Туре	Unspecified Liq						
Ammoniacal Nitrogen	10-Mar-2022						
Anions by Kone (w)	11-Mar-2022						
BOD True Total	10-Mar-2022						
Nitrite by Kone (w)	11-Mar-2022						
pH Value	08 Mar 2022						
Phosphate by Kone (w)	10-Mar-2022	10-Mar-2022	10-Mar-2022	10-Mar-2022	10-Mar-2022	11-Mar-2022	11-Mar-2022
Suspended Solids	11-Mar-2022	11-Mar-2022	11-Mar-2022	09-Mar-2022	11-Mar-2022	09-Mar-2022	11-Mar-2022
Turbidity in waters	10-Mar-2022	10-Mar-2022	10-Mar-2022	11-Mar-2022	10-Mar-2022	10-Mar-2022	10-Mar-2022

Report Number: 637236 Location: Gravesend, Kent Superseded Report

vesend, Kent

ASSOCIATED AQC DATA

Ammoniacal Nitrogen

Component	Method Code	QC 2542
Ammoniacal Nitrogen as N	TM099	99.6 93.14 : 108.60

Anions by Kone (w)

Component	Method Code	QC 2501
Sulphate (soluble)	TM184	102.8 91.99 : 109.30
TON as NO3	TM184	99.5 90.35 : 108.35

BOD True Total

Component	Method Code	QC 2550	QC 2550
BOD	TM045	88 89 72.19 : 121.74	98 55 79.37 : 124 56

pH Value

Component	Method Code	QC 2560	QC 2563
рН	TM256	100.27 99.20 : 102.41	100.4 99.20 : 102.41

Phosphate by Kone (w)

Component	Method Code	QC 2517	QC 2522
Phosphate (Ortho as PO4)	TM184	103.6 95.60 : 107.60	104.0 95.60 : 107.60

Suspended Solids

Component	Method Code	QC 2550	QC 2556	QC 2563	QC 2593
Total Suspended Solids	TM022	98.14 94.43 : 102.78	101.06 94.43 : 102.78	99.47 94.43 : 102.78	97.61 94.43 : 102.78

Report Number: 637236 Location: Gravesend, Kent Superseded Report

Component	Method Code	QC 2560	QC 2555
Turbidity	TM195	105.5 83.75 : 121.25	98.5 83.75 : 121 25

The above information details the reference name of the analytical quality control sample (AQC) that has been run with the samples contained in this report for the different methods of analysis.

The figure detailed is the percentage recovery result for the AQC.

The subscript numbers below are the percentage recovery lower control limit (LCL) and the upper control limit (UCL). The percentage recovery result for the AQC should be between these limits to be statistically in control .

	12					
	SDG:	220304 56	Client Reference:	LTC	Report Number:	637236
ALS	Location:	Gravesend, Kent	Order Number:	5100ester)	Superseded Report	900122040577×001

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6. NDP - No determination possible due to insufficient/unsuitable sample.

7. Results relate only to the items tested.

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

9. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury.

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2021), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials and soils are obtained from supplied bulk materials and soils which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2021).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central

Asta stoa Type	Common Name
Chrysoile	White Asbestos
Amosite	BrownAsbestos
Cocidolite	Blue Ashe slos
Fibrous Acinolite	н
Rib io us Anhophyll ite	¥.
Fibrous Tremolite	2

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701

ARCADIS ECHQ 34 York Way London N1 9AB

CERTIFICATE OF ANALYSIS

Date of report Generation Customer: Sample Delivery Group (SDG): Your Reference: Location Report No: Order Number: 09 May 2022 ARCADIS 220429-39 LTC Gravesend, Kent 645220

We received 6 samples on Friday April 29, 2022 and 6 of these samples were scheduled for analysis which was completed on Monday May 09, 2022. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By

Operations Manager

SDG: 220429-39 Client Ref.: LTC Report Number: 645220 Location: Gravesend, Kent Superseded Report

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
26203636	LTC2			
26203638	LTC3			
26203639	LTC5			
26203640	LTC6			
26203641	LTC7			
26203643	LTC8			

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

SDG: Client Ref.:	220429-39 Report Number: 645220 Superseded Report LTC Location: Gravesend, Kent																					
Results Legend X Test N No Determination	Lab Sample N	lo(s)			26203636			26203638			26203639			26203640			26203641			26203643		
Sample Types -	Custome Sample Refer	Customer Sample Reference		Customer ample Reference			LICZ			LTC3			LTC5			LTC6			LTC7			LTC8
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Reference																					
PL - Prepared Leadnate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m)																					
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Container		250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244		
	Sample Ty	pe	UNL	UNL	UNL	UNL	UNL	UNL	UNL	UNL	UNL	UNL	UNL	UNL	UNL	UNL	UNL	UNL	UN L	UNL		
Ammoniacal Nitrogen	All	NDPs: 0 Tests: 6			x			x			x			x			x			x		
Anions by Kone (w)	All	NDPs: 0 Tests: 6		x			x			x			x			x			x			
BOD True Total	All	NDPs: 0 Tests: 6	x			x			x			x			x			x				
pH Value	All	NDPs: 0 Tests: 6		x			x			x			x			x			x			
Phosphate by Kone (w)	All	NDPs: 0 Tests: 6		x			x			x			x			x			x			
Suspended Solids	All	NDPs: 0 Tests: 6		x			x			x			x			x			x			
Turbidity in waters	All	NDPs: 0 Tests: 6		x			x			x			x			x			x			

SDG: 220429-39 Client Ref.: LTC

CERTIFICATE OF ANALYSIS Report Number: 645220

Location: Gravesend, Kent

Superseded Report

Validated

Denvile Learned			- 11 - 1 - L					
ISO17025 accredited.	C	ustomer Sample Ref.	LTC2	LTC3	LTC5	LTC6	LTC7	LTC8
M mCERTS accred ted.								
diss.filt Dissolved / filtered sample.		Depth (m)						
tot.unfilt Total / unfiltered sample.		Sample Type	Unspecified Liquid (UNL)	Unspecified Liquid (UNL)	Unspecified Liquid (UNL)	Unspecified Liquid (UNL)	Unspecified Liquid (UNL)	Unspecified Liquid (UNL)
accreditation status.		Date Sampled	-	-	-	-	-	-
* % recovery of the surrogate standard to check the afficiency of the method. The secults of individual		Sample Time	20104/2022		-	-	-	-
compounds within samples aren't corrected for the	8	Date Received	29/04/2022	220429-39	29/04/2022	29/04/2022	29/04/2022	29/04/2022 220429-39
recovery (F) Trigger breach confirmed		Lab Sample No.(a)	26203636	26203638	26203639	26203640	26203641	26203643
1-4+§@ Sample deviation (see appendix)		AGS Reference					a secondaria	a secondaria.
Component	LOD/Units	Method						
Suspended solids, Total	<2000 µg/l	TM022	13000	55200	33100	18300	259000	101000
			ş	ş	ş	ş	ş	ş
BOD, unfiltered	<1 ma/l	TM045	1.99	<2	<3	<3	18.5	2 33
			8	8	8	8	8	8
Ammoniacal Nitrogen as N	<200 ug/l	TMOOO	<200	<200	<200	<200	<200	<200
	~200 µg/i	110000	-200	-200	200	200	200	200
			9	9	9	9	9	9
Free Ammonia as N	<200 µg/l	TM099	<200	<200	<200	<200	<200	<200
			§	§	§	§	§	§
Phosphate (Ortho as PO4)	50 µg/l	TM184	229	9 5	615	743	228	50
			ş	§	ş	ş	§	§
Nitrate as NO3	<300 µa/l	TM184	19000	6120	<300	<300	<300	49200
	- J		8	8	8	8	8	8
Turbidity	<0.1 mt.	TM105	7 19	22.2	22.5	84	120	10.2
	-v. i nu	CELINIT	1.10	20.0	23.5	0.4	120	13.2
			9	9	9	9	9	9
рН	<1 pH Units	TM256	8.05	7 95	8.04	8.17	7.86	7.66
			ş	§	ş	ş	§	ş
		 						
					-			
		├─── ┤						
								-
								
		 						
	2				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			2

Report Number: 645220 Location: Gravesend, Kent Superseded Report

Validated

Table of Results - Appendix

Method No	Reference	Description
TM022	Method 2540D, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part120 1981;BS EN 872	Determination of total suspended solids in waters
TM045	MEWAM BOD5 2nd Ed HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999; SCA Blue Book 130	Determination of BOD5 (ATU) Filtered by Oxygen Meter on liquids
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM184	EPA Methods 325.1 & 325 2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM195	Colour and Turbidity of water. Methods for the Examination of Waters and Associated Materials. HMSO, 1981, ISBN 0 11 751955 3.	Determination of Turbidity in Waters & Associated Matrices
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4, Standard Methods for the examination of waters and wastewaters 20th Edition, PHA, Washington DC, USA. ISBN 0-87553-235-7 and The Determination of Micinity and Acidity in water EMSO. 1081. ISBN 0.11 751601.5	Determination of pH, EC, TDS and Alkalinity in Aqueous samples

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

Report Number: 645220 Location: Gravesend, Kent Superseded Report

Test Completion Dates

Lab Sample No(s)	26203636	26203638	26203639	26203640	26203641	26203643
Customer Sample Ref.	LTC2	LTC3	LTCS	LTC6	LTC7	LTC8
AGS Ref.				1		
Depth						
Туре	Unspecified Liq					
Ammoniacal Nitrogen	05-May-2022	05-May-2022	05-May-2022	05-May-2022	05-May-2022	05-May-2022
Anions by Kone (w)	03-May-2022	03-May-2022	03-May-2022	03-May-2022	03-May-2022	03-May-2022
BOD True Total	05-May-2022	05-May-2022	05-May-2022	05-May-2022	05-May-2022	05-May-2022
Nitrite by Kone (w)	30-Apr-2022	30-Apr-2022	30-Apr-2022	30-Apr-2022	30-Apr-2022	30-Apr-2022
pH Value	04 May 2022	04 May 2022	05 May 2022	05 May 2022	05 May 2022	04 May 2022
Phosphate by Kone (w)	30-Apr-2022	30-Apr-2022	30-Apr-2022	30-Apr-2022	30-Apr-2022	30-Apr-2022
Suspended Solids	03-May-2022	03-May-2022	03-May-2022	03-May-2022	03-May-2022	03-May-2022
Turbidity in waters	04-May-2022	09-May-2022	09-May-2022	04-May-2022	04-May-2022	04-May-2022

Report Number: 645220 Location: Gravesend, Kent Superseded Report

ASSOCIATED AQC DATA

Ammoniacal Nitrogen

Component	Method Code	QC 2676	QC 2694
Ammoniacal Nitrogen as N	TM099	96.4 90.84 : 105.72	97.2 90.84 : 105.72

Anions by Kone (w)

Component	Method Code	QC 2613	QC 2636
Sulphate (soluble)	TM184		98.8 91.99 : 109 30
TON as NO3	TM184	103.0 90.35 : 108.35	101.5 90.35 : 108 35

BOD True Total

Component	Method Code	QC 2666	QC 2613	QC 2640
BOD	TM045	95 65 72.19 : 121.74	104 35 79.37 : 124 56	97 1 72.19 : 121.74

pH Value

Component	Method Code	QC 2681	QC 2690	QC 2683	QC 2686
рН	TM256	100.4 99.20 : 102.41	100.4 99.20 : 102.41	101.2 99 20 : 102.41	101.34 99.20 : 102.41

Phosphate by Kone (w)

Component	Method Code	QC 2621
Phosphate (Ortho as PO4)	TM184	102.8

Suspended Solids

Component	Method Code	QC 2617	QC 2621
Total Suspended Solids	TM022	99.73 94.43 : 102.78	101.86 94.43 : 102.78

Report Number: 645220 Location: Gravesend, Kent Superseded Report

Component	Method Code	QC 2641	QC 2664
Turbidity	TM195	96.0 83.75 : 121.25	94.75 83.75 : 121 25

The above information details the reference name of the analytical quality control sample (AQC) that has been run with the samples contained in this report for the different methods of analysis.

The figure detailed is the percentage recovery result for the AQC.

The subscript numbers below are the percentage recovery lower control limit (LCL) and the upper control limit (UCL). The percentage recovery result for the AQC should be between these limits to be statistically in control.

220429 39 Ref: LTC Report Number: 645220 Location: Gravesend, Kent Superseded Report

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6. NDP - No determination possible due to insufficient/unsuitable sample.

7. Results relate only to the items tested.

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

9. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury.

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report. 18. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.</p>

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2021), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials and soils are obtained from supplied bulk materials andd soils which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2021).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central

Asbestos Type	Common Name
Chrysoile	White Asbestos
Amosite	BrownAsbestos
Cio ci dolite	Blue Aske stos
Fibrous Acimolite	-
Rib io us Anhophyli ite	2
Fibrous Tremolite	3

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 µm diameter, longer than 5 µm and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

ARCADIS ECHQ 34 York Way London N1 9AB

CERTIFICATE OF ANALYSIS

Date of report Generation: Customer: Sample Delivery Group (SDG) Your Reference: Location: Report No Order Number: 07 July 2022 ARCADIS 220701-34 LTC Gravesend, Kent 653551

We received 6 samples on Friday July 01, 2022 and 6 of these samples were scheduled for analysis which was completed on Thursday July 07, 2022. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By

Operations Manager

Report Number: 653551 Location: Gravesend, Kent Superseded Report

Received Sample Overview Customer Sample Ref. AGS Ref. Dept

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
26520193	LTC 2			
26520192	LTC 3			
26520191	LTC 5			
26520190	LTC 6			
26520194	LTC 7			
26520195	LTC 8			

Only received ample which have had analy i cheduled will be hown on the following page

Validated

SDG: Client Ref.:	220701-34 LTC			Rep	ort N Lo	umbe	r: 65 n: G	53551 raves	end, k	Cent			Supe	rsede	d Repo	ort				
Results Legend X Test N No Determination	Lab Sample N	lo(s)			26520193			26520192			26520191			26520190			26520194			26520195
Sample Types	Custome Sample Refer	r ence			LTC 2			LTC 3			LIC 5			LTC 6			LTC 7			LTC 8
Sample Types - S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate PL Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage US - Untreated Sewage RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	AGS Refere	nce													-					
	Depth (m)																		
	Containe	r	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)
	Sample Ty	pe	Ę	UNL	UNL	UNL	UN N	S												
Ammoniacal Nitrogen	All	NDPs: 0 Tests 6	-		x			x			x			x			x			x
Anions by Kone (w)	All	NDPs: 0 Tests: 6	_	x			x			x			x			x			x	
BOD True Total	All	NDPs: 0 Tests: 6	x			x			x			x			x			x		
pH Value	All	NDPs: 0 Tests: 6		x			x			x			x			x			x	
Phosphate by Kone (w)	All	NDPs: 0 Tests: 6		x			x			x			x			x			x	
Suspended Solids	All	NDPs: 0 Tests: 6		x			x			x			x			x			x	
Turbidity in waters	All	NDPs: 0 Tests: 6		x			x			x			x			x			x	

ALS

SDG: 220701-34 Client Ref.: LTC

CERTIFICATE OF ANALYSIS Report Number: 653551

Location: Gravesend, Kent

Superseded Report

Validated

Results Legend # ISO17025 accredited.		Customer Sample Ref	LTC 2	LTC 3	LTC 5	LTC 6	LTC 7	LTC 8
mCERTS accred ted. aq Aqueous / settled sample.								
diss.filt Dissolved / filtered sample.		Depth (m)	and the second	and the second				a second s
* Subcontracted - refer to subcontractor report for		Sample Type	Unspecified Liquid (UNL)	Unspecified Liquid (UNL)	Unspecified Liquid (UNL)	Unspecified Liquid (UNL)	Unspecified Liquid (UNL)	Unspecified Liquid (UNL)
accreditation status. *** % recovery of the surrogate standard to check the		Sample Time	-	-		-	-	
efficiency of the method. The results of individual		Date Received	01/07/2022	01/07/2022	01/07/2022	01/07/2022	01/07/2022	01/07/2022
compounds within samples aren't corrected for the recovery	8	SDG Ref	220701-34	220701-34	220701-34	220701-34	220701-34	220701-34
(F) Trigger breach confirmed 1-44§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	26520193	26520192	26520191	26520190	26520194	26520195
Component	LOD/Units	s Method						
Suspended solids, Total	<2000 µg	/I TM022	26400 §	15500 §	14600 §	11200 §	49100 §	5600 §
BOD, unfiltered	<1 mg/l	TM045	<1	<1	2.5	<3	49	4.58
American I Nitoway on M	<200	TM000	§	§	§	§	§	\$ <200
	~200 µg/	1 10035	230 §	~200 §	-200 §	555 §	~200 §	~200 §
Free Ammonia as N	<200 µg/	/I TM099	<200 §	<200 §	<200 §	<200 §	<200 §	<200 §
Phosphate (Ortho as PO4)	<50 µg/l	TM184	1330 §	1020 §	1530 §	1930 §	146 §	<50 §
Nitrate as NO3	<300 µg/	1 TM184	2210 §	3500	<300 §	<300 §	<300 §	24400 &
Turbidity	<0.1 ntu	TM195	4.99 £	5 4 59 ۶	۲97 ۶	3.87 £	30.3 8	2.12 £
pH	1 pH Unit	ts TM256	9 7 94	7 97	8 05	9 7 89	8 25	3 79
			§	§	§	§	§	§
				1				

SDG: 220701-34 Client Ref.: LTC

Report Number: 653551 Location: Gravesend, Kent

Superseded Report

Table of Results - Appendix

Method No	Reference	Description
TM022	Method 2540D, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part120 1981;BS EN 872	Determination of total suspended solids in waters
TM045	MEWAM BOD5 2nd Ed HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999; SCA Blue Book 130	Determination of BOD5 (ATU) Filtered by Oxygen Meter on liquids
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM184	EPA Methods 325.1 & 325 2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM195	Colour and Turbidity of water. Methods for the Examination of Waters and Associated Materials. HMSO, 1981, ISBN 0 11 751955 3.	Determination of Turbidity in Waters & Associated Matrices
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4, Standard Methods for the examination of waters and wastewaters 20th Edition, PHA, Washington DC, USA. ISBN 0-87553-235-7 and The Determination of Autignity in water MMCO - 1021 ISBN 014 751601 5	Determination of pH, EC, TDS and Alkalinity in Aqueous samples

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM).

Report Number: 653551 Location: Gravesend, Kent Superseded Report

Test Completion Dates

Lab Sample No(s)	26520193	26520192	26520191	26520190	26520194	26520195
Customer Sample Ref.	LTC 2	LTC 3	LTC 5	LTC 6	LTC 7	LTC 8
AGS Ref.						
Depth						
Туре	Unspecified Liq					
Ammoniacal Nitrogen	07-Jul-2022	07-Jul-2022	07-Jul-2022	07-Jul-2022	07-Jul-2022	07-Jul-2022
Anions by Kone (w)	07-Jul-2022	07-Jul-2022	07-Jul-2022	07-Jul-2022	07-Jul-2022	07-Jul-2022
BOD True Total	07-Jul-2022	06-Jul-2022	07-Jul-2022	06-Jul-2022	06-Jul-2022	07-Jul-2022
Nitrite by Kone (w)	05-Jul-2022	05-Jul-2022	05-Jul-2022	05-Jul-2022	05-Jul-2022	05-Jul-2022
pH Value	06-Jul-2022	06-Jul-2022	06-Jul-2022	06-Jul-2022	06-Jul-2022	06-Jul-2022
Phosphate by Kone (w)	05-Jul-2022	05-Jul-2022	05-Jul-2022	05-Jul-2022	05-Jul-2022	05-Jul-2022
Suspended Solids	06-Jul-2022	06-Jul-2022	06-Jul-2022	07-Jul-2022	07-Jul-2022	07-Jul-2022
Turbidity in waters	05-Jul-2022	05-Jul-2022	05-Jul-2022	05-Jul-2022	05-Jul-2022	05-Jul-2022

Client Ref.: LTC

Report Number: 653551 Location: Gravesend, Kent Superseded Report

ASSOCIATED AQC DATA

Ammoniacal Nitrogen

Component	Method Code	QC 2605
Ammoniacal Nitrogen as N	TM099	101.6 93.14 : 108.60

Anions by Kone (w)

Component	Method Code	QC 2649
TON as NO3	TM184	102.5

BOD True Total

Component	Method Code	QC 2602	QC 2604	QC 2626
BOD	TM045	84.06 72.19 : 121.74	90.82 72.19 : 121.74	88.89 79 37 : 124.56

pH Value

Component	Method Code	QC 2632
рH	TM256	101.2 99.20 : 102.41

Phosphate by Kone (w)

Component	Method Code	QC 2614
Phosphate (Ortho as PO4)	TM184	105.2 95.60 : 107.60

Suspended Solids

Component	Method Code	QC 2663	QC 2605	QC 2643
Total Suspended Solids	TM022	100.8 94.43 : 102.78	96.82 94.43 : 102.78	98.14 94.43 : 102.78

Report Number: 653551 Location: Gravesend, Kent Superseded Report

Validated

Turbidity in waters

Component	Method Code	QC 2661
Turbidity	TM195	93.25 83.75 : 121.25

The above information details the reference name of the analytical quality control sample (AQC) that has been run with the samples contained in this report for the different methods of analysis.

The figure detailed is the percentage recovery result for the AQC.

The subscript numbers below are the percentage recovery lower control limit (LCL) and the upper control limit (UCL). The percentage recovery result for the AQC should be between these limits to be statistically in control.

220701-34 **Client Ref:** I TC

Report Number: 653551 Location: Gravesend, Kent Superseded Report:

Appendix

SDG:

General

Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs

2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6 NDP - No determination possible due to insufficient/unsuitable sample

7 Results relate only to the items tested

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content

9. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury.

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. t is not possible to specifically identify thes non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

20 Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2021), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials and soils are obtained from supplied bulk materials andd soils which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2021).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Aste stos Type	Common Name
Chrysoile	White Asbestos
Amosite	BrownAsbestos
Cio ci dolite	Blue Aske stos
Fibrous Acinolite	-
Rib io us Anhophyli ite	0
Fibrous Tremolite	0

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 µm diameter, longer than 5 µm and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

If you need help accessing this or any other National Highways information, please call **0300 123 5000** and we will help you.

© Crown copyright 2022

You may re-use this information (not including logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view this licence:

visit www.nationalarchives.gov.uk/doc/opengovernment-licence/

write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email psi@nationalarchives.gsi.gov.uk.

Mapping (where present): © Crown copyright and database rights 2022 OS 100030649. You are permitted to use this data solely to enable you to respond to, or interact with, the organisation that provided you with the data. You are not permitted to copy, sub-licence, distribute or sell any of this data to third parties in any form.

If you have any enquiries about this publication email info@nationalhighways.co.uk or call 0300 123 5000*.

*Calls to 03 numbers cost no more than a national rate call to an 01 or 02 number and must count towards any inclusive minutes in the same way as 01 and 02 calls.

These rules apply to calls from any type of line including mobile, BT, other fixed line or payphone. Calls may be recorded or monitored.

Printed on paper from well-managed forests and other controlled sources when issued directly by National Highways.

Registered office Bridge House, 1 Walnut Tree Close, Guildford GU1 4LZ

National Highways Company Limited registered in England and Wales number 09346363