Evidence review of the impact of solar farms on birds, bats and general ecology (NEER012)

1st edition - 9th March 2017

www.gov.uk/natural-england
Evidence review of the impact of solar farms on birds, bats and general ecology

Chris Harrison, Huw Lloyd and Chris Field

Manchester Metropolitan University
August 2016
Evidence review of the impact of solar farms on birds, bats and general ecology

Executive Summary

i. The UK energy landscape is partially orienting towards renewable electricity generation. Recently, this has begun to include solar PV (photovoltaic) technologies.

ii. Solar PV technologies exist at a distributed scale (e.g. roof mounted solar panels) and at utility scale (i.e. solar farms) in the UK.

iii. Utility scale solar PV developments are likely to have a greater ecological impact than distributed scale developments due to their larger size and the requirement for new infrastructure. As such, this review will focus on utility scale solar PV developments.

iv. Natural England has identified birds and bats as the taxa most urgently requiring an evidence base for potential impacts relating to solar PV developments. The focus of this review will be on these taxa, however general ecological impacts will also be considered.

v. Around 420 scientific documents with potential relevance to this review were identified using tailored search strings and subsequently screened for evidence relating to the ecological impacts of solar farms. The majority of these documents were of no relevance, and were returned by the literature search due to irresolvable linguistic and conceptual ambiguities. These documents were not considered further.

vi. Grey literature from 37 non-governmental and governmental organisations was examined for evidence of the potential ecological impacts of solar farms.

vii. Twelve rejected planning applications for solar PV developments with generating capacity of > 1 MW in the north west of England were examined to determine whether these rejections were made on an ecological basis.

viii. No peer reviewed experimental scientific evidence exists relating solely to the ecological impacts of solar PV developments.

ix. Some scientific and grey literature data, based upon carcass searches around solar PV developments suggests that bird collision risk from solar panels is very low. There is likely to be more of a collision risk to birds presented by infrastructure associated with solar PV developments, such as overhead power lines.

x. Evidence from both the grey literature and the peer-reviewed scientific literature suggests that protected areas should be avoided when considering site selection of solar PV developments, with some sources suggesting that locations close to
Evidence review of the impact of solar farms on birds, bats and general ecology

protected areas should be avoided also. This recommendation is not quantified in any of the reviewed literature.

xi. Indirect evidence of bird presence is often presented in the engineering literature, where designs for solar panel cleaning devices often cite bird droppings as a contaminant.

xii. Solar panels have the capacity to reflect polarised light, which can attract polarotactic insects, which has the potential to impact their reproductive biology. The polarising effect of solar panels may also induce drinking behaviour in some bird taxa, where the birds mistake the panels for water.

xiii. Birds and bats should be assessed by taxon or guild, with different behavioural traits and habitat requirements taken into consideration. The potential for solar developments to attract or repel birds or bats should be considered, alongside the potential for negative interactions to occur between these taxa and solar farms.

xiv. Future research should focus on examining the potential of solar PV developments to support biodiversity. The grey literature often refers to mitigation/enhancement practices such as wildflower meadow planting, hedgerow laying and tree planting with some grey literature studies attempting to quantify diversity on solar PV sites. These studies should be formalised and replicated within a scientific framework.

xv. Governmental and non-governmental organisations that provide advice and guidance that may have ecological implications have a duty to contribute to evidence towards their guidance, especially where evidence is lacking. In the case of solar farms, there is almost no evidence and research into their ecological impacts is urgently needed.
Evidence review of the impact of solar farms on birds, bats and general ecology

Table of contents

Evidence review of the impact of solar farms on birds, bats and general ecology 1
Executive Summary ... 2
Table of contents ... 4
1. Introduction ... 6
 1.1. Background ... 6
 1.2. Solar farms ... 7
 1.3. Aims and Objectives .. 8
2. Methods .. 8
 2.1. Scientific literature search .. 8
 2.2. Grey literature search .. 9
3. Results ... 13
 3.1. The Scientific Literature ... 13
 3.1.1. Potential effects of solar panels on birds .. 13
 3.1.2. Potential effects of solar panels on bats .. 17
 3.1.3. Potential effects of solar panels on general ecology 23
 3.1.4. The Grey Literature ... 25
 3.1.5. Non peer reviewed scientific research ... 33
 3.1.6. Solar energy hardware manufacturers, suppliers and advisory groups 35
 3.1.7. Planning decisions on solar PV developments in the North West of England..... 35
4. Conclusions .. 40
5. Recommendations ... 41
6. Acknowledgements ... 41
7. References .. 42
Appendices ... 54

Appendix 1: Scopus search results for birds and solar panels. 54
Evidence review of the impact of solar farms on birds, bats and general ecology

Appendix 2: Scopus search results for bats and solar panels............................. 71
Appendix 3: Scopus search results for general ecology and solar panels. 77
Appendix 4: Google Scholar relevant search results...................................... 106
Appendix 5. Availability and summaries of information on the ecological impacts of solar developments presented by non-governmental and governmental organisations with relevance to the UK. ... 110
1. Introduction

1.1. Background

As part of the effort to combat climate change, the UK has a commitment under European directive 2009/28/EC to increase the proportion of energy consumption provided by renewable sources to 15% by the year 2020 (EC, 2009). Considering that this figure stood at 1.3% in 2005 - the third lowest amongst EU member states at that time (EC, 2009), the UK energy landscape has undertaken significant changes in recent years, resulting in 4.1% of the national energy consumption coming from renewable sources in 2012 (DECC, 2013a).

Multiple technologies are used to generate renewable energy in the UK including solar PV (Photovoltaic), onshore and offshore wind, hydro, wave/tidal and bioenergy (DECC, 2015). Wind power has been the dominant source of renewable energy in the UK since 2008\(^1\) with different technologies having varying contributions to energy generation over time since 2003 (DECC, 2014a). Solar PV has undergone a rapid increase in popularity in the UK (and globally) in recent years due to reduced hardware costs, improved efficiency of hardware, and the introduction of FiTs (Feed in Tariffs) that allow operators of renewable energy developments to sell surplus electricity to the grid (Balta-Ozkan et al., 2015).

The potential ecological impacts of solar PV installations are poorly understood and there is a lack of coherent guidance in the UK for local planning authorities, statutory bodies, charities, non-governmental organisations, commercial enterprises and ecological consultancies to make informed decisions or provide advice on the potential ecological effects of new and existing solar PV developments.

This review aims to gather and synthesise evidence from the scientific and grey literature in order to provide a comprehensive and cohesive report on current thinking towards the potential ecological impacts of solar PV developments. Special emphasis will be given to the taxa Aves (birds) and Chiroptera (bats). Gaps in the literature will be identified and suggestions will be made for future research needs. In addition, planning applications and decisions for solar PV developments in the North West of England will be reviewed in an attempt to identify reasons for the refusal of planning permission by local authorities,

\(^1\) Prior to 2008 there was no separation in the statistics for electricity generation between wind and wave using the data available within DECC (2014).
reflecting perceived negative impacts of solar PV and to determine whether any of these reasons are ecologically based.

1.2. Solar farms

Solar PV developments can be broadly categorised into one of two scales- distributed or utility scale (Hernandez, Easter, et al., 2014). Distributed scale solar PV systems are represented by relatively small developments that are integrated into the infrastructure of a building (e.g. on the rooftop) that are usually < 1 MW (megawatt) in capacity and may act autonomously from the grid. Utility scale developments are larger (> 1 MW), more centralised developments (analogous to a power station) generating electricity on a commercial scale (Hernandez, Easter, et al., 2014). This review will focus on utility scale developments as these are believed to potentially have greater ecological impact due to their large size, and because unlike their distributed counterparts, there is a requirement for new infrastructure and land, rather than relying largely on existing development for physical support and the distribution of electricity (Dale et al., 2011).

In terms of functionality and infrastructure, there are parallels between PV solar farms and onshore wind farms. For example, both require a large area of land in order to maximise the energy yield from their respective resources sun and wind, both generate large amounts of electricity and both require the infrastructure necessary to transport electricity to the place of consumption. As such, there are likely to be some similarities in the risks posed to birds and bats by solar farms and wind farms. There are four broad types of impacts wind farms can have on birds: mortality due to collision, disturbance displacement, barrier effects and habitat loss (Drewitt and Langston, 2006). However, wind turbines have the critical characteristics of large fast moving parts and structures extending attitudinally. These characteristics do not exist in solar farms, which would intuitively suggest that the potential collision risk for flying animals is lower for solar farms than it is for wind farms. The potential risk of disturbance displacement, barrier effects and habitat loss are on the other hand could occur in utility scale solar PV development, simply because of the land area they require and the necessary surface area required to harvest sunlight. These four impacts will form the backbone of this literature review.
1.3. Aims and Objectives

This review was commissioned by Natural England in order to provide a synthesis of the available evidence on the ecological implications of solar farms, with special emphasis to birds and bats. The objectives of the report are listed below.

1) To interrogate the scientific literature for evidence of any ecological impact (positive or negative) that solar farms may have on birds.
2) To interrogate the scientific literature for evidence of any ecological impact (positive or negative) that solar farms may have on bats.
3) To interrogate the scientific literature for evidence of any ecological impact (positive or negative) solar farms may have outside of objective 1 and objective 2.
4) To summarise any guidance, opinion or involvement that Governmental Organisations or NGOs may have with regards the ecological impact of solar farms.
5) To investigate ecological information presented by solar panel and solar farm manufacturers and supplier and summarise this information.
6) To investigate planning decisions made with regards to solar farms in the northwest of England, and determine whether any projects were declined planning permission on an ecological basis.
7) To investigate any other grey literature available on the ecological impacts of solar farms and summarise ecological arguments or evidence presented by this literature.

2. Methods

2.1. Scientific literature search

Scopus is a database operated by Elsevier and contains citation and abstract information for peer reviewed literature including scientific journals, books and conference proceedings. Three distinct search strings were constructed to extract literature from Scopus relating to solar farms and birds, bats and ecology. Combinations of the phrases ‘solar farm’, ‘solar panels’ and ‘photovoltaic’ were used alongside ‘birds’, ‘bats’ and ‘ecology*’ (asterisk indicates a wildcard, and represents all phrases prefixed with the characters prior to the asterisk). For the full search strings, see Appendix 1 for birds, Appendix 2 for bats and Appendix 3 for general ecology. These search strings were applied to the Scopus search
Evidence review of the impact of solar farms on birds, bats and general ecology

engine on 8th November 2015, and the results were extracted as a bibliography for input into Mendeley reference management software. In addition to these search strings, searches were conducted where the terms ‘birds’ and ‘bats’ were replaced with ‘aves’ and ‘chiropter*’ respectively, however no further relevant results were yielded.

To determine relevant literature, the abstract of each result for birds and bats was examined and if deemed relevant, was followed by an examination of the full text (where available). Due to the large number of results for general ecology, only the titles of the search results were vetted for relevance, with subsequent referral to the abstract or full text where relevance seemed likely.

Although the academic search engine Google Scholar is not as powerful as Scopus in the implementation of refined and structured literature searches, it has a tendency to return results that are not included in Scopus. This could be because some of the search results are not necessarily peer reviewed, but still present scientific findings that may be relevant, especially when peer reviewed literature on a subject is scarce. Google Scholar was utilized by adopting a variety of search strings to obtain scientific literature that may not be included in the Scopus database.

Some additional relevant literature was indirectly obtained (i.e. through reference by literature included in the search results).

2.2. Grey literature search

The acquisition of grey literature for use in comprehensive scientific literature reviews can be problematic due to inherent inconsistencies in definition (Gelfand and Lin, 2013) and exclusion from most scientific literature databases (Banks, 2006). Nevertheless, the importance of grey literature has been recognised for both building ecological and conservation evidence (Haddaway and Bayliss, 2015) and for evidence based guidance on public policy and practice (Lawrence et al., 2015).

For the purposes of this review, the scope of the term ‘grey literature’ will pertain to any document that is outside of the traditional scientific body of literature as defined by the results of a comprehensive literature search in the Scopus search engine and/or is not a
Evidence review of the impact of solar farms on birds, bats and general ecology

peer reviewed document, but holds information that could potentially provide evidence relating to the ecological impact of solar farms. As such, any peer reviewed literature found in addition to the Scopus search results will be included in the scientific literature review and not in the grey literature review.

Google Scholar returns a mixture of grey literature and scientific literature (Haddaway and Bayliss, 2015) making it a powerful tool for finding and acquiring documents that would not be included in Scopus. However this lack of specificity along with inefficiencies in search terms makes Google Scholar unsuitable as a sole resource for the extraction of scientific literature (Giustini and Boulos, 2013). Google Scholar was utilised informally, using a multitude of search terms with the subsequent extraction of potentially useful documents, some of which were added to the body of scientific literature as previously described, and some of which fell under the category of grey literature. A full list of relevant citations obtained through Google Scholar can be found in appendix 4.

A list of ecological and conservation NGOs in the UK was extracted from the CIEEM (Chartered Institute of Ecology and Environmental Management) website² in order to determine which may hold relevant information on potential effects of solar panels. The names of other specialist bodies relating to ecology and conservation was also extracted from Haddaway et al. (2014)- a systematic literature review on UK peatland management. Potentially relevant organisations were compiled from both lists along with any other organisations thought to be relevant to form a resource for potential repositories of grey literature to be used in this review. Google searches and visits to each organisations website were undertaken to determine whether the organisation has a stance on the ecological effects of solar panels and to come to a conclusion as to what the organisation’s position on this topic might be. In addition to NGOs, Governmental bodies in the UK were investigated in this way. A complete list of these organisations is shown in Table 1.

Planning applications for solar farms and the subsequent planning decisions were examined for the north west of England in order to gather more grey literature and to determine whether any planning rejections were made on an ecological basis. These planning applications were found using the DECC (Department for Energy and Climate Change)

2 http://www.cieem.net/non-governmental-organisations-ngo- [last accessed 14/04/2016]
Evidence review of the impact of solar farms on birds, bats and general ecology

renewable energy planning database monthly extract for July 2015. Planning reference numbers relating to projects with rejected planning permission for solar PV developments in the North West of England were cross referenced to the UK planning portal (a repository for links to all local authorities holding planning applications in the UK and associated documents) and documents relating to ecology or planning decisions were subsequently extracted.

Table 1. Non-governmental and governmental agencies investigated for evidence or guidance on the ecological impact of solar farms.

<table>
<thead>
<tr>
<th>Organisation name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BCT (Bat Conservation Trust)</td>
<td>IUCN (International Union For Conservation Of Nature)</td>
</tr>
<tr>
<td>BASC (British Association for Shooting and Conservation)</td>
<td>JNCC (Joint Nature Conservation Committee)</td>
</tr>
<tr>
<td>BES (British Ecological Society)</td>
<td>Macaulay Land Use Research Institute</td>
</tr>
<tr>
<td>Birdlife International</td>
<td>National Trust</td>
</tr>
<tr>
<td>BSBI (Botanical Society of the British Isles)</td>
<td>NE (Natural England)</td>
</tr>
<tr>
<td>BTO (British Trust for Ornithology)</td>
<td>NFU (National Farmers Union of England and Wales)</td>
</tr>
<tr>
<td>CCCR (Centre For Climate Change Research)</td>
<td>NIEA (Northern Ireland Environment Agency)</td>
</tr>
<tr>
<td>CCW (Countryside Council Wales)</td>
<td>NRW (Natural Resources Wales)</td>
</tr>
<tr>
<td>CEH (Centre for Ecology and Hydrology)</td>
<td>Plantlife International</td>
</tr>
<tr>
<td>CIEEM (Chartered Institute for Ecology and Environmental Management)</td>
<td>Plantlife UK</td>
</tr>
</tbody>
</table>

3 https://www.gov.uk/government/publications/renewable-energy-planning-database-monthly-extract [last accessed 15/04/2016]. This database is updated regularly, with no access to previous versions. As such, the link does not refer to the July 2015 extract.

4 https://1app.planningportal.co.uk/YourLpa/FindYourLpa [last accessed 15/04/2016]
Evidence review of the impact of solar farms on birds, bats and general ecology

<table>
<thead>
<tr>
<th>Organisation name</th>
<th>Ramasar</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECC (Department Of Energy And Climate Change)</td>
<td></td>
</tr>
<tr>
<td>EPA (Environmental Protection Agency)</td>
<td>RSPB (Royal Society for the Protection of Birds)</td>
</tr>
<tr>
<td>EPAI (Environment Protection Agency Ireland)</td>
<td>SEPA (Scottish Environment Protection Agency)</td>
</tr>
<tr>
<td>European Commission Joint Research Centre</td>
<td>SNH (Scottish Natural Heritage)</td>
</tr>
<tr>
<td>European Environment Agency</td>
<td>SRUC (Scotland’s Rural College)</td>
</tr>
<tr>
<td>Friends of the Earth</td>
<td>UNEP (United Nations Environment Programme)</td>
</tr>
<tr>
<td>FWAG (Farming and Wildlife Advisory Group)</td>
<td>Wildlife Trusts</td>
</tr>
<tr>
<td>Greenpeace</td>
<td>WWT (Wildfowl and Wetlands Trust)</td>
</tr>
<tr>
<td>IPCC (Intergovernmental Panel on Climate Change)</td>
<td></td>
</tr>
</tbody>
</table>
3. Results

3.1. The Scientific Literature

A total of 417 items of literature were recognised through Scopus, with 58 relating to birds, 20 relating to bats and 339 relating to general ecology. Many of the results were not relevant to this review and were included in the search results due to linguistic or conceptual ambiguities. Examples of linguistic ambiguities include the abbreviation of ‘battery’ to ‘bat’ (e.g. Kaldellis et al., 2010; Ray et al., 2013; Sadeghi and Ameri, 2014), the use of acronyms such as BIRD (bispectral infrared detection) (Stoll et al., 2009) and the use of names such as Lady Bird Johnson Middle School (Kure, 2010). Conceptual ambiguities include the use of solar powered bird tracking devices (e.g. Bouten et al., 2013; Hansen et al., 2014; Thaxter et al., 2014); the use of nature inspired algorithms by technical disciplines involved in solar panel research such as ‘Bird-Mating algorithm’ (Gao et al., 2014) and ‘bat clustering method’ (Munshi and Mohamed, 2014); the inspiration from nature or analogy to nature of technical achievements such as a solar powered flapping wing aeroplane (Colozza, 2007), a Mars rover with ‘the feet of a bird’ (Ramesh et al., 2009) and the description of a technical data pattern as ‘bird beak’ (Kattakayam et al., 1996). Citations and notes on the relevance of each search result can be found in appendix 1 for birds and appendix 2 for bats. Due to the large amount of literature returned for general ecology, notes of relevance are not included in this review, however the citations for these documents can be found in appendix 3.

The use of Google Scholar yielded 39 additional pieces of literature. Some of these were ecologically oriented, whereas some were oriented towards solar panel usage and policy in the UK. The results from Google Scholar can be found in appendix 4.

3.1.1. Potential effects of solar panels on birds

To date there are no experimental studies in the peer reviewed scientific literature that attempt to quantify the impact of PV solar farms on birds purely from an ecological perspective. DeVault et al. (2014) conducted a study that examined habitat use by birds at PV solar installations versus adjacent habitats in order to assess whether PV installations at airports increase the risk of aircraft bird strike. The attraction of birds to solar PV installations was recognised as a concern by a focus group held to determine the potential hazards of
Evidence review of the impact of solar farms on birds, bats and general ecology

large scale PV development at airports (Wybo, 2013). The main attractant for birds recognised by Wybo (2013) was the potential for solar arrays to be used as nesting grounds; however, this claim was not supported with evidence. DeVault et al (2014) examined whether birds were more likely to use habitat at PV installations than nearby airfield grassland. This study was oriented towards the risk of bird airstrike presented by solar PV installations, so it is difficult to draw ecological conclusions from the results as a BHI (Bird Hazard Index) was the primary variable measured, rather than more robust ecological measurements. Nevertheless, DeVault et al (2014) found that higher bird densities were recorded at the PV sites than at the grassland sites, with similar species richness represented at both. The vegetation at each site is described showing considerable qualitative variation between the airfield sites and the PV sites. Generally, the grassland airfield sites had taller vegetation than the PV sites. The former were mowed at least once per year, with no management regime referred to for the latter. DeVault et al (2014) stated that PV arrays generally appear to be negative for wildlife at the local scale because airfield grasslands are managed to be unattractive to birds, and the small differences between these sites and the PV sites suggest that PV arrays are also unattractive. The study also states that birds were rarely observed foraging on or near PV arrays. Since no details on habitat management are provided for the PV sites, it is difficult to draw conclusions from this study regarding the general capacity of PV arrays to support avian biodiversity. In terms of collision risk, DeVault et al (2014) observed no obvious evidence for bird casualty caused by solar panels, despite conducting 515 bird surveys at solar PV sites.

Walston et al. (2016) compiled data on avian mortalities at USSE (Utility Scale Solar Energy) facilities in South West California, including both Concentrated Solar Power (CSP) and PV developments. The authors found that mortality rate (proportional to the generating capacity of the facility) associated directly with solar facilities was between 7 and 21 times higher at CSP sites than at PV sites, however it is worth noting that only three sites were assessed. As CSP and PV are pooled in the results of this study, it is difficult to extrapolate the likely mortality associated solely with solar PV developments, but this study shows that traumatic mortality can occur as a direct result of solar PV facilities, albeit at a much lower incidence than at CSP facilities.

Pearce-Higgins and Green (2014) studied the impacts of climate change on birds, including conservation responses (to climate change). They refer to the potential of CSP to have a detrimental effect on birds, whereas any negative impact of solar PV on birds is likely to be
Evidence review of the impact of solar farms on birds, bats and general ecology

relatively low. The latter is presented with the caveat that there is little evidence available, and that further research is urgently required. A study into the effect of CSP on birds at a facility in the Mojave desert, California presented in a non-peer reviewed study by McCrary et al. (1984), found that there is the potential for bird mortality through collision and incineration at CSP facilities. The risks from CSP and PV solar are not comparable as the mechanism of exploiting solar energy is fundamentally different. As CSP is not currently implemented in the UK, it will not be considered further in this review. Further reference is made in Pearce-Higgins and Green (2014) suggesting that solar is potentially the least ecologically detrimental renewable energy source, however there is the possibility of bird mortality through collision with associated overhead powerlines.

There is some evidence in the scientific literature that it is perceived as inappropriate to build solar developments in areas protected for their bird assemblage. For example, Sánchez-Lozano et al. (2014) exclude SPAs from a GIS (Geographic Information System) suitability model designed to inform on solar development placement in Spain. Although this approach is not substantiated with evidence, it reflects an approach advocated by some practitioners, policy makers and advisors outside of the academic scientific community in the UK. This will be discussed further in the grey literature results section of this review.

There are several general statements made regarding the potential effect of solar panels on birds in the scientific literature that are not supported with evidence. Terzioglu et al. (2015) suggest that solar developments are comparably less ecologically damaging and more environmentally friendly than electricity generation from wind. Ghazi and Ip (2014) refers to birds being attracted to the warmth of solar panels in summer months for which a citation is provided, however the original paper could not be found for this review. Toral and Figuerola (2010) state that the installation of solar farms on land used for rice cultivation would be detrimental to some water bird species. This claim is based on the study’s findings that land used to cultivate rice in south west Spain is used as habitat by some migratory water bird species, rather than any specific impact of solar farms. It is also suggested that the construction of solar farms will result in the loss of wetlands in southern Europe; however, no citation providing evidence of a negative impact of solar farms is presented.

The engineering literature frequently refers to bird droppings as a contaminant on solar panels, often with a proposal for a mechanism to remove guano (Ramaprabha, 2009; Al-Dhaheri et al., 2010; Dorobantu et al., 2011; Lamont and El Chaar, 2011; Vasiljev et al., 2013; Xie et al., 2013; Ghazi and Ip, 2014; Maghami et al., 2014; Mondal and Bansal, 2015a, 2015b), or makes reference to bird shadow as an obstacle to optimisation of energy generation potential (Ramaprabha, 2009; Liu and Liu, 2011; Pareek and Dahiya, 2014;
Evidence review of the impact of solar farms on birds, bats and general ecology

Uprety and Lee, 2014; Liu et al., 2015). Interestingly, Pareek and Dahiya (2014) exclude bird shadow from a predictive model for the shading of solar panels because it is ‘difficult to predict’. This could be interpreted as suggesting that bird use of solar farms is not temporally consistent, not geographically consistent or not consistent between PV developments. If the latter is true, then there must be a driver of bird use at solar farms other than the solar arrays themselves. The recognition of a potential conflict between solar electricity generation and birds is historical, Maag Jr. (1977) makes reference to “unwelcome migratory birds” as an environmental variable that may affect PV performance—perhaps reflecting a shift in attitude towards the conservation of biodiversity too.

Brinkworth and Sandberg (2006) discuss devices designed to prevent birds, insects and rain from entering cooling ducts associated with PV arrays. As this is oriented around the operation of the cooling ducts, rather than for the protection of birds, no ecological inference can be made other than, birds are expected to occupy habitat near cooling duct entrances at solar PV developments. Although providing little ecological information, these engineering articles provide indirect evidence for the presence of birds at solar farms, birds using airspace above the panels, and possibly birds using the arrays to perch. The hypothesis that birds may perch on PV arrays is also presented by DeVault et al. (2014) alongside the suggestion that there is potential for birds to use shade provided by the arrays at solar developments. Lamont and El Chaar (2011) refer to birds using solar arrays (predominantly on offshore rigs) as nesting sites. Photographs of bird nests atop solar arrays and bird droppings on solar panels are provided as evidence to support this but as this paper is primarily concerned with deterring birds from breeding near these structures, little ecological inference can be made.

Photovoltaic panels have been shown to reflect polarised light that is attractive to polarotactic aquatic insects, which confuse solar panels with water and attempt to lay eggs on the surface, resulting in mortality and reproductive failure (Horváth et al., 2010; Blahó et al., 2012). Insectivorous predators including birds such as White Wagtail (Motacilla alba), Yellow Wagtail (Motacilla flava), Magpie (Pica pica), House Sparrow (Passer domesticus) and Great Tit (Parus major) have been recorded feeding on polarotactic insects attracted to sources of polarised light such as vertical glass windows, horizontal black plastic sheets and dry asphalt roads (Kriska et al., 1998; Bernáth et al., 2008; Horváth et al., 2009). Bernáth et al. (2001) describe birds such as Black Kite (Milvus migrans), Great White Egret (Ardea alba) and Swallow (Hirundo rustica) attempting to drink from plastic sheets, hypothesising that this behaviour may be due to an attraction to surfaces reflecting polarised light. The study also describes the mortality of birds at a waste oil lake in Hungary, again attributing
this to the direct attraction to polarised light or to insects attracted to polarised light. As solar PV panels are solid, if this hypothesis is correct, there is unlikely to be a significant hazards to perched birds attempting to drink, however Swallows and related birds could be presented with a collision risk as hirundines are known to drink ‘on the wing’ (Bryant et al., 1984).

In summary, little scientific evidence exists that demonstrates a direct impact of solar PV on birds. It is likely that different avian species are likely to be affected differently by solar developments, dependant on the habitat within and around a solar PV development, the spatial requirements of a given species (e.g. flocking species such as pink-footed goose *Anser brachyrhynchus* that require large areas to host the flock) and the foraging behaviour of a given species. Until further scientific evidence is accrued to support any positive or negative impacts of solar farms on birds, we recommend that developments should be considered on a site by site basis with consideration given to 1) the habitat available prior to the development, 2) the habitat that will co-occur with the development and 3) the potential for attraction to polarotactic insect species (i.e. is the development close to a water body).

3.1.2. Potential effects of solar panels on bats

Based on this review, there is currently no experimental observational or theoretical scientific literature on the effect solar panels may have on bats. This is in contrast to wind power where a number of papers have been published (e.g. Arnett et al., 2008; Baerwald et al., 2008; Horn et al., 2008; Hayes, 2013; Rydell et al., 2016). Cryan and Barclay (2009) show that the causes of bat fatality at wind turbine sites can be separated into two categories, proximate and ultimate. Proximate causes represent direct fatalities such as barotrauma and collision with rotating blades or turbine masts. Ultimate causes encompass the reasons why bats may be near turbines, which may lead to a proximate fatality. As most of the threats and consequences associated with wind turbines for bats such as barotrauma (Arnett et al., 2016) and collision with blades (Alvarez and Lidicker Jr, 2015) are not presented by solar panels, it is difficult to draw comparisons. However, the concept of proximate and ultimate causes of fatality is a useful tool, as it allows hypothetical questions to be asked about the interaction between solar panels and bats in a way that is similar to the approach taken within the framework of wind turbines presented by Cryan and Barclay (2009). ‘Ultimate’ would be the hypothetical reasons that have the potential to lead to bats being near solar panels, and ‘proximate’ would be the consequences of bats being near solar panels.

A third category of remote causes has been included in this review. These are similar to the aforementioned ultimate causes; however, the emphasis is on factors that may repulse bats from a solar farm site in contrast to attraction. Once hypotheses are drawn from these three
Evidence review of the impact of solar farms on birds, bats and general ecology

causal mechanisms, a framework for the design of experimental testing can be established (Table 2). It is worth noting that the information in Table 2 represents generalised risks, however research into the risk of solar panels to individual bat species is needed.

Table 2. Hypothetical modes of collision mortality for bats at PV solar farms, modified from the approach presented by Cryan and Barclay (2009) for wind turbines and bat collision mortality. Proximate causes represent the potential direct mechanism of death, remote causes represent direct reasons mechanism by which bats are excluded from solar farms and ultimate causes represent the mechanisms by which bats occupy the airspace of solar farms or are repulsed from solar farms resulting in a proximate or remote death. Generalised experimental approaches for proving hypotheses are presented. These risks, hypotheses and experimental approaches are not species specific.

<table>
<thead>
<tr>
<th>Mode of action</th>
<th>Hypothesis</th>
<th>Experimental approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximate causes</td>
<td>Bats fatally collide with solar panels</td>
<td>Find evidence of traumatic bat fatality close to solar panels.</td>
</tr>
<tr>
<td></td>
<td>Bats fatally collide with solar farm infrastructure</td>
<td>Find evidence of traumatic bat fatality close to solar farm infrastructure.</td>
</tr>
<tr>
<td>Remote causes</td>
<td>Bats cannot use the habitat within solar farms and there is no alternative suitable habitat near the solar farm.</td>
<td>Determine whether bats used the site prior to conversion to a solar farm. Determine habitats within bat relocation distance of solar farms.</td>
</tr>
<tr>
<td></td>
<td>Solar farms provide a barrier to movement to bats.</td>
<td>Determine whether bats prefer to commute around solar farms over commuting through solar farms. Determine the energy requirement of bats; calculate energy expenditure of bats commuting around a solar farm as opposed to commuting directly through.</td>
</tr>
<tr>
<td>Ultimate causes: Random</td>
<td>Bat fatalities at solar farms are proportional to the population and demography</td>
<td>Determine whether the number of fatalities is proportional to the population of active bats engaging in a particular</td>
</tr>
<tr>
<td>Mode of action</td>
<td>Hypothesis</td>
<td>Experimental approach</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>of the bats present.</td>
<td>behaviour at all times of year outside of torpor, regardless of environmental conditions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determine whether age, sex, and morphological/ pathological (excluding traumatic injury) measurements of fatally injured bats at solar farms differ from live bats at solar farms.</td>
</tr>
<tr>
<td>Ultimate causes: Coincidental</td>
<td>Susceptibility increased during migration due to aggregation in space and time.</td>
<td>Determine whether a given bat species is gregarious during migratory period.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determine whether aggregation of bats occur at solar farms during migratory periods.</td>
</tr>
<tr>
<td></td>
<td>Susceptibility increased during migration because migratory bats are less likely to echolocate.</td>
<td>Determine whether migratory bats produce less frequent echolocation calls than non-migratory bats.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determine whether migratory bats fly at altitudes corresponding to the altitude of solar panels.</td>
</tr>
<tr>
<td></td>
<td>Susceptibility is lower for migratory bats than for non-migratory bats because migratory bats fly higher.</td>
<td>Determine whether migratory bats fly at higher altitudes than non-migratory bats.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determine whether solar panels are raised to elevations within the altitudinal range of migratory bat flight.</td>
</tr>
<tr>
<td></td>
<td>Susceptibility increases with increased feeding activity.</td>
<td>Determine whether there are more recorded collision mortalities at solar farms during periods of higher feeding activity.</td>
</tr>
<tr>
<td></td>
<td>Susceptibility increased during breeding season due</td>
<td>Determine whether there are more recorded collision mortalities during</td>
</tr>
<tr>
<td>Mode of action</td>
<td>Hypothesis</td>
<td>Experimental approach</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td>to higher mating activity.</td>
<td>periods of breeding activity.</td>
</tr>
<tr>
<td></td>
<td>Susceptibility increased immediately after breeding season due to inexperience of flying by juveniles.</td>
<td>Determine whether there is a disproportionate ratio of juvenile collision fatalities to total number of juveniles compared to adults.</td>
</tr>
<tr>
<td>Ultimate causes: Attraction</td>
<td>Bats are generally attracted to solar panels or farms</td>
<td>Determine whether bats flight movement near solar panels is biased towards the solar panels.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determine whether abundances of bats at solar farms are greater than the number of bats at control sites.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determine whether abundances of bats at solar farms are greater than the number of bats present prior to the solar farm.</td>
</tr>
<tr>
<td></td>
<td>Bats are attracted to noise at solar farms.</td>
<td>Noise from solar farm needs to be quantified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do playback experiments of recorded solar farm noise attract bats?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If noise from solar farms can be adjusted, determine the effect of adjustment on bats.</td>
</tr>
<tr>
<td></td>
<td>Bats are attracted to lights associated with solar farms.</td>
<td>Comparison of bat activity with lights off at solar farms versus lights on.</td>
</tr>
<tr>
<td></td>
<td>Flying insects are attracted to solar farms, resulting in bat attraction to insects at solar farms.</td>
<td>Determine flying insect abundance at solar farms versus control sites.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quantify bat feeding buzzes as a function of distance from solar panels.</td>
</tr>
<tr>
<td></td>
<td>Bats are attracted to modified landscape features</td>
<td>Categorise and quantify modified features at solar farms. Use knowledge of bat ecology and behaviour to determine</td>
</tr>
<tr>
<td>Mode of action</td>
<td>Hypothesis</td>
<td>Experimental approach</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>associated with solar farms</td>
<td>whether it is likely that these features are attractive.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determine whether bat activity is spatially correlated with modified landscape features.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determine whether spatial patterns of bat collision mortality are correlated with the location of modified landscape features.</td>
</tr>
<tr>
<td></td>
<td>Bats are attracted to solar panels as potential roosts.</td>
<td>Assess whether solar panels and associated infrastructure offer roosting potential.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If there is roosting potential, undertake emergence/ re-entry surveys to determine whether bats are roosting at solar farms.</td>
</tr>
<tr>
<td></td>
<td>Bats are attracted to solar panels as mating or gathering sites</td>
<td>Determine whether territorial or mating behaviour is correlated with solar panel locations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determine whether social behaviour is correlated with solar panel locations.</td>
</tr>
<tr>
<td></td>
<td>Bats are displaced by solar farms.</td>
<td>Determine whether bat abundances at solar farms are lower than at control sites.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determine whether bat abundances at solar farms are lower than those at the same site prior to the solar farm.</td>
</tr>
<tr>
<td>Ultimate causes:</td>
<td>Solar farm create a barrier to movement</td>
<td>Compare bat movement through solar farms to bat movement around solar farms.</td>
</tr>
</tbody>
</table>

The lack of scientific literature on the effect of solar PV arrays or panels on bats makes it difficult to draw conclusions. Naïve juvenile bats have been shown to demonstrate drinking
Evidence review of the impact of solar farms on birds, bats and general ecology

behaviour over smooth plates (Greif and Siemers, 2010), however this study makes no reference to solar panels and does not quantify collision risk or any potential ecological impact presented by this behaviour. Greif and Siemers (2010) state that the results of their experiment demonstrate that bats use echolocation to detect and recognise water bodies and smooth surfaces. If this is the case, and bats do indeed mistake solar panels for waterbodies, there may be a collision risk presented to bats through attempts to drink from solar PV panels. However, the fact that bats use echolocation to recognise smooth surfaces, with no collisions reported in Grief and Siemers (2010) suggests that some bat species may be adept at avoiding collision with flat surfaces. The study species used in Grief and Siemers (2010) were Schreiber's bat (Miniopterus schreibersii), Daubenton’s bat (Myotis daubentonii), Greater Mouse-eared bat (Myotis myotis) and Greater Horseshoe bat (Rhinolophus ferrumequinum).

Horváth et al. (2009) present an image of a bat trapped in a waste oil lake in Budapest and suggest that this may be because the bat was killed by predating on polarotactic insects attracted to the surface of the oil. Polarotactic insects are indeed known to be attracted to solar panels (Horváth et al., 2010; Blahó et al., 2012), which in turn would suggest that insectivorous bats have the potential to be attracted to solar PV arrays. Further research is needed to determine whether this presents a collision risk. Excluding collision risk, the attraction of bat to solar farms as foraging ground may have a positive impact providing suitable roosting and breeding habitat is within the vicinity of the solar farm, however, further research is needed to determine this. In addition, insectivorous bats have the potential to disrupt the population cycles of agricultural pest insect species providing an ecosystem service (Boyles et al., 2011) and a potential benefit if insectivorous bats are attracted to solar farms.

In order to determine the impacts of solar PV developments on bats, experimental or observational research is urgently required and should be conducted on a species or guild basis in the UK due to behavioural differences and variation in ecological requirements. The hypotheses and experimental approaches presented in table 2 provide a rudimentary foundation for further research.
3.1.3. Potential effects of solar panels on general ecology

Several publications take into account the ecological and environmental impacts of the manufacturing, deployment and disposal/recycling of PV solar panels, often with a LCA (Life Cycle Assessment) approach (e.g. (Coleman et al., 1980; Moskowitz et al., 1994; Doi et al., 2003; Góralczyk, 2003; Fernández-Infantes et al., 2006; Müller et al., 2006; Kim et al., 2012; Kreiger et al., 2013)). As this review is concerned with the ecological impact of in-situ large scale PV developments, any ex-situ risks or impacts of PV developments will not be considered.

Although the potential environmental benefits of solar PV developments are recognised in terms of reduced GHG (greenhouse gas) emissions and a reduction in the reliance on fossil fuels for electricity generation (Tyagi et al., 2013), there is little reference in the scientific literature to ecological benefits at a local or landscape level. Akikur et al. (2013) state that the deployment of solar PV has “thus far been ecologically friendly”; however, this is not support with evidence or reference. This article also states that solar PV facilities emit no sound pollution during operation- a quality that reduces the potential for local ecological impact- however the reference provided does not make reference to sound pollution (Joshi et al., 2009), rendering this an unsubstantiated claim.

In terms of the potential for negative ecological impacts of solar-PV developments, no peer-reviewed experimental publications were found during the literature search that provide evidence of negative impact, and very few discuss implications (Fthenakis et al., 2011; Lovich and Ennen, 2011). Several articles discuss the potential environmental impact of large-scale solar PV developments, incorporating the possible effects on biodiversity and ecology (Lovich and Ennen, 2011; Turney and Fthenakis, 2011; Hernandez, Easter, et al., 2014; Hernandez, Hoffacker, et al., 2014; van der Winden et al., 2014; Hernandez et al., 2015). Unfortunately, the discussions within the literature often to refer to CSP and PV systems alongside one another, making it difficult to disentangle potential ecological impacts relating solely to solar PV developments. Hernandez et al. (2014) suggest that land-use efficiency can be maximised for large scale solar developments by building arrays on brownfield sites to create ‘brightfield sites’ or on bodies of water (’floatovoltaics’) or by maintaining agricultural practices at solar developments. Although these suggestions are not necessarily made from an ecological perspective, rather from the perspective of economic streamlining, the suggestion that arrays can co-exist with secondary practices leads to the possibility of opportunities for biodiversity enhancement and ecological benefits.
Evidence review of the impact of solar farms on birds, bats and general ecology

Hernandez et al. (2015) attempted to quantify land-use change and land cover characteristics of existing utility scale solar developments in California, United States. The article concludes that poor siting of large scale solar developments can result in ecologically adverse land-use change, including outside of protected areas where the removal or conversion of habitat providing contiguity and corridors between protected areas may lead to habitat fragmentation. This is agreed upon in Hernandez, Easter, et al., (2014), who refer to the potential for changes in soil dynamics leading to invasive species propagation and water stress caused by the necessity to clean solar PV systems. The potential land change impacts of solar farms on biodiversity is discussed in Fthenakis et al (2011), who state that the land may be scraped to bare earth during a facility’s construction, requiring a long time period to return to habitat of ecological value. This article also refers to shadows cast by solar PV panels that have the potential to alter microclimatic conditions within a solar development. Dale et al. (2011) highlight that further research is needed to determine the ecological impacts of renewable energy developments (including solar developments) at spatially appropriate scales (i.e. landscape and local).

The potential impact of large-scale solar PV developments on aquatic ecosystems is explored in Grippo et al., (2014). This paper highlights that an understanding of the hydrological effects that the construction of a utility scale solar development will have is vital for maintaining the health of surrounding aquatic environments. Alterations in water flow may have the potential to change nutrient flows and the leaching of contaminants such as dust suppressants used on solar panels may have adverse effects on aquatic ecosystems and soil stability.

Ecologically considerate placement of solar farms is likely to be critical to the reduction of any ecological impact a solar development might have. Several studies have attempted to determine optimal siting for solar developments (Haurant et al., 2011; De Marco et al., 2014; Calvert and Mabee, 2015) which often incorporate an ecological element, however also take into account other factors such as economic impact and visual impact, highlighting a complex decision process in the siting of solar developments. De Marco et al. (2014) frame the potential for conflict between solar PV developments and biodiversity around the provision of ecosystem services. De Marco et al. (2014) conclude that ecologically sympathetic siting of solar PV developments is critical not only for minimising the impact on habitat connectivity and on protected areas, but also on the connectivity of ecosystem service providing units. More research is needed to empirically and quantitatively understand the effects that solar PV developments may have on biodiversity. Lovich and Ennen (2011) call for more research using a BACI (Before and After, Control and Impact) approach and for
Evidence review of the impact of solar farms on birds, bats and general ecology

work to be undertaken to better understand the potential cumulative impact of solar facilities on biodiversity.

3.1.4. The Grey Literature

Non-Governmental and Governmental Organisations with relevance to the UK – the impact on birds and bats

The organisations listed in Table 1 were investigated for information and advice pertaining to solar PV developments and their ecological effects. Some organisations such as Birdlife International and DECC provide relatively detailed information, whereas others provide no readily available information. The findings of these investigations are presented below for birds, bats, and general ecology. Organisations that do not provide relevant information are not included in the body of this review, however a table summarising the information presented by each organisation can be found in Appendix 5.

Birdlife International produced a document containing information on the potential ecological impacts of solar development, with special emphasis on birds (Birdlife International, n.d.). This document relates to a specific project (‘Migratory Soaring Bird Project’) in the Rift Valley/Red Sea Flywall region of Egypt. Some of the information relates to technologies not in use in the UK (e.g. CSP), however there is reference to ecology and large-scale solar farms. The document states that governments should incorporate solar energy as a part of their renewable energy plans, but emphasises that the potential ecological impacts of large scale solar developments are poorly understood. Birdlife International suggests five potential negative impacts that solar PV arrays may have on birds. These are habitat loss/fragmentation, collision risk, disturbance, barrier effect, and change of habitat function. It is advised that an SEA (Strategic Environmental Assessment) should be undertaken alongside sensitivity mapping at the pre-planning stage in order to avoid development on areas that are particularly ecologically sensitive or are protected for their ecological significance.

More general, project non-specific information on the ecological impacts of solar PV have been published by Birdlife including a document outlining the organisation’s position on climate change, which includes the potential impacts of solar technologies (Birdlife International, 2015). This document states that PV developments that do not rely on existing

Evidence review of the impact of solar farms on birds, bats and general ecology

built infrastructure have the potential to negatively impact birds through habitat loss, fragmentation of habitat and disturbance or displacement of species during construction, operation, and maintenance activity. In summary, Birdlife recognises the importance of solar PV in a renewable energy landscape and supports the use of the technology, providing that developments are on existing built infrastructure or in areas of low biodiversity value. The organisation advises appropriate design and management including in-situ biodiversity enhancing practices and recommends seeking advice from ornithologists when undertaking EIA in relation to solar developments. Birdlife (2015) repeatedly states that there is a need for further research into the potential impacts of solar developments on birds.

Birdlife Europe (2011) is a document that provides detailed information on the potential ecological effects of various forms of renewable energy technologies, with emphasis on Europe. Within this document, solar PV requiring new infrastructure is classified as a ‘medium risk’ technology, as determined through “ecological reasoning and conservation experience.” Scientific evidence is presented for other renewable technologies, however not for solar PV, reflecting a lack of scientific literature available. The document highlights the potential for solar PV developments to result in habitat modification and fragmentation with potential significant negative impacts on biodiversity in areas of high ecological value. Birdlife Europe (2011) states that solar PV arrays on farmland may present particularly high risks for open habitat bird species such as Lapwing (Vanellus vanellus) and Skylark (Alauda arvensis) with the potential for disturbance resulting in reduced opportunities for foraging, breeding, and roosting. The potential for cumulative impacts of multiple solar PV developments in a concentrated locality is highlighted, which could negatively affect bird species at the population level. Mitigation options are provided, however it is emphasised that these should be tailored on a case by case basis for solar PV developments. These include avoiding areas legally protected for their wildlife, undertaking the construction and maintenance of solar PV developments in a time-sensitive manner (e.g. avoiding the breeding bird season), and planting hedgerows between sections to minimise collision risk to waterfowl (Birdlife is openly aware however that there is no scientific evidence of collision risk presented by solar PV arrays). Birdlife Europe (2011) advocates the use of land within the vicinity of solar PV arrays for biodiversity enhancement including the conversion of improved and intensely farmed grassland to wildflower meadow, the use of hedgerows for screening, enhancing associated infrastructure for wildlife (e.g. incorporating bird boxes) and the use of grazing in preference to mowing for managing grassland. Birdlife Europe (2011) is echoed by CIEEM, where it is used to provide a summary and synthesis on the ecological impacts of renewables, including solar developments (Scrase and Gove, 2012).
Evidence review of the impact of solar farms on birds, bats and general ecology

The RSPB contributed to Birdlife Europe (2011), however they have produced their own policy briefing that outlines the society’s position on solar PV developments (RSPB, 2014). This document states that the RSPB advocate solar technologies, however recommends avoiding deployment in locations close to protected areas, or close to water features (highlighting a potential negative impact upon aquatic invertebrates as a risk, both independently and as a food resource for birds). In contrast to this advice, RSPB are also supportive of floating solar arrays with the caveat that the ecological quality of the water body must not be negatively affected. Within this document, it is highlighted that there is always a risk of bird collision with man-made objects and there is a lack of evidence pertaining specifically to solar farms. RSPB (2014) also refers to security fencing as a potential barrier to movement for mammals and amphibians. It is stated that loss of habitat through the development of solar PV arrays may be an issue for rare arable forbs, however the RSPB states that the capacity for vegetation to grow under raised solar panels could provide opportunities for biodiversity enhancement including roosting potential, hibernation refuges, mutualistic use of land for agri-environment schemes and managed realignment of land behind sea walls. The RSPB calls for the monitoring of solar PV developments to determine ecological risk. The RSPB is currently working alongside a solar energy developer (ANESCO) to determine how solar developments can benefit biodiversity; however, there are no results from this partnership readily available.

A brochure for the BTO’s farmland bird appeal highlights the need for research into strategies for minimising negative impacts and maximising positive impacts of solar farms on birds (BTO, n.d.). This document suggests that bird surveys should be undertaken (taxa non-specific) at solar farms to determine how birds might be affected. The brochure is not dated; however, a current live link is available through the BTO website.

SNH published a document providing information on the potential environmental effects of small scale renewables (i.e. developments of <50kW), which in the case of solar PV appears to refer to roof mounted units. It is advised by SNH that these solar developments may cause problems if they obstruct a known bat roost, or bird’s nest (SNH, 2016b). SNH produced a document on small scale renewables and their potential effect on the environment. This refers to developments of <50kW, and in the case of solar PV appears to

6 http://anesco.co.uk/anesco-and-rspb-shine-light-on-solar-farm-biodiversity-2/ [last accessed 21/04/2016]
7 http://www.bto.org/support-us/appeals/farmland-bird-appeal [last accessed 15/04/2016]
Evidence review of the impact of solar farms on birds, bats and general ecology

refer to roof mounted units. It is advised that these solar developments may cause problems if they obstruct a known bat roost, or bird’s nest (SNH, 2016b). SNH (2016a) goes on to say that SNH recommend that protected species surveys should be conducted prior to works starting (otter is given as an example species). This document states that there may be a collision risk for ground nesting birds under solar arrays, that solar panels may deter birds from feeding and that displacement and collision risks may be presented by infrastructure however, these risks are not referenced.

The BCT provides no readily available information on the ecological impacts of utility scale solar PV developments. However, the BCT is attempting to collect data on incidents involving bat and solar PV installations with reference to the construction industry. This insinuates an interest in distribution scale solar developments, but not necessarily utility scale developments.\(^8\) A short statement on the BCT website emphasises that although BCT welcome microgeneration renewable technologies, the installation of rooftop solar panel may disturb bats.\(^9\)

In a document published by Natural England (Natural England, 2011), a scientific paper relating to the potential impact of solar panels on bats is referenced that did not appear in the literature search (Greif and Siemers, 2010). This citation is misleading as the scientific paper in question demonstrates that naïve juvenile bats spontaneously demonstrate drinking behaviour in response to smooth plates- not solar panels. No mention of solar panels is made in Greif and Siemers (2010).

The potential for birds to collide with powerlines, the potential loss of bat habitat, and the attraction of bats to light on site are identified in DOE (2015). Mitigation advice given is general and includes avoiding the loss of bat habitat, using sensor activated security lights, and avoiding placement of powerlines that obstruct bird movement. A document produced by BRE providing biodiversity guidance for solar developments is cited (BRE, 2014b).

Non-Governmental and Governmental Organisations with relevance to the UK: the impact of solar farms on general ecology

\(^8\) http://www.bats.org.uk/news.php/283/we_need_your_help [last accessed 15/04/2016]

\(^9\) http://www.bats.org.uk/pages/microgeneration_issues.html [last accessed 15/04/2016]
In the DECC’s ‘UK solar PV Strategy’ part 1, it is stated that there is increasing evidence that solar farms can provide benefits to biodiversity (DECC, 2013b), citing several grey literature documents to support this (GREA, 2010; Natural England, 2011; Parker and McQueen, 2013). This document also quotes the NPPF (National Planning Policy Framework) stating that if a solar proposal involves greenfield land then it should allow for continued agricultural use and/or encourages biodiversity around arrays (DCLG, 2013). In a separate document produced by DECC, ‘UK solar PV Strategy Part 2’ (DECC, 2014b) it is stated that the DECC is committed to working with industry to promote and develop best guidance practices for solar developments including with regards to biodiversity enhancement. Paragraph 73 of DECC (2014b) states that DECC and Defra will collaborate with industry to better understand positive and negative ecological impacts of solar farms, although the document does not specify how this will be achieved. It is recognised by DECC that solar farms have the potential to benefit biodiversity, but also have the potential to be damaging to biodiversity and ecosystems. Although no specific effects are referred to in this document, several items of grey literature are referenced (BRE, 2013, 2014b; STA, 2013).

Natural England published a document stating that there is the potential for solar panels to have negative ecological impacts in areas of high wildlife value, or close to protected or designated conservation sites (Natural England, 2011). Mitigation measures such as habitat creation and the careful use of lighting are advised, and it is recognised that biodiversity impacts will differ from site to site and in different regions. Biodiversity enhancement practices are also advised including the creation of hedgerows and ponds, the planting of wild bird seed mixtures and the planting of nectar rich margins. The opportunities for biodiversity enhancement at solar PV arrays on agricultural land are presented in a positive light in comments made in a 2012 issue of the bulletin of the IEEM (Institute for Ecology and Environmental management, now CIEEM) (Box, 2012). Friends of the Earth provide uncited advice suggesting that solar farms should avoid “the best agricultural land and areas important to wildlife”, with preference to brownfield and contaminated land (FOE, 2014). The document also states that solar farms can provide an opportunity to create habitat.

There is little information on the specific impacts of solar farms on plant taxa. An assessment by NRW of the distribution and potential threats to *Sphagnum spp.* States that “solar arrays can cause local loss of Sphagnum habitats” (NRW, 2013). This statement is unsupported with evidence. Although this document was provided through the JNCC website, it explicitly states that all the information within relates to Wales only and is provided by NRW. Two documents available through the BSBI (Kitchener, 2015; Kitchener, 2016) describes a botanical survey site as not particularly affected by construction works (it is insinuated that
Evidence review of the impact of solar farms on birds, bats and general ecology

the construction relates to the solar farm and that the effect in question is ecological) when noting the occurrence of mossy stonecrop (*Crassula tillaea*). An evidence review of the conservation impacts of energy production was written on behalf of JNCC by IEEP (Institute for European Environmental Policy) in 2008 (Tucker et al., 2008) which cites Abbasi and Abbasi (2000) to support a claim that large scale solar developments may cause soil erosion and compaction. It is likely that this has the potential to negatively impact plant communities, however Tucker et al (2008) concludes that although large land areas may be required by utility scale PV developments, there is likely to be “relatively low or no impact” on UK biodiversity.

The NFU produced a briefing on solar PV and agriculture in 2013 (NFU, 2013) and an updated version in 2015 (NFU, 2015). These documents discuss the fact that multi-purpose land use is encouraged by most solar developers. This may include the continuation of farming practices such as sheep grazing or chicken rearing, but can also include practices encouraged by Environmental Stewardship (ES) schemes such as the creation of habitat for pollinating insects, winter foraging habitat for birds and nest boxes. The document also states that it can be advantageous to fence off solar developments from other agricultural land either to avoid losing out on Single Payment Scheme remuneration, or to “provide fenced wildlife refuges.” The NFU has worked with industry to provide best practice guides for solar developments, including for biodiversity enhancement. The two main industrial bodies are the Solar Trade Association (STA) and the National Solar Centre (the date for the STA guidance document was taken from NFU (2015)) (STA, 2013; BRE, 2014a).

A document produced by JNCC in 2015 attempts to investigate the ecological concerns of a selection of UK businesses and the biodiversity enhancement measures implemented by these businesses (McNab et al., 2015). Although the businesses were anonymised, it is consistently stated throughout this document that within some businesses representative of the energy sector there is concern at the lack of research and available evidence on biodiversity enhancement and environmental gain around solar farms. One business surveyed (an electricity supply company with an approximate turnover of £28 million, 130 employees and operations throughout the UK) states that biodiversity enhancements such as wildflower meadow and wetland creation and hedgerow and tree planting are incorporated into the operational design of their solar PV projects. On top of this, the

10 http://bsbi.org.uk/KentRPR2016Ce.pdf [last accessed 15/04/2016]
Evidence review of the impact of solar farms on birds, bats and general ecology

A business undertakes ecological monitoring of these sites and reports the biodiversity status of the solar PV sites internally.

A document produced by IUCN providing advice on solar developments (in the Pacific region) states that operating PV systems are silent (IUCN, n.d.). If this is true then this may reflect a reduced risk of attraction or repulsion for some taxa, however no experimental evidence has been found supporting this claim during the course of this review. Under the IUCN red list entry for Kit Fox *Vulpes macrotis*, reference to large scale solar farms in western North America are cited as a potential cause for decline in this species\(^\text{11}\). The entry states that further information on the effects of solar farms is needed, and that research is being undertaken in Mexico on the effects of solar development on the San Joaquin Kit Fox, however no reference is given. This research would be useful, as it may provide insight into the potential impacts of solar PV on small to medium sized mammals.

The NIEA (under the name of its parent body, the Department of the Environment) published a document that provides standing guidance on the considerations to take into account when seeking planning for solar development, including impacts on biodiversity (DOE, 2015). It is stated within this document that solar arrays are not considered to impact significantly on wildlife. Impacts on habitats include the potential drainage of wetlands along cabling routes, and direct loss of habitat within the footprint of a solar development and associated infrastructure. The potential for indirect impacts on habitat outside of a solar development footprint is highlighted, although this is not expanded on or referenced. General potential impacts of groundwork projects are highlighted including the potential for a negative impact on ground nesting birds during the construction phase of a development and a potential negative impact on [blank]. Mitigation advice given is general and includes providing mammal gates in security fencing and using sensor activated security. A document produced by BRE providing biodiversity guidance for solar developments is cited (BRE, 2014b).

There is no readily apparent centralised opinion on solar PV developments presented by the wildlife trusts. There are concerns about the ecological impact of specific solar PV developments from some wildlife trusts, whereas other wildlife trusts appear to be more supportive of solar PV developments. For example, Wiltshire wildlife trust strongly opposed a

\(^\text{11}\) http://www.iucnredlist.org/details/41587/0 [last accessed 19/04/2016]
Evidence review of the impact of solar farms on birds, bats and general ecology

development on Rampisham Down12,13 and Shropshire wildlife trust opposed a temporary access road to a solar farm at Granville Country Park14. In contrast, at Cleworth Hall Farm in Tyldesley a solar farm is being planned in conjunction with a solar developer (Solstice) to be built on Lancashire wildlife trust land. The trust and Solstice are working together to maximise the potential for the site to deliver biodiversity benefits alongside the development15. Despite opposition to the development at Rampisham down, Wiltshire wildlife trust supports WWCE (Wiltshire Wildlife Community Energy), an organisation that helps to develop renewable projects including solar PV developments16. WWCE promotes the use of solar as means of generating electricity, providing that site placement is appropriate and that biodiversity management plans are in place including management of meadows in the array footprint using grazing and placing beehives underneath arrays17. A presentation slideshow from WWCE claims that warm air above the solar panels will attract insects in turn attracting birds, that voles and mice use habitat underneath the panels and that skylarks will nest between the panels, however these statements are uncited (Bennett, 2014). The presentation also refers to a 2014 study that showed three times the number of bumblebees at a solar development compared to a control plot, however this study is uncited.

SRUC provide a solar PV consultancy service, however no information on the ecological impacts of these developments is readily available18, despite producing a guide on behalf of the Scottish government providing advice on farm scale renewables, including solar (SRUC, 19).

12 http://www.wildlifetrusts.org/news/2015/01/16/solar-farm-shock-decision-will-destroy-legally-protected-wildlife-site [Last accessed 22/04/2016]

13 http://www.wildlifetrusts.org/RampishamDown [last accessed 22/04/2016]

14 http://www.shropshirewildlifetrust.org.uk/news/2015/09/30/nature-reserve-under-threat [last accessed 22/04/2016]

15 http://www.lancswt.org.uk/news/2015/09/08/solar-farm-boost-wildlife [last accessed 22/04/2016]

16 http://wwce.org/about/ [last accessed 22/04/2016]

18 http://www.sruc.ac.uk/info/120137/renewables/1049/solar_and_photovoltaics [last accessed 21/04/2016]
Evidence review of the impact of solar farms on birds, bats and general ecology

n.d.). In searching for information provided by SRUC, several news stories were found citing a ‘solar meadow’ built at Edinburgh College19,20,21. The solar meadow is discussed on Edinburgh College’s engineering webpage22, however there is no information on the ecology of the site other than that the solar meadow will allow the study of the interaction between biodiversity and solar PV. There is no indication as to why the development is named a ‘meadow’ - all photographs of the development on this website, and in news reports show bare earth under the solar panels. If used appropriately, this facility has the potential to allow research into the ecological impacts of solar PV developments.

3.1.5. Non peer reviewed scientific research

During the course of assessing the grey literature available for this review, several non-peer reviewed studies assessing the ecological impact of solar PV developments were discovered.

Parker and McQueen (2013) conducted a survey of four solar farms alongside control plots for each. The experimental design seems reasonable and some basic statistical analysis is provided, adding credibility to the results of this study. Botanical surveys, bumblebee surveys and butterfly surveys were conducted at all four sites. Bumblebee and butterfly diversity was consistently higher at all four solar farm sites when compared to the control sites. Differences in abundance of bumblebees and butterflies varied between sites, however statistically significantly higher number of bumblebees were found at three of the

20 http://www.bbc.co.uk/news/uk-scotland-edinburgh-east-fife-22282888 [last accessed 21/04/2016]

22 http://www.edinburghcollege.ac.uk/Welcome/Centres/Engineering/Our-Facilities [last accessed 21/04/2016]
Evidence review of the impact of solar farms on birds, bats and general ecology

solar farms when compared to the control sites, and at two of the solar farms for butterflies. Botanical diversity was consistently higher at solar farms when compared to control sites. Two of the solar sites had been seeded with wildflower mix, suggesting that with good habitat management, solar PV developments can be beneficial for biodiversity.

Feltwell (2013a) and Feltwell (2014a) are articles published in the Newsletter of the Kent Field Club. Feltwell (2013a) used a casual walkover method to survey for bird mortality at a 12.5ha solar farm in Kent. A total of 25 visits were made between September 2011 and September 2012, with a total of 3.5 km walked between the solar PV arrays on each visit. No bird mortalities observed were obviously attributable to collision with the arrays, however one mute swan appeared to have been killed by overhead powerlines, and a further 16 mortalities of four species (Little Egret (*Egretta garzetta*), Carrion Crow (*Corvus corone*), Pheasant (*Phasianus colchicus*), and Woodpigeon (*Columba palumbus*)) were attributed to predation. A total of 62 species of bird were recorded over and amongst the solar arrays during the walkovers, suggesting that some solar farms are capable of supporting a healthy assemblage of bird species. Casual vantage point surveys were also conducted, where the author describes regularly seeing Wheatear *Oenanthe oenanthe* and swallow *Hirundo rustica* perching on the solar arrays. The habitat is described as improved farmland, suggesting that the site is not managed to be beneficial for biodiversity. Feltwell, (2014a) describes an informal invertebrate survey that appears to be have been undertaken during the aforementioned bird survey (Feltwell, 2013a). Over 60 species of insect were recorded, with “buffer areas” on site described as reservoirs for invertebrate diversity. Butterfly species appeared to be benefitting from the grass species on site, with some using the infrastructure of the solar farm as substrate to pupate. Diptera and Coleoptera were the only orders of insect observed on the solar panels themselves.

Kadaba (2014) is a Master’s degree project that describes the ecology of the desert kit fox (*Vulpes macrotis arsipus*) in the Chuckwalla Valley, California. Although heavy reference is made to the potential threats of high land cover of solar developments, no citations are provided. Some of the threats referred to are however intuitively plausible. They included habitat fragmentation and loss, displacement and mortality on new roads. No attempt is made to quantify the threats directly related to solar facilities, and it is not clear whether the author is referring to CSP or PV developments.
Evidence review of the impact of solar farms on birds, bats and general ecology

3.1.6. Solar energy hardware manufacturers, suppliers and advisory groups

BRE has produced several documents providing information and advice on ways to maximise biodiversity potential at solar farm sites. The most often cited is BRE (2014b). This document provides options for habitat enhancement on site once a development has been completed, and advice for minimal impact during the construction phase. The advice is general in its approach and involves recommendations that one might expect to see in ecological consultancy reports. BRE (2013) and BRE (2014a) provide similar information, although the latter is more oriented towards agricultural good practice, incorporating elements of biodiversity enhancement.

The Solar Trade Association has produced '10 commitments' associated with solar farms, three of which pertain to the conservation and enhancement of biodiversity. These are general in nature and not prescriptive.\(^{23}\)

3.1.7. Planning decisions on solar PV developments in the North West of England

Using the July 2015 renewable development planning database provided by the UK government, 49 applications for planning permission for solar PV developments were identified in the North West of England. Records for applications in the North West of England within this database begin on 29th May 1991, however the first record for a PV development does not appear until 14th March 2011 reflecting the recent surge in solar energy developments in the region. Of the 49 planning applications for solar PV developments, 32 applications had been processed at the time of acquiring these data. Twelve of these applications had been refused planning permission, two applications were withdrawn, and the remaining 18 were granted planning permission (figure 1). All of these applications relate to developments with a generating capacity of greater than 1 MW.

\(^{23}\) http://www.solar-trade.org.uk/solar-farms/ [last access 26/04/2016]
Evidence review of the impact of solar farms on birds, bats and general ecology

Figure 1. The application status of all planning applications for solar PV developments in the North West of England where a planning decision has been reached. A large proportion of these applications are rejected.

Of the applications that were refused, several were refused on ecological grounds. These decisions are summarised in table 4. This is despite the fact that some of those refused applications such as a solar farm in Aughton, Lancashire (planning reference: Ref: 2014/0601/FUL) provide details of biodiversity mitigation including hedgerow laying and wildflower meadow planting. Many of the refused applications included detailed ecological appraisals or impact assessments of the proposed developments and were not refused on ecological grounds (table 4).

Table 4. Planning applications in the North West of England for all solar PV developments that have been refused planning permission. Where ecological reasons for refusal are presented by the relevant planning authority, they are summarised.
Planning application

<table>
<thead>
<tr>
<th>Planning application</th>
<th>Ecological reason for refusal of planning permission</th>
</tr>
</thead>
</table>
| 16MW solar farm: Lathom, Lancashire | - Development will result in disruption of the green belt and encroachment into the countryside.
 - Insufficient evidence provided to demonstrate that no adverse effect to protected species and habitat will occur.
 - Insufficient evidence that agricultural land of lower quality is available as an alternative. |
| Ref: 2014/0791/FUL | |
| Solar farm: Aughton, Lancashire | - Development will result in disruption of the green belt and encroachment into the countryside. |
| Ref: 2014/0601/FUL | |
| 14.63 MW solar farm: Wigton, Cumbria | - None. Refusal was made on grounds of landscape character, including backing on this from Natural England. |
| Ref: 2/2014/0636 | |
| Solar park: Workington, Cumbria | - None. Refusal was made on grounds of negative impacts on amenity value. |
| Ref: 2/2014/0899 | |
| 8.28 MW solar park: Nantwich, Cheshire | - None. Refusal was made on the grounds of landscape character, and on the grounds that it would result in the loss of some of the “best and most versatile agricultural land,” referring primarily to the land’s economic value. |
| Ref: 14/4296N | |
| 13.28 MW solar park: Marbury, Cheshire | - None. Refusal was made on grounds of landscape character. |
| Ref: 14/4380N | |
| Up to 4.99 MW solar farm: Heapey, Chorley | - Development will result in disruption of the green belt.
 - In addition, landscape character and amenity impact are cited. |
| Ref: 14/01132/FULMAJ | |
| Up to 8 MW solar farm: Heapey, Chorley | - Development will result in disruption of the green belt. |
| Ref: 14/01132/FULMAJ | |
Evidence review of the impact of solar farms on birds, bats and general ecology

- Insufficient information presented on the potential ecological impacts of the development, with special emphasis on Great Crested Newts (*Triturus cristatus*), habitat connectivity and habitat loss.

- Development will result in disruption of the green belt.

- Other reasons for refusal include loss of best and most versatile agricultural land and impact on assets with heritage value.

- None. Reasons cited include landscape character and loss of access to Public Rights of Way.

- Development will result in disruption of the green belt.

- Reference to environmental concerns associated with works analogous to a landfill operation planned at the site.

- The application does not provide sufficient evidence that there will be no impact on the ecology of nearby SPAs (Special Protection Areas) and SSSIs (Sites of Special Scientific Interest).

- The planning authority expresses concerns that the development may adversely impact ground nesting birds such as Lapwing (*Vanellus vanellus*) and Skylark (*Alauda arvensis*).

- The application does not provide sufficient evidence that there will be no impact on protected species such as Great Crested Newt or Common Toad (*Bufo bufo*).

- Concerns are raised by the planning authority about the general potential impact the development may have on biodiversity, and the lack of evidence for potential mitigation that is provided.
Evidence review of the impact of solar farms on birds, bats and general ecology

- Other reasons cited include loss of landscape character and impact on public rights of way. Interestingly, the planning authority expresses concerns for the plan to erect 2.4m hedges, that will restrict views- however also expresses concerns about the potential loss of hedgerows that the development may cause.
4. Conclusions

A combination of climate change policy, improvements in solar PV technology and reduced costs of solar PV hardware have led to the UK adopting solar powered electricity generation as part of the national energy landscape. Due to the spatial requirements of utility scale solar PV developments, the physical landscape of UK habitats will be affected by the implementation of these technologies necessitating an understanding of the potential effects that solar PV may have on biodiversity. Understanding requires evidence which is traditionally gathered through robust scientific investigation and peer reviewed publication. No experimental studies specifically designed to investigate the in-situ ecological impacts of solar PV developments were found in the peer reviewed literature. Considering that cumulative installed global PV capacity is projected to reach between 450 GW and 880 GW by 2030, up from 67 GW in 2011 (Gan and Li, 2015), this lack of ecological evidence is heavily under representative of the interest and investment in solar PV deployment.

Incidental and informal evidence suggests that the collision risk presented by solar panels to birds is low but not impossible. It is likely that the infrastructure associated with transporting electricity (e.g. powerlines) presents more of a collision risk for birds than the solar arrays themselves. With regards collision risk to bats, there is no evidence.

When considering site selection for utility scale solar developments it is generally agreed that protected areas should be avoided. This is reflected in the scientific literature where modelling approaches include many factors such as economic considerations and visual impact but also often avoid protected areas such as SPAs. This is echoed by organisations such as Natural England and the RSPB that recommend that solar PV developments should not be built on or near protected areas. As sensitive species and habitats are not necessarily restricted to the geographical boundaries of protected areas, it is imperative that research is undertaken into the potential interactions between solar PV arrays and biodiversity-especially sensitive habitats and species. Quantifying the effect of solar PV developments as a function of distance to protected areas is equally as important as it would allow statutory bodies and ecological organisations to provide more detailed guidance on the placement of these developments where the conservation integrity of a protected area is potentially at risk. Research into the impacts that solar PV developments may have on biodiversity should be undertaken using a multiscale approach, allowing potential impacts to be understood both within the immediate vicinaty of solar farms and within the wider landscape, taking into account ecologically functionally connected land and a wide selection of habitats.
Evidence review of the impact of solar farms on birds, bats and general ecology

The lack of evidence available relating to the ecological impact of solar farms is concerning. It has led to authoritative organisations making speculative arguments and publishing information that on occasion appears to conflict. For conservation organisations to provide sound advice that is coherent and consistent, evidence is needed. The move towards renewable energy sources by many governments is progressive and admirable, however more needs to be done to understand the interaction between these new technologies and the ecology that they are ultimately designed to protect.

5. Recommendations

Advice given by non-governmental and governmental organisations has been referred to throughout this document. These organisations invariably state that appropriate siting, appropriate timing of construction and maintenance, biodiversity mitigation and biodiversity enhancing practices should be taken into consideration when considering a utility scale solar PV development. Although these general pieces of advice are sensible, no hard evidence has been found during the course of this literature review that allows any more specific recommendation to be given. In the literature, concerns have been raised that solar PV developments have the potential to negatively impact a broad range of taxa including birds, bats, mammals, insects and plants. In light of this, it is highly recommended that research is undertaken into the ecological impacts of solar PV arrays across a broad range of taxa at multiple geographical scales.

6. Acknowledgements

This report was funded by Natural England, we would like to acknowledge the supervisory support and advice of Claire Storey (Natural England).
7. References

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

BTO (n.d.) ‘Farmland Bird Appeal. Skylarks are calling out for your help!’ Thetford, UK: British Trust for Ornithology.

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

IPCC (2002) ‘Climate change and biodiversity- IPCC technical paper V.’

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

SNH (2016a) ‘Large scale solar photovoltaic installations: considering landscape, visual and ecological impacts.’ 51
Evidence review of the impact of solar farms on birds, bats and general ecology

SNH (2016b) ‘Micro renewables and the natural heritage, Revised guidance.’

SRUC (n.d.) ‘Farm Scale Renewable Energy Guide.’ The Scottish Government’s Veterinary and Advisory Services Programme.

Evidence review of the impact of solar farms on birds, bats and general ecology

Appendices

Appendix 1: Scopus search results for birds and solar panels.

Search string

((TITLE-ABS-KEY("photovoltaic") AND TITLE-ABS-KEY("birds"))) OR (TITLE-ABS-KEY("solar panels") AND TITLE-ABS-KEY("birds"))) OR (TITLE-ABS-KEY("solar farm") AND TITLE-ABS-KEY("birds"))

Results

 Doi:10.1109/ICISCE.2015.133
 Relevant paper? Y
 Reason for inclusion in search results
 • Mention of birds and renewables, including solar power.
 If relevant, key points
 • Very little. Uncited statement saying that wind energy can be damaging to birds, however insinuates that solar power is less damaging to nature and is more environmentally friendly than wind.

 Relevant paper? Y
 Reason for inclusion in search results
 • Paper about robotic cleaning arms. Bird droppings used as an example of dirt to be cleaned.
 If relevant, key points
 • Bird dropping presence infers presence of birds either above or on the solar panels.
Evidence review of the impact of solar farms on birds, bats and general ecology

<table>
<thead>
<tr>
<th>Relevant paper?</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason for inclusion in search results</td>
<td>- Uses a “bird mating optimizer” algorithm (mathematical model)</td>
</tr>
<tr>
<td>If relevant, key points</td>
<td>- Not relevant, but interesting to include as an example of off topic search results.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relevant paper?</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason for inclusion in search results</td>
<td>- Unknown</td>
</tr>
<tr>
<td>If relevant, key points</td>
<td>- Not relevant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relevant paper?</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason for inclusion in search results</td>
<td>- Paper about robotic cleaning arms. Bird droppings used as an example of dirt to be cleaned.</td>
</tr>
<tr>
<td>If relevant, key points</td>
<td>- No access to full article</td>
</tr>
<tr>
<td></td>
<td>- Bird dropping presence infers presence of birds either above or on the solar panels.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relevant paper?</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason for inclusion in search results</td>
<td>- Paper about sun tracking, includes bird shadow as an obstacle to optimisation</td>
</tr>
<tr>
<td>If relevant, key points</td>
<td>- Bird shadow insinuates bird presence</td>
</tr>
</tbody>
</table>
Evidence review of the impact of solar farms on birds, bats and general ecology

- Access to full article not available

Relevant paper? Y
Reason for inclusion in search results • Paper about Partial Shading Conditions (PSCs) and solar panels, includes bird shadow as an obstacle to optimisation
If relevant, key points • Bird shadow insinuates bird presence

Relevant paper? Y
Reason for inclusion in search results • An experimental study on the effect of solar panels on birds
If relevant, key points • The study is from the US and relates to airfields
• The hypothesis is reversed- i.e. are birds attracted to solar panels and therefore do they pose a risk to aircraft safety (due to birdstrike)
• “Photovoltaic arrays could potentially serve as attractants to birds hazardous to aviation because they provide shade and perches for birds” unsubstantiated
• “Dark glass panels such as those used to construct PV arrays also reflect polarized light, which can attract insects (Horváth, Kriska, Malik, & Robertson, 2009), and subsequently, insectivorous birds. Relevant for bats too.
• “in some situations reflected polarized light may cause structures such as glass panels to be mistaken by some birds species for open water, resulting in mortalities from collisions with these structures or
Evidence review of the impact of solar farms on birds, bats and general ecology

being stranded on surfaces from which they cannot take off (Horváth et al., 2009)."
- “solar development is generally considered detrimental to wildlife (Lovich & Ennen, 2011)"

<table>
<thead>
<tr>
<th>Relevant paper?</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason for inclusion in search results</td>
<td>Heavy reference to an author called ‘Bird’.</td>
</tr>
<tr>
<td>If relevant, key points</td>
<td>Not relevant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relevant paper?</th>
<th>Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason for inclusion in search results</td>
<td>Suitability modelling paper for allocation of solar panel locations in Spain.</td>
</tr>
<tr>
<td></td>
<td>SPA locations used as part of the model (to exclude areas that can’t be built on).</td>
</tr>
<tr>
<td>If relevant, key points</td>
<td>SPA locations used to exclude non suitable areas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relevant paper?</th>
<th>Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason for inclusion in search results</td>
<td>Evidence of bird droppings in dirt on solar panels</td>
</tr>
<tr>
<td>If relevant, key points</td>
<td>Bird droppings</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relevant paper?</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason for inclusion in search results</td>
<td>Heavy reference to bird droppings as a contaminant on solar panels.</td>
</tr>
<tr>
<td></td>
<td>Reference to solar panels being attractive to birds</td>
</tr>
</tbody>
</table>
Evidence review of the impact of solar farms on birds, bats and general ecology

due to heat.

If relevant, key points

- “the challenging problem is how to clean the bird droppings from the arrays when rain is infrequent during the summer months while the bird are attracted to the warmth of the panels”. Bad link to reference for this statement. No evidence presented.

Relevant paper? N
Reason for inclusion in search results

- Paper about solar powered bird trackers

If relevant, key points

Relevant paper? N
Reason for inclusion in search results

- Paper about solar powered bird trackers

If relevant, key points

Relevant paper? N
Reason for inclusion in search results

- Unknown. Paper about solar panels on balloons. No reference to birds

If relevant, key points

Evidence review of the impact of solar farms on birds, bats and general ecology

Relevant paper? Y/N

Reason for inclusion in search results
- Paper about shading of solar panels, including birds.

If relevant, key points
- Full paper not available
- Does not take into account bird shadow as they are deemed “difficult to predict”.
- Mention of bird shadow insinuates presence of birds at solar arrays.

Relevant paper? N

Reason for inclusion in search results
- Bird-Mating algorithm for design of solar panel arrays (not to do with ecology).

If relevant, key points Not relevant.

Relevant paper? N

Reason for inclusion in search results
- Includes a presentation on mp3 bird scarers with a photosensitive module. No full text available, only title. Paper sourced via title, still no full text available to download.

If relevant, key points Not relevant.

Relevant paper? N

Reason for inclusion in search results
- Analogy to bird feathers. Not relevant.

If relevant, key points Not relevant.
Evidence review of the impact of solar farms on birds, bats and general ecology

<table>
<thead>
<tr>
<th>Relevant paper?</th>
<th>Y/N</th>
</tr>
</thead>
</table>
| Reason for inclusion in search results | • Mention of bird droppings on solar panel as shading.
• Poorly translated and full text unavailable. |
| If relevant, key points | Insinuates presence of birds at solar panel sites. |

| Relevant paper? | N |
| Reason for inclusion in search results | • Magazine article about Volkswagen site with solar panels.
• Mention of birds on site, but not necessarily where the solar panels are. |
| If relevant, key points | Not relevant. |

| Relevant paper? | Y/N |
| Reason for inclusion in search results | • Mentions bird droppings as contaminant. No reference.
• Quantifies potential energy losses. Not referenced. |
| If relevant, key points | |

Relevant paper?	N
Reason for inclusion in search results	• Solar powered GPS tracker for birds.
If relevant, key points	Not relevant.

Evidence review of the impact of solar farms on birds, bats and general ecology

Relevant paper? N
Reason for inclusion in search results
• Mention of birds and solar panels, paper does not make sense.
If relevant, key points Not relevant.

Relevant paper? N
Reason for inclusion in search results
• Power generation paper using “PSO”.
• “PSO is a novel method in optimization inspired from observation of bird flocking and fish schooling.”
If relevant, key points Not relevant.

Relevant paper? Y/N
Reason for inclusion in search results
• Mentions bird droppings as contaminant. No reference.
If relevant, key points
• Indicates presence of birds at or over solar farms. Not referenced.

Relevant paper? Y/N
Reason for inclusion in search results
• Mentions birds as a cause of shadow over PV installation.
• Full text not readily available
If relevant, key points
• Shadow indicates bird presence.

Evidence review of the impact of solar farms on birds, bats and general ecology

Relevant paper? Y

Reason for inclusion in search results
- Heavy mention of bird droppings and nests adversely affecting the operation of PV units.
- Some emphasis on offshore rigs.
- Discussion of methods for deterring birds.

If relevant, key points
- Pictures of bird droppings and bird nests on solar panels.

Discusses different ways in which to repel birds. Including lights, buzzers, wipers, fishing wire, sirens and mention of chemical deterrence (labelled as inhumane in paper).

Relevant paper? N

Reason for inclusion in search results
- Splar powered bird repeller.
- Very badly translated and difficult to read.

If relevant, key points

Relevant paper? N

Reason for inclusion in search results
- Solar powered units that can be used for deterring predatory birds from aquaculture ponds.

If relevant, key points

Relevant paper? N

Reason for inclusion in search results
- “Lady Bird Johnson Middle School”
- Solar panels at this school
Evidence review of the impact of solar farms on birds, bats and general ecology

Relevant paper? Y
Reason for inclusion in search results Compares conversion of agricultural land to rice fields and to solar farms.
If relevant, key points • Proposes that solar farms are more detrimental environmentally than rice fields.
• “current solar energy projects in the Don˜ana area will transform about 1,000 ha of rice fields: this transformation of rice fields into solar farms may represent an important and silent secondary loss of wetlands in southern Europe”
• No references to back this up, other than areas of solar farms.

Relevant paper? Y
Reason for inclusion in search results • Very similar paper to 28. Bird nests, dropppings and shadow.
• Addresses the same issues and same solutions.

Relevant paper? N
Reason for inclusion in search results • Addresses installation of solar panels in Antarctica.
• Full text not available.

If relevant, key points

Relevant paper? N
Reason for inclusion in search results • Proposed design for a mars rover with “the feet of
Evidence review of the impact of solar farms on birds, bats and general ecology

search results a bird, leg of a dinosaur and the body of a rat”.

If relevant, key points

Relevant paper? N

Reason for inclusion in search results
- “bispectral infrared detection (BIRD)”

If relevant, key points

Relevant paper? N

Reason for inclusion in search results
- Solar powered unit for nest monitoring Bearded vultures.

If relevant, key points

Relevant paper? N

Reason for inclusion in search results
- Mention of solar panels and mention of bird shelters, not in relation to one another.

If relevant, key points

Relevant paper? N

Reason for inclusion in search results
- Bird in title.
- Flapping wing plane, with solar panels.

If relevant, key points
Evidence review of the impact of solar farms on birds, bats and general ecology

Relevant paper? Y/N

Reason for inclusion in search results
- Paper about cooling ducts, mentions devices across duct inlet and outlets to exclude birds, insects and rain.

If relevant, key points
- Insinuates measures taken to prevent birds entering cooling ducts. Reasons unknown, likely for operation of duct rather than protection of birds.

Relevant paper? N

Reason for inclusion in search results
- Bird in title.
- Paper about PV cell fabrication.

If relevant, key points

Relevant paper? Unknown

Reason for inclusion in search results
- This is a book, no access available

If relevant, key points

Relevant paper? Y/N

Reason for inclusion in search results
- Solar panels installed as a semi-transparent canopy
- “Bird protection system in place”. Protection of the canopy. No mention as to what this system involves.
Evidence review of the impact of solar farms on birds, bats and general ecology

If relevant, key points

- “A distinctive feature of the station is the 110m long triple-vaulted canopy. This incorporates 2730 photovoltaic semi-transparent glass panels”
- “A bird protection system is installed on the shed trusses to train birds to avoid the glass canopy and keep them away from the public areas”

Relevant paper? N

Reason for inclusion in search results

- Solar powered battery transmitters for satellite tracking Lesser flamingo.

If relevant, key points

Relevant paper? Y/N

Reason for inclusion in search results

- “Going solar” package: collaboration between RSPB, Solarcentury, RSPB Energy and Co-op bank.

If relevant, key points

- Appears that RSPB have been on board with solar since 2003. Unclear as to how RSPB were involved.
- “The RSPB is to install PV systems at six of its nature reserves — it manages 176 of these nationwide, covering 120 000 hectares”
- From :http://www.energylinx.co.uk/rspb_energy.html “At the time when it was available, customers switching both their gas and electricity to RSPB Energy, enabled SSE to contribute £30 to the RSPB in the first year. Customers were not
Evidence review of the impact of solar farms on birds, bats and general ecology

impacted by the closure of RSPB Energy at the end of March 2011 as they simply continued to be supplied by SSE on one of their standard price packages."

Relevant paper? Y/N

Reason for inclusion in search results
- Short mention of the environmental concerns of space based versus terrestrial solar generation

If relevant, key points
- Terrestrial and space based both block large areas of land.
- Space based exposes large areas of land (mention of birds, plants and animals) to microwave radiation.
- Concludes that terrestrial system have less of an impacts as they can be spread out over a large area, allow some sunlight to pass between generation units, and be positioned to avoid environmentally sensitive areas.

Relevant paper? N

Reason for inclusion in search results
- Not a paper, but a collection of 849 papers from a research conference.
- Search of titles within the proceedings yielded no hits for “bird” and all hits for “solar” did not yield any relevant titles.

If relevant, key points

67
Evidence review of the impact of solar farms on birds, bats and general ecology

Relevant paper?	N
Reason for inclusion in search results
- Technical paper on solar panel performance.
- Refers to ‘bird beak’ as a means of describing a data pattern.

If relevant, key points

Relevant paper?	N
Reason for inclusion in search results
- Solar powered gull repeller for offshore oil/gas platforms.

If relevant, key points

Relevant paper?	N
Reason for inclusion in search results
- Discussion of wildlife biotelemetry including reference to a Solar powered biotelemetry unit.

If relevant, key points

Relevant paper?	Y/N
Reason for inclusion in search results
- Old paper looking at the effect of weathering and exposure on PV cells.
- No access to full paper, reference in abstract as “unwelcome migratory birds” as an environmental variable that may affect PV performance.

If relevant, key points
- Early paper indicating potential for conflict between birds and solar panels.

Evidence review of the impact of solar farms on birds, bats and general ecology

Relevant paper?	N
 Reason for inclusion in search results | • Solar powered GPS trackers for Hen Harriers.

 If relevant, key points

Relevant paper?	Y
 Reason for inclusion in search results | • Bought article as appears relevant- waiting for delivery
 • Article in German
 • Appear to look at effect of renewables on ecology.
 • Needs translating.

 If relevant, key points | • Significant negative impacts of ground-based photovoltaic arrays on species have not been found.

Relevant paper?	N
 Reason for inclusion in search results | • Paper about control systems in spacecraft.
 • Refers to launching “a bird”- which is not literal.

 If relevant, key points

Relevant paper?	Y/N
 Reason for inclusion in search results | • Paper looking at shading of solar panels.

 If relevant, key points | • Refers to birds and “bird litter” as causes of shading in abstract. No reference to birds in the main text.
Evidence review of the impact of solar farms on birds, bats and general ecology

Relevant paper? **Y**

Reason for inclusion in search results

- Discussion of the impact of solar panels on ecology, including birds.

If relevant, key points

- In German. Needs translating.

Relevant paper? **N**

Reason for inclusion in search results

- Solar powered radio transmitters for birds.

If relevant, key points

Relevant paper? **N**

Reason for inclusion in search results

- Solar powered radio transmitters for birds.

If relevant, key points
Appendix 2: Scopus search results for bats and solar panels.

Search string

\[((\text{TITLE-ABS-KEY(photovoltaic) AND TITLE-ABS-KEY(bats)) OR (TITLE-ABS-KEY(solar panels) AND TITLE-ABS-KEY(bats)) OR (TITLE-ABS-KEY(solar farm) AND TITLE-ABS-KEY(bats))}) \]

Results

 Relevant paper? Y
 Reason for inclusion in search results
 - Bought article as appears relevant- waiting for delivery
 - Article in German
 - Appear to look at effect of renewables on ecology.
 - Needs translating.
 - Does not appear to be hugely relevant. More emphasis on wind and biogas.

 If relevant, key points
 - Significant negative impacts of ground-based photovoltaic arrays on species have not been found.

 Relevant paper? N
 Reason for inclusion in search results
 - Technical paper about PV units.
 - BAT search algorithm

 If relevant, key points

Evidence review of the impact of solar farms on birds, bats and general ecology

<table>
<thead>
<tr>
<th>Relevant paper?</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason for inclusion in search results</td>
<td>● “Bat and flower pollination algorithm” for power flow optimisation.</td>
</tr>
</tbody>
</table>

If relevant, key points

<table>
<thead>
<tr>
<th>Relevant paper?</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason for inclusion in search results</td>
<td>● Looks at solar panels and batteries - abbreviates battery to BAT.</td>
</tr>
</tbody>
</table>

If relevant, key points

<table>
<thead>
<tr>
<th>Relevant paper?</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason for inclusion in search results</td>
<td>● Technical paper looking a hybrid power generation systems. Includes “bat” - probably an abbreviation of battery.</td>
</tr>
</tbody>
</table>

If relevant, key points

<table>
<thead>
<tr>
<th>Relevant paper?</th>
<th>Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason for inclusion in search results</td>
<td>● Opening line of abstract: “Of all the renewable energy sources (RESs)—except direct solar heat and light—wind energy is believed to have the least adverse environmental impacts”. Not really sure what this means - not expanded upon in text.</td>
</tr>
</tbody>
</table>

If relevant, key points
● “With competition for uninhabited spaces increasing due to the needs of other space-consuming renewable–based power generation
Evidence review of the impact of solar farms on birds, bats and general ecology

systems such as solar thermal/solar photovoltaic and small hydropower, it will become increasingly difficult to find sites for wind farms that would not jeopardize the few remaining areas of wilderness”

• Highlights the potential cumulative impact of renewable developments

Relevant paper? N
Reason for inclusion in search results • Technical paper using a bio-inspired “Bat clustering method” for analysing power distribution in solar arrays.

If relevant, key points

Relevant paper? N
Reason for inclusion in search results • Bat Algorithm-Artificial Neural Network analysis to predict output power of PV systems.

If relevant, key points

Relevant paper? N
Reason for inclusion in search results • Optimization of power distribution in PV systems using bat algorithm.

If relevant, key points

10. Thounthong, P. . et al. Differential flatness control approach for fuel cell/solar cell power plant with Li-ion battery storage device for grid-independent applications. in 2014 Int.
Evidence review of the impact of solar farms on birds, bats and general ecology

doi:10.1109/SPEEDAM.2014.6872100

Relevant paper? N

Reason for inclusion in search results
- Combination of PV and batteries abbreviated to bat.

If relevant, key points

doi:10.1109/PowerEng.2013.6635595

Relevant paper? N

Reason for inclusion in search results
- Combination of PV and batteries abbreviated to BAT.

If relevant, key points

Relevant paper? N

Reason for inclusion in search results
- Combination of PV and batteries abbreviated to BAT.

If relevant, key points

Relevant paper? N

Reason for inclusion in search results
- Combination of PV and batteries abbreviated to bat.

If relevant, key points

Evidence review of the impact of solar farms on birds, bats and general ecology

<table>
<thead>
<tr>
<th>Relevant paper?</th>
<th>Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason for inclusion in search results</td>
<td>Combination of PV and batteries abbreviated to bat.</td>
</tr>
<tr>
<td>If relevant, key points</td>
<td>Some reference to the benefits of renewables over fossil fuels at to reduce pollution.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relevant paper?</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason for inclusion in search results</td>
<td>Combination of PV and batteries abbreviated to bat.</td>
</tr>
<tr>
<td>If relevant, key points</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relevant paper?</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason for inclusion in search results</td>
<td>Combination of PV and batteries abbreviated to bat.</td>
</tr>
<tr>
<td>If relevant, key points</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relevant paper?</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason for inclusion in search results</td>
<td>Combination of PV and batteries abbreviated to bat.</td>
</tr>
<tr>
<td>If relevant, key points</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relevant paper?</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason for inclusion in search results</td>
<td>Combination of PV and batteries abbreviated to bat.</td>
</tr>
</tbody>
</table>
Evidence review of the impact of solar farms on birds, bats and general ecology

If relevant, key points

- Relevant paper? **N**
- Reason for inclusion in search results: Mention of solar panels and “fiberglass bats for the insulation”.

If relevant, key points

- Relevant paper? **N**
- Reason for inclusion in search results: Combination of PV and batteries abbreviated to BAT.

If relevant, key points

- Relevant paper? **N**
- Reason for inclusion in search results: Combination of PV and batteries abbreviated to BAT.
Appendix 3: Scopus search results for general ecology and solar panels.

Search string

((TITLE-ABS-KEY("photovoltaic") AND TITLE-ABS-KEY(ecolog*)) OR (TITLE-ABS-KEY("solar panels") AND TITLE-ABS-KEY(ecolog*)) OR (TITLE-ABS-KEY("solar farm") AND TITLE-ABS-KEY(ecolog*)))

Results

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

205. Khemiri, N. ., Khedher, A. . & Mimouni, M. F. . A backstepping control strategy applied to the connected hybrid renewable energy system operated in MPPT. in *2013 8th Int.
Evidence review of the impact of solar farms on birds, bats and general ecology

doi:10.1109/EVER.2013.6521532

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

100
Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

doi:10.1109/EVER.2015.7113008

Appendix 4: Google Scholar relevant search results

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Evidence review of the impact of solar farms on birds, bats and general ecology

Appendix 5. Availability and summaries of information on the ecological impacts of solar developments presented by non-governmental and governmental organisations with relevance to the UK.

The information summarised in the table below was obtained through google searches and visits to the organisation’s website. Definitions of acronyms can be found in table 1.

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Information disseminated through the organisation</th>
</tr>
</thead>
</table>
| BCT | • No information readily available on utility scale solar PV developments.
 | • BCT is making an attempt to collect data on incidents involving bat and solar PV installations with reference to the construction industry. This insinuates an interest in distribution scale solar developments, but not necessarily utility scale developments.24
 | • A short statement emphasises that although BCT welcome microgeneration renewable technologies, the installation of rooftop solar panel may disturb bats.25 |
| BASC | • No information readily available on the ecological effect of PV developments. |
| BES | • No information readily available on the ecological effect of utility scale PV systems.
 | • A blog post discusses the installation of a small PV system in Sundarbans, India26. This states that the installation has helped to reduce the community’s reliance on unsustainable fishing methods. However, the post does not state how this is |

24 http://www.bats.org.uk/news.php/283/we_need_your_help [last accessed 15/04/2016]
<table>
<thead>
<tr>
<th>Organisation</th>
<th>Information disseminated through the organisation</th>
</tr>
</thead>
</table>
| **Birdlife International** | • Birdlife International have produced a document containing information on the potential ecological impacts of solar development, with special emphasis on birds (Birdlife International, n.d.). This document relates to a specific project ('Migratory Soaring Bird Project') in the Rift Valley/Red Sea Flywall region of Egypt. Some of the information relates to technologies not in use in the UK (e.g. CSP), however there is reference to ecology and large-scale solar farms which has relevance. This document will be summarised in the text of this review.
• A ‘case studies’ section on the Migratory Soaring Bird Project website remains empty, which is perhaps indicative of the lack of evidence for the ecological impact of solar farms.
• Birdlife have published a document outlining the organisation’s position on climate change which includes the potential impacts of solar technologies (Birdlife International, 2015).
• A document published by Birdlife explores the effect of renewables on nature in Europe and contains a dedicated section to Solar PV installations. This document provides a summary of policy recommendations given by birdlife partners across Europe. (Birdlife Europe, 2011). |
| **BSBI** | • In Kitchener (2015) and Kitchener (2016), accounts of the occurrence of mossy stonecrop (*Crassula tillaea*) at a survey site near a new solar farm describes the survey site as not particularly affected by construction works (it is insinuated that the... |

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Information disseminated through the organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>construction relates to the solar farm and that the effect in question is ecological).</td>
</tr>
<tr>
<td>BTO</td>
<td>• A brochure for the BTO’s farmland bird appeal highlights the need for research into strategies for minimising negative impacts and maximising positive impacts of solar farms on birds (BTO, n.d.). This document suggests the survey (taxa non-specific) of solar farms to determine how birds might be affected. The brochure is not dated, however a current live link is available through the BTO website.</td>
</tr>
<tr>
<td>CCCR</td>
<td>• No information readily available on the ecological effect of PV developments.</td>
</tr>
<tr>
<td>CCW</td>
<td>• See NRW (Natural Resources Wales)</td>
</tr>
<tr>
<td>CEH</td>
<td>• Link to Armstrong et al. (2014), a paper on the microclimatic effects of solar farms. This is primary literature and was incorporated into the scientific literature review.</td>
</tr>
</tbody>
</table>
| CIEEM | • Comment from the (now) CIEEM President’s introduction in a 2012 issue of the bulletin of the (then) IEEM (Institute for Ecology and Environmental management) to a conference presentation on the potential for biodiversity gain on agricultural land being developed for solar parks (Box, 2012).
• CIEEM provide a summary and synthesis on the ecological impacts of renewables, including solar developments (Scrase and Gove, 2012) which was originally presented by Birdlife Europe (Birdlife Europe, 2011).
• There is an indirect association via google to a website for a consultancy ‘wildlife matters’ founded by a CIEEM member, Dr John Feltwell. Links to several grey literature documents. |

29 http://bsbi.org.uk/KentRPR2016Ce.pdf [last accessed 15/04/2016]
30 http://www.bto.org/support-us/appeals/farmland-bird-appeal [last accessed 15/04/2016]
31 http://www.wildlifematters.com [last accessed 18/04/2016]
Evidence review of the impact of solar farms on birds, bats and general ecology

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Information disseminated through the organisation</th>
</tr>
</thead>
</table>
| **DECC** | In the DECC’s ‘UK solar PV Strategy’ part 1, it is stated that there is increasing evidence that solar farms can provide benefits to biodiversity (DECC, 2013b), citing several grey literature documents to support this (GREA, 2010; Natural England, 2011; Parker and McQueen, 2013). This document also quotes the NPPF (National Planning Policy Framework) stating that if a solar proposal involves greenfield land then it should allow for continued agricultural use and/or encourages biodiversity around arrays (DCLG, 2013).

- In a separate document produced by DECC, ‘UK solar PV Strategy Part 2’ (DECC, 2014b) it is stated that the DECC is committed to working with industry to promote and develop best guidance practices for solar developments including with regards to biodiversity enhancement. Paragraph 73 of DECC (2014b) states that DECC and Defra will collaborate with industry to better understand positive and negative ecological impacts of solar farms, although the document does not specify how this will be achieved.

It is recognised by DECC that solar farms have the potential to benefit biodiversity, but also have the potential to be damaging to biodiversity and ecosystems. Although no specific effects are referred to in this document, several items of grey literature are referenced (BRE, 2013, 2014b; STA, 2013) |
<p>| EPA | No information readily available on the ecological effect of PV developments. |
| EPAI | No information readily available on the ecological effect of PV developments. |
| European Commission Joint Research | No information readily available on the ecological effect of PV developments. |</p>
<table>
<thead>
<tr>
<th>Organisation</th>
<th>Information disseminated through the organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre</td>
<td></td>
</tr>
</tbody>
</table>
| European Environment Agency | • No information readily available on the ecological effect of utility scale PV systems.
• In a technical report, a short passage states that it is generally accepted that the ecological footprint of solar PV is lower than that of fossil fuel electricity generation (EEA, 2015). This is of limited relevance to this review, especially considering the statement is made in the context of life-cycle emissions and probably refers to ecology in a more general context than that in the immediate vicinity of a solar development. |
| Friends of the Earth | • Uncited advice in a document produced by Friends of the Earth (FOE, 2014) suggests that solar farms should avoid “the best agricultural land and areas important to wildlife”, with preference to brownfield and contaminated land. The document also states that solar farms can provide an opportunity to create habitat, however this is without reference. |
| FWAG | • No information readily available on the ecological effect of PV developments. |
| Greenpeace | • No information readily available on the ecological effect of PV developments. |
| IPCC | • The IPCC produced a document on climate change and biodiversity, which includes the potential environmental and ecological effects of renewable technologies (IPCC, 2002). Only a short paragraph is included for solar projects, and nothing is included specifically for PV developments. This document cites water use and land use as the primary concerns for solar developments and focusses on desert environments, possibly excluding temperate regions because of the age of the document and available technologies. |
| IUCN | • A document produced by IUCN providing advice on solar developments (in the pacific region) states that operating PV systems are silent (IUCN, n.d.). If this is true then this may reflect |
Evidence review of the impact of solar farms on birds, bats and general ecology

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Information disseminated through the organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a reduced risk of attraction or repulsion for some taxa, however no experimental evidence has been found supporting this claim during the course of this review.</td>
<td></td>
</tr>
<tr>
<td>Under the IUCN red list entry for Kit Fox Vulpes macrotis, reference to large scale solar farms in western North America are cited as a potential cause for decline in this species(^{32}). The entry states that further information on the effects of solar farms is needed, and that research is being undertaken in Mexico on the effects of solar development on the San Joaquin Kit Fox, however no reference is given.</td>
<td></td>
</tr>
<tr>
<td>JNCC</td>
<td>An evidence review of the conservation impacts of energy production was written on behalf of JNCC by IEEP (Institute for European Environmental Policy) in 2008 (Tucker et al., 2008). This document focusses predominantly on energy technologies other than solar PV. Where reference is to the potential ecological and environmental impacts of solar PV it often relates to the negative impact of mining of raw materials for use in production of solar panels (outside of the UK) or the manufacturing process (potentially within the UK). The document concludes that although large land areas may be required by utility scale PV developments, there is “relatively low or no impact” on UK biodiversity. The documents cites Abbasi and Abbasi (2000) to support a claim that large scale solar developments may cause soil erosion and compaction.</td>
</tr>
<tr>
<td>A short statement in JNCC (2006) refers to the opinion that large scale solar developments should be assessed prior to development in a manner similar to terrestrial windfarms. That is, to conduct EIA (Environmental Impact assessment) and SEA (Strategic Environmental Assessment) to assess the potential for impacts such as bird strike and land alteration and/or habitat fragmentation in areas of sensitive or rare habitat. No evidence or</td>
<td></td>
</tr>
</tbody>
</table>

\(^{32}\) http://www.iucnredlist.org/details/41587/0 [last accessed 19/04/2016]
Evidence review of the impact of solar farms on birds, bats and general ecology

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Information disseminated through the organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macaulay Land Use Research Institute</td>
<td>- No information readily available on the ecological effect of PV developments.</td>
</tr>
<tr>
<td>National Trust</td>
<td>- No information readily available on the ecological effect of PV developments.</td>
</tr>
<tr>
<td>Natural England</td>
<td>- Natural England have produced a document that highlights the impact that solar panels may have in areas of high wildlife value, or close to protected or designated conservation sites (Natural England, 2011). Mitigation measures are advised, and it is</td>
</tr>
<tr>
<td>Organisation</td>
<td>Information disseminated through the organisation</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Evidence review of the impact of solar farms on birds, bats and general ecology</td>
<td>recognised that biodiversity impacts will differ from site to site and in different regions.</td>
</tr>
<tr>
<td></td>
<td>• In the above Natural England document, a scientific paper is referenced that did not appear in the literature search (Greif and Siemers, 2010). This citation is misleading as the scientific paper in question demonstrates that naïve juvenile bats spontaneously demonstrate drinking behaviour in response to smooth plates - not solar panels. No mention of solar panels is made in Greif and Siemers (2010).</td>
</tr>
<tr>
<td>NFU</td>
<td>• The NFU produced a briefing on solar PV and agriculture in 2013 (NFU, 2013) and an updated version in 2015 (NFU, 2015). These documents discuss the fact that multi-purpose land use is encouraged by most solar developers. This may include the continuation of farming practices such as sheep grazing or chicken rearing, but can also include practices encouraged by Environmental Stewardship (ES) schemes such as the creation of habitat for pollinating insects, winter foraging habitat for birds and nest boxes. The document also states that it can be advantageous to fence off solar developments from other agricultural land to either avoid losing out on Single Payment Scheme remuneration, or to “provide fenced wildlife refuges”.</td>
</tr>
<tr>
<td></td>
<td>• The NFU has worked with industry to provide best practice guides for solar developments, including for biodiversity enhancement. The two main industrial bodies are the Solar Trade Association (STA) and the National Solar Centre (the date for the STA guidance document was taken from NFU (2015)) (STA, 2013; BRE, 2014a).</td>
</tr>
<tr>
<td>NIEA</td>
<td>• The NIEA (under the name of its parent body, the Department of the Environment) published a document that provides standing guidance on the considerations to take into account when seeking planning for solar development, including impacts on biodiversity (DOE, 2015). It is stated within this document that solar arrays are not considered to impact significantly on wildlife. Impacts on</td>
</tr>
</tbody>
</table>
habitats include the potential drainage of wetlands along cabling routes, and direct loss of habitat within the footprint of a solar development and associated infrastructure. The potential for indirect impacts on habitat outside of a solar development footprint is highlighted, although this is not expanded on or referenced. General potential impacts of groundwork projects are highlighted including the potential for a negative impact on ground nesting birds during the construction phase of a development and a potential negative impact on The potential for birds to collide with powerlines is identified. The potential loss of bat habitat and the attraction of bats to light on site are also stated. Mitigation advice given is general and includes avoiding the loss of bat habitat, providing mammal gates in security fencing, using sensor activated security lights and avoiding placement of powerlines that obstruct bird movement. A document produced by BRE providing biodiversity guidance for solar developments is cited (BRE, 2014b).

NRW • No information readily available on the ecological effect of PV developments.

Plantlife International • No information readily available on the ecological effect of PV developments.

Plantlife UK • No information readily available on the ecological effect of PV developments.

RSPB • The RSPB have produced a policy briefing that outlines the society's position on solar PV developments (RSPB, 2014). This document highlights that the RSPB advocate solar technologies, however recommend avoiding deployment in locations close to protected areas, or close to water features (highlighting a potential negative impact upon aquatic invertebrates as a risk, both independently and as a food resource for birds). In contrast to this advice, RSPB are also supportive of floating solar arrays with the caveat that the ecological quality of the water body must not be negatively affected. Within this document, it is highlighted that
Evidence review of the impact of solar farms on birds, bats and general ecology

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Information disseminated through the organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>there is always a risk of bird collision with man-made objects and there is a lack of evidence pertaining specifically to solar farms. The document also refers to security fencing as a potential barrier to movement for mammals and amphibians. It is stated that the loss of habitat may be an issue for rare arable forbs, however the RSPB states that the capacity for vegetation to grow under raised solar panels could provide opportunities for biodiversity enhancement including roosting potential, hibernation refuges, mutualistic use of land for agri-environment schemes and managed realignment of land behind sea walls. The RSPB calls for the monitoring of solar PV developments to determine ecological risk.</td>
</tr>
<tr>
<td></td>
<td>• The RSPB is working alongside a solar energy developer (ANESCO) to determine how solar developments can benefit biodiversity, however there are no results from this partnership readily available.³³</td>
</tr>
<tr>
<td>Ramsar</td>
<td>• Resolution XI.10 of the Ramsar convention makes reference to solar energy in the context of wetland conservation, however no specific impacts are addressed (Ramsar, 2012).</td>
</tr>
<tr>
<td></td>
<td>• It would appear that solar PV is endorsed by the Ramsar convention in situations where it is presented as an alternative to fossil fuels such as on the Aladabra Atoll in the Seychelles, where risk of diesel leakage and high associated transport costs of fossil fuels resulted in a €500,000 solar project being implemented on a Ramsar and world heritage site³⁴.</td>
</tr>
<tr>
<td>SEPA</td>
<td>• There is a short statement on the SEPA website indicating that</td>
</tr>
</tbody>
</table>

³³ [http://anesco.co.uk/anesco-and-rspb-shine-light-on-solar-farm-biodiversity-2/] [last accessed 21/04/2016]

Evidence review of the impact of solar farms on birds, bats and general ecology

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Information disseminated through the organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEPA</td>
<td>SEPA do not have a large agenda with regards to solar energy. They state that their only concern might be when it has the potential affect the water environment, however this is not expanded upon.</td>
</tr>
</tbody>
</table>
| SNH | SNH produced a document on small scale renewables and their potential effect on the environment. This refers to developments of <50kW, and in the case of solar PV appears to refer to roof mounted units. It is advised that these solar developments may cause problems if they obstruct a known bat roost, or bird’s nest (SNH, 2016b).
A separate document has been produced by SNH for large scale solar developments (SNH, 2016a). This document highlights that SNH will only consult on a project if the proposed development is in a protected area or on land supporting protected species. SNH recommend that protected species surveys should be conducted prior to works starting (otter is given as an example species). This document states that there may be a collision risk for ground nesting birds under solar arrays, that solar panels may deter birds from feeding and that displacement and collision risks may be presented by infrastructure. These risks are not referenced. |
| SRUC | SRUC provide a solar PV consultancy service, however no information on the ecological impacts of these developments is readily available, despite producing a guide on behalf of the Scottish government providing advice on farm scale renewables, including solar (SRUC, n.d.).
In searching for information provided by SRUC, several news |

35 http://www.sepa.org.uk/environment/energy/renewable/#solar [last accessed 21/04/2016]
36 http://www.sruc.ac.uk/info/120137/renewables/1049/solar_and_photovoltaics [last accessed 21/04/2016]
Evidence review of the impact of solar farms on birds, bats and general ecology

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Information disseminated through the organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>stories were found citing a ‘solar meadow’ built at Edinburgh College37,38,39. The solar meadow is discussed on Edinburgh College’s engineering webpage40, however there is no information on the ecology of the site other than that the solar meadow will allow the study of the interaction between biodiversity and solar PV. There is no indication as to why the development is named a ‘meadow’- all photographs of the development on this website, and in news reports show bare earth under the solar panels.</td>
</tr>
<tr>
<td>UNEP</td>
<td>• No information readily available on the ecological effect of PV developments.</td>
</tr>
<tr>
<td>Wildlife Trusts</td>
<td>• There is no readily apparent centralised opinion on solar PV developments presented by the wildlife trusts.</td>
</tr>
<tr>
<td></td>
<td>• There are concerns for some solar projects- Wiltshire wildlife trust strongly opposed a development on Rampisham Down41,42 and</td>
</tr>
</tbody>
</table>

38 http://www.bbc.co.uk/news/uk-scotland-edinburgh-east-fife-22282888 [last accessed 21/04/2016]

39 http://www.scotsman.com/news/education/edinburgh-college-powered-by-new-solar-meadow-1-2908688 [last accessed 21/04/2016]

40 http://www.edinburghcollege.ac.uk/Welcome/Centres/Engineering/Our-Facilities [last accessed 21/04/2016]

41 http://www.wildlifetrusts.org/news/2015/01/16/solar-farm-shock-decision-will-destroy-legally-protected-wildlife-site [Last accessed 22/04/2016]

42 http://www.wildlifetrusts.org/RampishamDown [last accessed 22/04/2016]
Evidence review of the impact of solar farms on birds, bats and general ecology

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Information disseminated through the organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shropshire wildlife trust</td>
<td>Shropshire wildlife trust opposed a temporary access road to a solar farm at Granville Country Park[^43].</td>
</tr>
<tr>
<td></td>
<td>- Other solar developments are supported by the wildlife trusts, such as Cleworth Hall Farm in Tyldsley where a solar farm is being planned in conjunction with a solar developer (Solstice) to be built on Lancashire wildlife trust land. The trust and Solstice are working together to maximise the potential for the site to deliver biodiversity benefits alongside the development[^44].</td>
</tr>
<tr>
<td></td>
<td>- Despite opposition to the development at Rampisham down, Wiltshire wildlife trust supports WWCE (Wiltshire Wildlife Community Energy), an organisation that helps to develop renewable projects including solar PV developments[^45], and promotes the use of solar as means of generating electricity, providing that site placement is appropriate and that biodiversity management plans are in place including management of meadows in the array footprint using grazing and placing beehives underneath arrays[^46]. A presentation slideshow from WWCE is available that claims warm air above the solar panels will attract insects in turn attracting birds, that voles and mice use habitat underneath the panels and that skylarks will nest between the panels, however these statements are uncited (Bennett, 2014). The presentation also refers to a 2014 study that showed three times the number of bumblebees at a solar development compared to a control plot, however this study is uncited.</td>
</tr>
</tbody>
</table>

[^45]: http://wwce.org/about/ [last accessed 22/04/2016]

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Information disseminated through the organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWT</td>
<td>• No information readily available on the ecological effect of PV developments.</td>
</tr>
</tbody>
</table>
Natural England is here to secure a healthy natural environment for people to enjoy, where wildlife is protected and England’s traditional landscapes are safeguarded for future generations.

Further information
Natural England evidence can be downloaded from our Access to Evidence Catalogue. For more information about Natural England and our work see Gov.UK. For any queries contact the Natural England Enquiry Service on 0300 060 3900 or e-mail enquiries@naturalengland.org.uk.

Copyright
This report is published by Natural England under the Open Government Licence - OGLv3.0 for public sector information. You are encouraged to use, and reuse, information subject to certain conditions. For details of the licence visit Copyright. Natural England photographs are only available for non-commercial purposes. If any other information such as maps or data cannot be used commercially this will be made clear within the report.

© Natural England and other parties 2017
Report number NEER012