

Vattenfall Wind Power Ltd

Thanet Extension Offshore Wind Farm

Annex A to Appendix 1 to Deadline 3 Submission: Project Description Transcription into the Application

Relevant Examination Deadline: 3

Submitted by Vattenfall Wind Power Ltd

Date: March 2019

Revision B

Drafted By:	GoBe Consultants Ltd		
Approved By:	Daniel Bates		
Date of Approval:	March 2019		
Revision:	В		

Revision A	Original Document submitted to the Examining Authority
Revision B	Revised document submitted to the Examining Authority
N/A	
N/A	

Copyright © 2019 Vattenfall Wind Power Ltd

All pre-existing rights retained

Contents

1	Int	roduction	7
	1.1	Aim	7
	1.2	Areas of disparity	7
2	Cla	arifications of parameters – Construction Phase	9
	2.1	Minimum WTGs spacing	9
	Pro	oject Description	9
	En	vironmental Statement	9
	Dra	aft DCO	9
	2.2	Total volumes of material for disposal	10
	Pro	oject Description	10
	En	vironmental Statement	10
	Dra	aft DCO	11
	2.3	Total area of seabed preparation for foundations	12
	Pro	oject Description	12
	En	vironmental Statement	12
	Dra	aft DCO	12
	2.4	Total spoil volumes from drilling of foundations	13
	Pro	oject Description	13
	En	vironmental Statement	13
	Dra	aft DCO	15
	2.5	Seabed disturbance volumes for export cable installation	15
	Pro	oject Description	15
	En	vironmental Statement	15
	Dra	aft DCO	17
	2.6	Seabed disturbance area for inter-array cable installation	17
	Pro	oject Description	17
	En	vironmental Statement	17
	Dra	aft DCO	
	2.7	Seabed disturbance volume for inter-array cable installation	
	Pro	oject Description	18

		Environmental Statement	
		Draft DCO19	
	2.	.8 Impact areas from anchors19	
		Project Description19	
		Environmental Statement	
		Draft DCO21	
	2.	.9 Impact areas from jack-up vessels	
		Project Description21	
		Environmental Statement21	
		Draft DCO	
	2.	.10 Impact volume from jack-up vessels22	
		Project Description22	
		Environmental Statement22	
		Draft DCO22	
	2.	.11 Working area within the saltmarsh23	
		Project Description23	
		Environmental Statement23	
		Draft DCO23	
3		Clarification of parameters – Operations and Maintenance24	
	3.	.1 Total footprint of foundations24	
		Project Description24	
		Environmental Statement24	
		Draft DCO24	
	3.	.2 Total Scour Protection Area Requirements	
		Project Description25	
		Environmental Statement25	
		Draft DCO25	
	3.	.3 Total Scour Protection Volume Requirements	
		Project Description	
		Environmental Statement	
		Draft DCO26	

3	.4	Total Cable Protection Area Requirements	27
	Pro	pject Description	27
	En	vironmental Statement	27
3	.5	Total Cable Protection Volume Requirements	29
	Pro	pject Description	29
	En	vironmental Statement	29
	Dra	aft DCO	29
3	.6	Seabed disturbance area during O&M activities	30
	Pro	pject Description	30
	Env	vironmental Statement	30
	Dra	aft DCO	30
3	.7	Seabed disturbance volume during O&M activities	30
	Pro	pject Description	30
	Env	vironmental Statement	31
	Dra	aft DCO	32
3	.8	O&M vessel numbers	32
	Pro	pject Description	32
	Env	vironmental Statement	32
	Dra	aft DCO	32
3	.9	Safety zones	33
	En	vironmental Statement	33
	Dra	aft DCO	33
4	Со	nclusion	34

Tables

Table 1: Transcription of the drill arising volumes in the Application	14
Table 2: Transcription of disturbed sediment volumes from the export cable installation in	n
the Application	16
Table 3: Transcription of the disturbed sediment volumes from inter-array cable installati	ion
in the Application	18
Table 4: Transcription of disturbance footprint from anchor handling	20
Table 5: Transcription of maximum scour protection area	25
Table 6: Transcription of cable protection area in the Application	28
Table 7: Transcription audit of maximum design scenario tables	35

1 Introduction

1.1 Aim

- 1 This clarification note seeks to provide clarification on how the project description for Thanet Extension Offshore Wind Farm (Thanet Extension) has been transcribed and assessed in the Environmental Statement (ES). It has been drafted in response to the project description points noted in the Relevant Representations (MMO and Natural England; PINS Ref RR-049 and RR-053).
- 2 This document has been revised by the Applicant to account for the transcription of the project description within the revised RIAA (PINS Ref REP2-018 and REP2-019, Revision B).
- 3 In responding to the relevant representations this note provides an audit of where there is some potential disparity between the design envelope for Thanet Extension and the ES assessments and the draft Development Consent Order (DCO) submitted with the Application.
- 4 This note should be read in conjunction with the Project Description Audit Clarification Note (Annex C to Appendix 34 of the Applicants' Response to Relevant Representations of the Deadline 3 submission), which provides the Rochdale Envelope of the project in a tabular format.

1.2 Areas of disparity

- 5 The areas where there may be a potential risk of disparity between the Application documents are:
 - Construction Phase:
 - Minimum WTGs spacing;
 - Total volumes of material for disposal;
 - o Total spoil volumes from drilling of foundations;
 - Seabed disturbance volumes for export cable installation;
 - Seabed disturbance area and volume for inter-array cable installation;
 - Impact areas from anchors; and
 - Working area within the saltmarsh.
 - Operations and Maintenance:
 - Total footprint of foundations;

- Total scour protection requirements;
- Total cable protection requirements;
- Seabed disturbance during O&M activities; and
- o **O&M vessel numbers**.
- 6 Each of these areas is clarified within sections 2 and 3 below. Table 7 provides a breakdown of parameters transcribed within the maximum design scenario tables each of the assessments; however, this should be reviewed in conjunction with the clarifications presented in Sections 2 and 3.

2 Clarifications of parameters – Construction Phase

2.1 Minimum WTGs spacing

Project Description

7 As identified in paragraphs 1.4.14 and 1.4.15 of Volume 2, Chapter 1: Project Description (Offshore) (PINS Ref APP-042/ Application Ref 6.2.1) the spacing of neighbouring WTGs will be a minimum of 716 x 480 m. Paragraph 1.4.74 (PINS Ref APP-042/ Application Ref 6.2.1) identifies that the met mast will also adopt a minimum spacing of 716 x 480 m.

Environmental Statement

- 8 All technical chapters have presented the correct values except the shipping and navigation chapter (PINS Ref APP-051/ Application Ref 6.2.10).
- 9 As presented in Table 7, there is a disparity in the Volume 2, Chapter 10: Shipping and Navigation (*ibid*) which has transcribed the minimum spacing from the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) as 760 x 418 m. This disparity is a typographical error. The minimum spacing has been derived to align WTGs in Thanet Extension with the rows of the existing WTGs of the Thanet Offshore Wind Farm (TOWF). The assessment was undertaken on this basis, i.e. 716m x 480m and in compliance with the parameters presented in the Project Description (PINS Ref APP-042/ Application Ref 6.2.1); and therefore, this typographical error does not alter the findings of the assessment.

Draft DCO

10 Schedule 11, Part 4, Condition 1 (1)(d) of the draft DCO sets out the correct minimum spacing of infrastructure (716 x 480 m) from the Project Description (PINS Ref APP-042/ Application Ref 6.2.1).

2.2 Total volumes of material for disposal

Project Description

- 11 As presented in Table 1.16 of the Project Description (PINS Ref APP-042/ Application Ref 6.2.1), a maximum pre-sweeping volume of 1,440,000 m³ for the offshore cable corridors is required for the project. As presented in Table 1.6 (*ibid*) the maximum seabed preparation volume for WTG foundations is 268,800 m³ (based on 28 x 9,600 m³ (3,200 m² x 3 m depth) per suction caisson foundation). The technical assessments, as presented below, have also applied the same individual assumptions (i.e. 9,600 m³) to assessments of the Offshore Substation (OSS) and met mast foundations.
- 12 Therefore, the Applicant is seeking a consent for a maximum disposal volume of 1,728,000 m³ (1,440,000 m³ (sandwave) + 268,800 m³ (WTG foundations) + 9,600 m³(OSS) + 9,600 m³ (met mast).

Environmental Statement

- 13 All technical chapters have derived the pre-sweeping volume for the export cable corridors from the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) and have all transcribed the information such that all assessments state 1,440,000 m³. There are therefore no potential discrepancies for this value.
- 14 All technical chapters have correctly transcribed the correct value for the volume of sediment disturbed for foundation installation except the water quality and sediment quality chapter (PINS Ref APP-044/ Application Ref 6.2.3).

- 15 The Water Quality and Sediment Quality chapter derived information from the Project Description to inform the Rochdale table of the chapter (Table 3.10). The assessment states a maximum volume of sediment disturbance from foundation preparation of 268,800 m³ for the WTG foundations and 9,600 m³ for the OSS. There is therefore an apparent disparity between the overall volume for all infrastructure foundations (288,000 m³) required, and the information presented in Table 3.10 (278,400 m³). This is due to an error in transcription which did not account for the potential seabed preparation for the met mast foundation (9,600 m³). It is important to note that this disparity is applicable to Table 3.10 only. Paragraph 3.10.2 of the water and sediment quality chapter (*ibid*) highlights that the assessment draws on the findings within the Marine Geology, Oceanography and Physical Processes assessment (PINS Ref APP-044/ Application Ref 6.2.3) (which presented the worst case accurately) and therefore the assessment is based on appropriate assumptions and the maximum parameters presented in the Project Description (PINS Ref APP-042/ Application Ref 6.2.1). As the assessment is based on information within another chapter (which is accurate), the disparity in the maximum design scenario (Rochdale) table within the water and sediment quality chapter is not material and the conclusions are accurate.
- 16 Within the maximum design scenario table within the revised RIAA (PINS Ref REP2-018 and REP2-019) has an omission in the SSC assumptions for offshore ornithology, where the volume for the met mast is not explicitly presented. However, as noted in the table, the assessment draws on the findings within the Benthic Intertidal and Subtidal Ecology assessment (PINS Ref APP-046/ Application Ref 6.2.5) (which presented the worst case accurately) and therefore the assessment is based on appropriate assumptions and the maximum parameters presented in the Project Description (PINS Ref APP-042/ Application Ref 6.2.1). The maximum design scenario (288,000 m³) is correctly transcribed and presented in the benthic ecology section of the maximum design scenario table.
- 17 The Applicant is seeking consent for a maximum volume of inert material for disposal of 1,728,000 m³.

Draft DCO

18 Schedule 1, Part 1, Further Works (c) of the draft DCO has transcribed the maximum volume of inert material proposed to be disposed of (1,728,000 m³). However, the draft DCO wording has been amended to "from the seabed required for the construction of Work Nos. 1 to 3B".

19 The revised draft DCO submitted with Deadline 1 was been amended to include total volumes for disposal of 1,449,600 m³ (1,440,000 m³ (pre-sweeping of export cable corridor) and 9,600 m³ for OSS foundation seabed preparation) within the export cable dML and 278,400 m³ (WTGs and one met mast) within the generation dML. This is the equivalent to a maximum volume of disposal for the project of 1,728,000 m³ but split appropriately between the two dMLs.

2.3 Total area of seabed preparation for foundations

Project Description

As presented in Table 1.6 (PINS Ref APP-042/ Application Ref 6.2.1) the maximum seabed preparation area per WTG foundations is 3,200 m² (suction caisson foundations). The same assumptions for the OSS and met mast foundations have also been applied. Therefore, the total maximum disturbance area of the seabed from preparation for foundations is 96,000 m² ((28 x 3,200 m²(WTGs)) + 3,200 m²(OSS) + 3,200 m² (met mast).

Environmental Statement

- 21 All technical chapters have presented the correct values except the Offshore Archaeology and Cultural Heritage chapter (PINS Ref APP-054/ Application Ref 6.2.13). The Offshore Archaeology and Cultural Heritage chapter has derived information from the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) and has presented the maximum area disturbed for WTG foundations as 89,600 m². The chapter also considered the disturbance of preparing the OSS foundation (3,200 m²), and therefore considered a maximum area of 92,800 m² (89,600 m² + 3,200 m²). The chapter does not present the requirement for the seabed preparation of the met mast foundation (if it is required), which is equivalent to an additional 3.5% of the assessed value. Whilst there is therefore a disparity the difference is such that it would not alter the magnitude of impacts assessed within the chapter and therefore there would be no change in the overall significance.
- 22 The Applicant is seeking a maximum seabed preparation are of 96,000 m² for the installation of foundations.

Draft DCO

23 The maximum seabed preparation disturbance area for foundations is not presented within the draft DCO.

2.4 Total spoil volumes from drilling of foundations

Project Description

- Table 1.4 of the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) presents the worst case scenario parameters for drill arising volumes for WTGs as 19,627 m³ (defined by 1,155 m³ per 10 MW foundation and up to 50% of foundations requiring drilling). Table 1.12 (PINS Ref APP-042/ Application Ref 6.2.1) presents the worst case drill arising volume for the OSS as 1,000 m³. Whilst the consideration of drilling has not been explicitly presented in the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) for the met mast, reference is made to the same foundation assumptions being applied, therefore the met mast has been assessed within the technical chapters on the basis of assuming the same worst case requirements as the WTG foundations, i.e. 1,155 m³.
- 25 Therefore, the maximum drill arising volume is 21,782 m² (19,627 m² (WTGs)+ 1000 m² (OSS) + 1,155 m² (met mast)), as presented in Project Description Audit Clarification Note (Annex A, of the Applicants' Response to Relevant Representations of the Deadline 1 submission).

Environmental Statement

26 The Marine Geology, Oceanography and Physical Processes; Marine Water Quality and Sediment Quality; Fish and Shellfish; Marine Mammals (Volume 2, Chapter 7); Infrastructure and Other Users chapters and the Sand Wave Clearance, Dredging and Drill Arising: Disposal Site Characterisation assessment (PINS Ref APP-043, APP-044, APP-047, APP-048, APP-052 and APP-148/ Applications Refs 6.2.2, 6.2.3, 6.2.6, 6.2.7, 6.2.11 and 8.14) have derived information from the Project Description (PINS Ref APP-042/ Application Ref 6.2.1), the transcribed volumes are presented in Table 1. Notable exceptions to this list of chapters is the benthic chapter, which assesses a worst case for suspended sediment which is based on seabed preparation.

Document	Total volume for WTGs (m ³)	Total volume for OSS (m ³)	Total volume for met mast (m ³)	Total volume assessed (m ³)
APP-043/ 6.2.2	19,627	900	1,325	21,852
APP-044/ 6.2.3	22,531	1,000	0	23,531
APP0-047/ 6.2.6	19.627	900	0	20,527 ^β
APP-048/ 6.2.7	19,627	900	1,325	21,852
APP-052/ 6.2.11	19,627	0	1,155	20,782 ^β
APP-148/ 8.14	19,627	1,000	1,155	21,782

Table 1:	Transcription	of the c	drill arising	volumes in	the Application

 $^{\beta}$ nb in the chapter the total volume is presented alone, but the constituents are presented in this table for clarity.

- 27 The disparities in Marine Geology, Oceanography and Physical Processes, and Marine Mammals chapters (PINS Ref APP-043 and APP-052/ Application Refs 6.2.2 and 6.2.11) have arisen from a transcription error of a drill arising volume of 900 m³ as opposed to 1,000 m³ for the OSS and has considered the larger 12 MW foundation for the met mast (1,325 m³). The results in a higher maximum volume when compared to the Project Description chapter. As such the assessments have assessed a greater volume than the required consent and concluded the effect to be not significant. The apparent disparity between the assessment and the requested value for consent means that the assessments in this case are overly precautionary; and a reduced value will not alter the findings of the assessment.
- 28 The disparity in the Marine Water Quality and Sediment Quality chapter (PINS Ref APP-044/ Application Ref 6.2.3) has arisen from a transcription error of 22,531 m³ as opposed to 19,627 m³ for WTG, and OSS foundations. The assessment has assessed a greater volume than the required consent and concluded the effect to be not significant. The apparent disparity between the assessment and the requested value for consent means that the assessment in this case is overly precautionary; and a reduced value does not alter the findings of the assessment.
- 29 The disparity in the Fish and Shellfish chapter (PINS Ref APP-047/ Application Ref 6.2.6) has arisen from a transcription error of not including the requirement for drilling for the met mast. As described in paragraph 6.10.15 (PINS Ref APP-052/ Application Ref 6.2.6) the assessment draws on the findings within the Marine Geology, Oceanography and Physical Processes assessment (PINS Ref APP-044/ Application Ref 6.2.2) (which represented a precautionary worst case, see paragraph 27) and therefore is based on precautionary assumptions. Therefore, this disparity and will not alter the findings of the assessment.

- 30 The disparity in the Infrastructure and Other Users (PINS Ref APP-052/ Application Ref 6.2.11) has arisen from a transcription error of not including the requirement for drilling for the OSS. As described in paragraph 11.10.29 (PINS Ref APP-052/ Application Ref 6.2.11) the assessment draws on the findings within the Marine Geology, Oceanography and Physical Processes assessment (PINS Ref APP-044/ Application Ref 6.2.2) (which represented a precautionary worst case, see paragraph 27) and therefore is based on precautionary assumptions. Therefore, this disparity and will not alter the findings of the assessment.
- 31 The Applicant is therefore seeking to consent a maximum drill arisings volume for foundation installation of 21,782 m³.

Draft DCO

32 Within the draft DCO (PINS Ref APP-022/ Application Ref 3.1) the maximum volume of drill arisings from foundation installation is incorporated within the wider volumes for disposal within the draft DCO. For consideration of the total volumes for disposal see section 2.2.

2.5 Seabed disturbance volumes for export cable installation

Project Description

33 Tables 1.15 and 1.16 of the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) present the parameters to derive the total maximum disturbance volume for export cable installation (not including sandwave clearance). The total volume required for the consent is 900,000 m³ (120 km length (4 cables x 30 km) x 10 m width x 3 m depth x v-shaped trench x 50% of the sediment is liquidised). This is based on the assumption that half of the material is ejected from the trench, via jetting, with the other half retained as sediment cover within the trench.

Environmental Statement

- 34 Table 2 presents the technical assessments which incorrectly transcribed the disturbance sediment volumes from the export cable installation.
- 35 As identified in Revision A of this note there were some transcription inconsistencies in the RIAA, these were revised in the Revision B of the RIAA (PINS Refs REP2-018 and REP2-019) and the report correctly identified a maximum disturbance volume of 900,000 m³. Notwithstanding that the original assessment drew on the findings within the Marine Geology, Oceanography and Physical Processes assessment (PINS Ref APP-043/ Application Ref 6.2.2) (which represented the worst case accurately).

Table 2: Transcription of disturbed sediment volumes from the export cable installation	n in
the Application	

Document	Total volume transcribed (m ³)
APP-044/ 6.2.3	900,000
APP-047/ 6.2.6	180,000
APP-052/ 6.2.11	1,740,000
APP-031/ 5.2	900,000

- 36 The Water Quality and Sediment Quality chapter has derived information from the Project Description and presents the Rochdale Envelope/ maximum design scenario in Table 3.10 incorrectly due to a typographic error in which is states the volume is 1.2 km², however this should state area as opposed to volume. The chapter has assessed the correct value for the volume of disturbed sediment (900,000 m³) based on the parameters presented in Table 3.10 (v-shaped trench, 50% of material ejected, 10 m width, 3 m depth and 120 km length). It is also important to note that as described in paragraph 3.10.2 of the chapter (PINS Ref APP-044/ Application Ref 6.2.3) the assessment draws on the findings within the Marine Geology, Oceanography and Physical Processes assessment (PINS Ref APP-043/ Application Ref 6.2.2) (which represented the worst case accurately). Therefore, the overall assessment is based on appropriate assumptions, and the maximum parameters presented in the Project Description (PINS Ref APP-042/ Application Ref 6.2.1). The overall assessment is therefore based on appropriate assumptions and the error in transcription does not alter the findings of the assessment.
- 37 The Fish and Shellfish chapter (PINS Ref APP-047/ Application Ref 6.2.6) has derived information from the Project Description and presents the Rochdale Envelope/ maximum design scenario in Table 6.7, as 180,000 m³, incorrectly due to a transcription error (the table reads cable trench width of 1m instead of 10m, and overall volume of 180,000m³ instead of 1,800,000m³ which should in turn by reduced by 50% to account for 50% sediment being released into suspension). As described in paragraph 6.10.13 (PINS Ref APP-047/ Application Ref 6.2.6) the assessment draws on the findings within the Marine Geology, Oceanography and Physical Processes assessment (PINS Ref APP-043/ Application Ref 6.2.2) (which represented the worst case accurately). Therefore, the overall assessment is based on appropriate assumptions, and the maximum parameters presented in the Project Description (PINS Ref APP-042/ Application Ref 6.2.1). The overall assessment is therefore based on appropriate assumptions and the error in transcription does not alter the findings of the assessment.

- The Infrastructure and Other Users chapter (PINS Ref APP-052/ Application Ref 6.2.11) has derived information from the Project Description and presents the Rochdale Envelope/ maximum design scenario in Table 11.10, as 1,740,000 m³, incorrectly due to a transcription error and not reducing by 50% to account for 50% sediment being released into suspension. As described in paragraphs 6.11.25 to 6.10.34 (PINS Ref APP-052/ Application Ref 6.2.11) the assessment draws on the findings within the Marine Geology, Oceanography and Physical Processes assessment (PINS Ref APP-043/ Application Ref 6.2.2) (which represented the worst case accurately). Therefore, the overall assessment is based on appropriate assumptions, and the maximum parameters presented in the Project Description (PINS Ref APP-042/ Application Ref 6.2.1). The overall assessment is therefore based on appropriate assumptions and the error in transcription does not alter the findings of the assessment.
- 39 The Applicant is therefore seeking consent for a maximum volume of disturbed sediment from the installation of the export cables of 900,000 m³.

Draft DCO

40 The maximum volume of disturbed sediment from export cable installation is not presented within the draft DCO.

2.6 Seabed disturbance area for inter-array cable installation

Project Description

41 Ploughing the inter-array cable corridor represents the worst case area of disturbance of 0.64 km² (64 km x 10 m width (based on the parameters presented in Table 1.9 of the Project Description (PINS Ref APP-042/ Application Ref 6.2.1)). Whereas, the disturbance area for jetting would be of 0.3 km², as presented in Table 1.9 of the Project Description (PINS Ref APP-042/ Application Ref 6.2.1). Jetting represents the worst case for the generation of sediment plumes during cable installation.

Environmental Statement

- 42 All chapters have correctly transcribed the value, except for the offshore archaeology and cultural heritage chapter (PINS Ref APP-054/ Application Ref 6.2.13).
- 43 The Offshore Archelogy and Cultural Heritage (*ibid*) presents a maximum area of 0.6 km² which is a typographical error from rounding the value during transcription into Table 13.11 the chapter (0.64 km²). The apparent disparity will not therefore alter the findings of the assessments.

44 The Applicant is seeking consent for a maximum area of disturbed sediment from inter-array cable installation of 0.64 km².

Draft DCO

45 The maximum area of disturbed sediment from inter-array cable installation is not presented within the draft DCO.

2.7 Seabed disturbance volume for inter-array cable installation

Project Description

46 Table 1.9 in the Project Description (offshore) (PINS Ref APP-042/ Application Ref 6.2.1) presents the parameters to derive the total maximum disturbance volume for inter-array cable installation. The total volume is 48,000 m³ (64 km length x 1 m width x 3 m depth x v-shaped trench x 50% of the sediment is liquidised). This is based on the assumption that half of the material is ejected from the trench with the other half retained as sediment cover within the trench.

Environmental Statement

- 47 All technical chapters have presented the correct values except the Fish and Shellfish and Infrastructure and Other (PINS Ref APP-047, APP-052 and APP-031/ Applications Refs 6.2.6 and 6.2.11). The values presented in their Rochdale envelope/ maximum design scenarios are presented in Table 3.
- 48 As identified in Revision A of this note there were some transcription inconsistencies in the RIAA, these were revised in the Revision B of the RIAA (PINS Refs REP2-018 and REP2-019) and the report correctly identified a maximum disturbance volume of 48,000 m³. Notwithstanding that the original assessment drew on the findings within the Marine Geology, Oceanography and Physical Processes assessment (PINS Ref APP-043/ Application Ref 6.2.2) (which represented the worst case accurately).

 Table 3: Transcription of the disturbed sediment volumes from inter-array cable installation

in the Application

Document	Total volume of disturbed material from inter-array cable		
(PINS Ref/ Application Ref)	installation transcribed (m ³)		
APP-047/ 6.2.6	96,000		
APP-052/ 6.2.11	96,000		

49 The disparity between the chapters results from the assumptions applied, to the percentage of sediment liquidised during the jetting process (i.e. 50% fluidisation rather than 100%), not having been accurately transposed.

- 50 The Fish and Shellfish and Infrastructure and Other chapters have presented a greater worse case (96,000 m³) than the consent requires due to an error in transcription of the 50% sediment into solution calculation, the assessments are however informed by the Marine Geology, Oceanography and Physical Processes assessment (PINS Ref APP-043/ Application Ref 6.2.2) chapter which provides the correct assumptions and so the apparent disparities will not therefore alter the findings of the assessments.
- 51 The Applicant is seeking consent for a maximum volume of disturbed sediment from inter-array cable installation of 48,000 m³.

Draft DCO

52 The maximum volume of disturbed sediment from inter-array cable installation is not presented within the draft DCO.

2.8 Impact areas from anchors

Project Description

- 53 The use of anchors is required during construction for the installation of infrastructure. Table 1.26 of the Project Description chapter (PINS Ref APP-042/ Application Ref 6.2.1) presents the consent area requirements for anchors for each of the infrastructure installation activities. The maximum requirements for anchoring disturbance area, as presented in the Project Description, are as follows:
 - Foundation installation 5,400 m² (34 x 150 m² (WTGs) + 150 m² (OSS) + 150 m² (met mast));
 - OSS top side installation 150 m²;
 - Export cable installation 34,560 m²; and
 - Inter-array cables installation 30,600 m².
- 54 Therefore, the total area of disturbance for anchor handling, from the constituents presented in Table 1.26 the Project Description (PINS Ref APP-042/ Application Ref 6.2.1), is 70,710 m² (5,400 m² + 150 m² + 34,560 m² + 30,600 m²).

Environmental Statement

55 Benthic Intertidal and Subtidal Ecology; Fish and Shellfish; Infrastructure and Other Users; Offshore Archelogy and Cultural Heritage and the Report to Inform an Appropriate Assessment (PINS Ref APP-046, APP-047, APP-052, APP-054 and REP2-018 (REP2-019/ Applications Refs 6.2.5, 6.2.6, 6.2.11, 6.2.13 and 5.2) have derived information from the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) for anchor handling impact areas. Table 4 presents the transcription of this information into the assessments.

Document PINS Ref/ Application Ref	Foundation Installation (m ²)	OSS Topside installation (m ²	Export Cable installation (m ²)	Inter-array cable installation (m ²)	Total (m ²)
APP-046/ 6.2.5	5,400	0	34,560	30,600	70,560
APP-047/ 6.2.6	5,400	150	34,560	29,700	69,810
APP-052/ 6.2.11	0	0	34,560	30,600	65,160
APP-054/ 6.2.13	5,400	150	34,560	29,700	69,810
APP-031/5.2	5,400	0	34,560	30,600	70,560

Table 4: Transcription of disturbance footprint from anchor handling

- 56 The Benthic Intertidal and Subtidal Ecology chapter and the RIAA have transcribed all parameters from the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) accurately but did not include the anchor handling requirements for the installation of the topside on to the OSS (150 m²). This is equivalent to less than 0.5% of the requested value for consent. The assessment concluded the effects to be not significant. Given the small increase in the requested area, the magnitude of impact and therefore overall significance would not change.
- 57 The Fish and Shellfish, and Offshore Archelogy and Cultural Heritage chapters (PINS Ref APP-047 and APP-054/ Application Refs 6.2.6 and 6.2.13) and the RIAA have transcribed that parameters from the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) but have presented a maximum anchor handling area of 29,700 m² for inter-array cables. The chapters have therefore assessed 97.1% of the interarray cable anchor handling area and 98.7% of the total requested consent area. The assessments have concluded the effects to be not significant. Given the small difference in area affected, the magnitude of impact and therefore overall significance would not change. Therefore, the disparity will not therefore alter the findings of the assessment.

- 58 The Infrastructure and Other Users chapter (PINS Ref APP-052/ Application Ref 6.2.11) has derived and presented the anchor handling requirements for the cable installation activities. The assessment considers the anchor handling as part of the cable installation activities, and how existing pipeline and cables may be subject to an increased bed depth as a result of construction activities. The chapter does not assess the footprint of these activities directly. As noted in paragraphs 11.10.21 and 11.10.28 *et seq.* the assessment draws on the findings of the Marine Geology, Oceanography and Physical Processes chapter (PINS Ref APP-043/ Application Ref 6.2.2.) (which represented the worst case accurately) and therefore is based on appropriate assumptions for changes in the sea bed level, and the maximum parameters presented in the Project Description (PINS Ref APP-042/ Application Ref 6.2.1).
- 59 The Applicant is seeking consent for a maximum area of disturbed sediment from anchor handling of 70,710 m³.

Draft DCO

60 The maximum area of disturbance for anchor is not presented within the draft DCO.

2.9 Impact areas from jack-up vessels

Project Description

61 As presented in Table 1.25 of the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) the maximum combined leg area for a single jack-up vessel (JUV) during construction will be 471.24 m². Therefore, the maximum sea bed disturbance area from JUVs during construction will be 32,044 m² (471.24 m² x 68 JUV visits).

Environmental Statement

- 62 The following technical chapters have derived information from the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) and each presented the maximum sea bed disturbance as 33,929 m² (471.24 m² x 2 x 36):
 - Benthic Subtidal and Intertidal Ecology (PINS Ref APP-046/ Application Ref 6.2.5);
 - Fish and Shellfish (PINS Ref APP-047/ Application Ref 6.2.6);
 - Infrastructure and Other Users (PINS Ref APP-052/ Application Ref 6.2.11); and
 - Offshore Archaeology and Cultural Heritage (PINS Ref APP-054/ Application Ref 6.2.13).

- 63 The apparent disparity between the assessments and the values utilised for the DCO application means that the assessments are overly precautionary and a consent for a reduced value does not therefore alter the findings of the assessments.
- 64 The Applicant is seeking consent for a maximum area of disturbed sediment from JUVs during construction of 32,044 m².

Draft DCO

65 The maximum area of disturbance for JUVs during construction is not presented within the draft DCO (PINS Ref APP-022/ Application Ref 3.1).

2.10 Impact volume from jack-up vessels

Project Description

66 As presented in Table 1.25 of the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) the maximum penetration depth for the JUVs during construction is 15 m. As describes in section 2.9, the maximum disturbance area for the JUVs during construction will be up to 32,044 m², therefore the maximum volume of disturbance will be 480,665 m³ (15 m x 32,044 m²).

Environmental Statement

- 67 The Offshore Archaeology and Cultural Heritage (PINS Ref APP-054/ Application Ref 6.2.13) has derived information from the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) and presents the maximum volume as 508,935 m³ (33,929 m² x 15 m). This discrepancy, as presented in section 2.9, arose from applying an area of 39,929m² (471.24 m² x (2 x 36 JUV visits)) as opposed to 32,044 m² (471.24 m² x 68 JUV visits). Similarly, to section 2.9, the apparent disparity between the assessment and the requested value for consent means that the assessment in this case is overly precautionary and a consent for a reduced value does not therefore alter the findings of the assessment.
- 68 The Applicant is seeking consent for a maximum area of disturbed sediment from JUVs during construction of 32,044 m².

Draft DCO

69 The maximum volume of disturbance for JUVs during construction is not presented within the draft DCO.

2.11 Working area within the saltmarsh

Project Description

- 70 Table 1.20 of the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) presents the maximum construction space required in the saltmarsh as 3,872 m². This value refers to the space required for the cofferdam in the intertidal area, including the seawall extension. This value is applicable to the Option 3 landfall option only. Option 1 (HDD) does not require working space in the saltmarsh.
- 71 Whilst not specifically in the saltmarsh it is worthy of note that Table 1.18 of the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) presents the maximum trenching area in the intertidal as 80,000 m² (2 km x maximum disturbance width of 40 m).

Environmental Statement

- 72 All technical chapters have presented the correct values except the Water Quality and Sediment Quality and Benthic Subtidal and Intertidal Ecology chapters and the RIAA (PINS Ref APP-043 and APP-046 / Applications Refs 6.2.3 and 6.2.5 respectively) The Benthic Subtidal and Intertidal Ecology chapter has derived information from the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) and have presented a maximum working area of 7,376 m², this value includes the cofferdam area plus the area of trenching within the saltmarsh. The area of trenching is included within the 80,000 m² within the intertidal. These transcription errors are of a greater area than the consent requires, and so the apparent disparities do not alter the findings of the assessments.
- 73 The Marine Water Quality and Sediment Quality (PINS Ref APP-044/ Application Ref 6.2.3) derived information from the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) and presented a maximum working area of 4,702 m² which is based on a rectangular shape (165 m x (18.5 m +10 m (buffer)). These transcription errors are of a greater area than the consent requires, and so the apparent disparities do not alter the findings of the assessments.
- 74 The Applicant is seeking consent for a maximum working area within the saltmarsh of 3,872 m².

Draft DCO

75 The maximum working area within the saltmarsh is not presented within the draft DCO.

3 Clarification of parameters – Operations and Maintenance

3.1 Total footprint of foundations

Project Description

As described in Table 1.6 (PINS Ref APP-042/ Application Ref 6.2.1) the maximum foundation diameter is 20 m (for the 12MW), which is equivalent to a footprint area per WTG foundation of 1,256.6 m². It is important to note that this value is applicable to the 12MW scenario, which is the worst case for this parameter, but has 28 WTGs rather than the maximum of 34 WTGs. Table 1.13 (PINS Ref APP-042/ Application Ref 6.2.1) presents the maximum foundation diameter for the OSS is 20 m (in a tripod configuration), which is equivalent to a footprint area of 942.5 m². The assumptions applied for the met mast foundation, in terms of footprint, are the same as for the WTGs, and will have a maximum footprint of 1,256.6 m². Therefore, the maximum footprint from foundations will be 37,385 m² (29 x 1,256.6 m² (28 WTGS + met mast) + 942.5 m² (OSS)).

Environmental Statement

- The Benthic Subtidal and Intertidal Ecology, Fish and shellfish chapters and the RIAA (PINS Ref APP-046, APP-047 and REP2-018 & REP2-019/ Applications Refs 6.2.5, 6.2.6 and 5.2) have derived information from the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) and have presented a maximum footprint area as 37,680 m² (1,256 m² x 30). This disparity is due to applying the WTG foundation assumptions to the OSS (1,256 m²) instead of applying those set out above (942.5 m²). These transcription errors are of a greater area than the consent requires and therefore the apparent disparities do not alter the findings of the assessments.
- 78 The Applicant is seeking consent for a maximum foundation footprint will be $37,385 \text{ m}^2$.

Draft DCO

79 The maximum footprint area of the foundations is not presented within the draft DCO (PINS Ref APP-022/ Application Ref 3.1).

3.2 Total Scour Protection Area Requirements

Project Description

Table 1.7 of the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) presents the worst case scenario parameters for scour protection for WTGs as 219,912 m² (defined as 7,854 m² per WTG foundation). Table 1.13 (PINS Ref APP-042/ Application Ref 6.2.1) presents the worst case scour protection area for the OSS (including the footprint of the structure) as 7,854 m². Whilst the scour protection area for the met mast has not been explicitly presented in the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) it has been assessed within the technical chapters on the basis of assuming the same worst case requirements as the WTG foundations, i.e. 7,854 m². Therefore, the maximum scour protection area is 235,620 m² (219,912 m² (WTGs)+7,854 m² (OSS) + 7,854 m² (met mast)).

Environmental Statement

81 All technical chapters have correctly presented this figure, with the exception of the Fish and shellfish chapter (PINS Ref APP-047Applications Ref 6.2.6). Table 5 presents the transcription of the information into the chapter.

Table 5: Transcription of maximum scour protection area

Document (PINS Ref/ Application Ref)	Derived total scour protection area (m ²)
APP-047/ 6.2.6	267,036

- The disparity in the Fish and Shellfish chapter (Application Ref 6.2.6) has arisen from a transcription error of 8,901.2 m² as opposed to 7,854 m² per foundation (28 x 8,901.2 m² (WTGs) + 8,901.2 m² (OSS) + 8,901.2 m² (met mast) = 267,036 m²). The assessment has assessed a greater area than the required consent and concluded the effect to be not significant. The apparent disparity between the assessment and the requested value for consent means that the assessment in this case is overly precautionary and a consent for a reduced value does not alter the findings of the assessment.
- 83 The Applicant is seeking consent for a maximum scour protection for the foundations of 235,620 m².

Draft DCO

84 The draft DCO (PINS Ref APP-022/ Application Ref 3.1) does not present the maximum scour protection area for foundations.

3.3 Total Scour Protection Volume Requirements

Project Description

- Table 1.7 of the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) presents the worst case scenario parameters for scour protection volume for WTGs as 1,112,674.4 m³. Whilst the scour protection volume for the offshore substation (OSS) (including the footprint of the structure) or the met mast, has not been explicitly presented in the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) they have been assessed within the technical chapters on the basis of assuming the same WTG foundation worst case requirements for all infrastructure. The worst case volume for the OSS and the met mast is 39,269.9 m³ as per a WTG foundation presented in Table 1.7 of the Project Description (PINS APP-042/ Application Ref 6.2.1).
- Therefore, the maximum scour protection area, as presented in Project Description Audit Clarification Note (Annex C to Appendix 34 of the Applicants' Deadline 3 submission), is 1,191,187.2 m³ (1,112,647.4 m³ (WTGs)+39,269.9 m³ (OSS) + 39,269.9 m³ (met mast)).

Environmental Statement

87 The technical chapters do not assess the maximum scour protection volume.

Draft DCO

88 Requirement 5 of the draft DCO (PINS Ref APP-022/ Application Ref 3.1) provides a total volume of scour protection of 1,112,647 m³. This disparity has arisen from a transcription of the scour protection volume for the WTGs only, and this figure does not include the requirements for the OSS and met mast. This disparity has been addressed in the revised draft DCO submitted with Deadline 1, which will include a maximum value of 1,191,187.2m³. Within the revised draft DCO, the updated generation DML will include a maximum value of 1,151,917.3 m³ (WTGs (1,112,674.4 m³) and a met mast (39,269.9 m³)) and the updated export cable DML will include a maximum value of 39,269.9 m³ (for the OSS); to account for the potential scour protection volume required within the consent.

3.4 Total Cable Protection Area Requirements

Project Description

- As presented in Table 1.16 in the Project Description (offshore) (PINS Ref APP-042/ Application Ref 6.2.1), a maximum of 25% of the export cables may require cable protection, which is equivalent to an area of 210,000 m². In addition, there may be a requirement for an additional 80,000 m² of cable protection for cable crossings (80 x 1000 m²), as presented in Table 1.17 in the Project Description (PINS Ref APP-042/ Application Ref 6.2.1). Therefore, the export cables will require a maximum of 290,000 m² of cable protection.
- 90 As presented in Table 1.9 (PINS Ref APP-042/ Application Ref 6.2.1), a maximum of 25% of the inter-array cables may require cable protection, which is equivalent to an area of 80,000 m². There may be a requirement for up to additional 12,000 m² of cable protection for cable crossings (12 x 1000 m²), as presented in Table 1.10 in the Project Description (PINS Ref APP-042/ Application Ref 6.2.1). In addition, Table 1.9 (PINS Ref APP-042/ Application Ref 6.2.1) presents the requirement for remedial protection of 17,500 m² for j-tubes. Therefore, the inter-array cables will require a maximum of 109,500 m² of cable protection.
- 91 Therefore, the maximum area of cable protection presented within in the Project Description Audit Clarification Note (Annex C to Appendix 34 of the Applicants' Deadline 3 submission) is 399,000 m² ((290,000 m² (export cables) + 109,5000 m² (inter-array cables)).

Environmental Statement

92 The following ES chapters have derived information from the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) and have transcribes the area of cable protection within their assessments, as presented in Table 6.

Document (PINS Ref/ Application Ref)	Inter-array cable protection (m ²)	Inter-array cable crossing protection (m ²)	Export cable protection (m ²)	Export cable crossing protection (m ²)	Remedial protection for j-tubes (m ²)	Total (m²)
APP-043/ 6.2.2	80,000	12,000	210,000	80,000	0	382,000
APP-046/ 6.2.5	80,000	12,000	210,000	80,000	17,500	399,500
APP-047/ 6.2.6	80,000	12,000	210,000	80,000	0	382,000
APP-054/ 6.2.13	80,000	12,000	210,000	80,000	0	382,000
APP-031/ 5.2	80,000	12,000	210,000	80,000	17,500	399,500

 Table 6: Transcription of cable protection area in the Application

- 93 Each of the technical chapters derived the requirements for the cable protection (including crossings) from the Project Description (PINS Ref APP-042/ Application 6.2.1) and state a maximum cable protection area of 290,000 m² for export cables and 92,000 m² for inter-array cables (80,000 m² for the cables and 12,000 m² for cable crossings). As presented in Table 6, there are disparities in applying the remedial protection requirement for the j-tubes.
- 94 The Benthic Subtidal and Intertidal Ecology chapter and the RIAA (PINS Ref APP-046 and APP-031/ Application Refs 6.2.5 and 5.2) have transcribed and considered the cable protection requirements for j-tubes (17,500 m²) in addition to the inter-array cable protection and crossings. Therefore, these assessments present a total of cable protection area of 399,500 m².
- 95 It should be noted that the worst case, in terms of calculating area of habitat loss or change, is derived from new material being put on the seafloor. Protection for J-tubes would in reality be coincidental with the scour protection material for foundations. Therefore, under this worst case scenario the use of protection for j-tubes would be placed on top of the foundations scour protection, and so would essentially be double counting of the area. Therefore, the magnitude of impacts assessed within the technical chapters have been appropriately assessed (PINS Ref APP-043, APP-047 and APP-054/ Application Refs 6.2.2, 6.2.6 and 6.2.13) and therefore there would be no change in the overall significance.
- 96 The Applicant is seeking to consent a maximum protection area of 382,000 m² for cabling.

3.5 Total Cable Protection Volume Requirements

Project Description

- 97 As presented in Project Description Audit Clarification Note (Annex C to Appendix 34 of the Applicants' Deadline 3 submission) a maximum area of cable protection is presented, a post lay berm height of which is 0.5m. The volume of cable protection of 105,000 m³ (210,000 m² x 0.5 m) is required for the export cables. In addition, there may be a requirement for an additional 40,000 m³ of cable protection for cable crossings (80 x 500 m³), as presented in Table 1.17 (PINS Ref APP-042/ Application Ref 6.2.1). Therefore, the export cables will require a maximum volume of 145,000 m³ of cable protection.
- 98 Based on the parameters presented in Table 1.9 (PINS Ref APP-042/ Application Ref 6.2.1) this is the equivalent volume of 20,000 m³ (16 km x 1,250 m³ km⁻¹) for inter-array cables. There may be a requirement for up to additional 6,000 m³ of cable protection for inter-array cable crossings as presented in Table 1.10 (Application Ref 6.2.1). In addition, Table 1.9 (PINS Ref APP-042/ Application Ref 6.2.1) presents the requirement for remedial protection of 8,750 m³ for j-tubes (17,500 m² x 0.5 m depth). Therefore, the inter-array cables will require a maximum volume of 34,750 m³ of cable protection.
- 99 Therefore, the maximum volume of cable protection presented within in the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) is 179,750 m³ (145,000 m³ (export cables) + 34,750 m³ (inter-array cables)).

Environmental Statement

- 100 The technical chapters do not assess the maximum cable protection volume.
- 101 The Applicant is seeking to consent a maximum scour protection volume of 179,750 m³ for cabling.

Draft DCO

Schedule 11, Part 4, Condition 3 of the draft DCO (PINS Ref APP-022/ Application Ref 3.1) provides a total volume and length of cable protection of 92,000 m³ for the inter-array cables. This will be amended in the revised draft DCO to a maximum value of 34,750 m³. Schedule 12, Part 4, Condition 3 of the draft DCO (*ibid*) has transcribed information from the Project Description and presents a total volume for export cables of 145,000 m³.

3.6 Seabed disturbance area during O&M activities

Project Description

- 103 As presented in Project Description Audit Clarification Note (Annex A of the Applicants' Response to Relevant Representations of the Deadline 1 submission) the maximum disturbance area is 4,111,801 m² for O&M activities, consisting of:
 - Export Cable O&M works 72,000 m² (Table 1.33 of the Project Description);
 - Inter-array cable O&M replacement 140,000 m² (Table 1.31 of the Project Description);
 - Inter-array cable O&M reburial 3,840,000 m² (Table 1.32 of the Project Description);
 - JUV foot prints for OSS O&M operations 2,121 m² (Table 1.35 of the Project Description); and
 - JUV for prints for WTG O&M operations 57,680 m² (169.65 m² x 340) (Table 1.34 of the Project Description).

Environmental Statement

- 104 All technical chapters correctly transcribe the parameters for O&M activities.
- 105 The Applicant is seeking to consent a maximum disturbance area for the O&M activities of 4,111,801 m².

Draft DCO

106 The maximum disturbance area for O&M activities is not presented within the draft DCO (PINS Ref APP-022/ Application Ref 3.1). However, the O&M activities are presented in the Summary of Environmental Impact Assessment for Offshore Maintenance Activities (PINS Ref APP-145/ Application Ref 8.10) accurately.

3.7 Seabed disturbance volume during O&M activities

Project Description

- 107 As presented in Project Description Audit Clarification Note (Annex C to Appendix 34 of the Applicants' Deadline 3 submission the maximum disturbance volume is 3,039,000 m³ for O&M activities, consisting of:
 - Export cable O&M works 54,000 m³ (72,000 m² x 3 m (depth) x v-shaped trench x 50% of sediment liquidised) (Table 1.33 of the Project Description); and

Inter-array cable O&M works – 2,985,000 m³ (3,980,000 m² x 3 m (depth) x v-shaped trench x 50% of sediment liquidised) (Table 1.31 and Table 1.32 of the Project Description).

Environmental Statement

- 108 The Fish and Shellfish chapter (PINS Ref APP-047/ Application Ref 6.2.6) derived the maximum sediment disturbance area for the O&M activities from the constituents provided within the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) and the assessment states a maximum value of 596,700 m³.
- 109 As highlighted in paragraphs 6.11.53 to 6.11.56 the assessment of the O&M phases draws on the information presented in the construction phases of work, including the assessment, of increased suspended sediment concentrations arising from cable installation activities, undertaken in the Marine Geology, Oceanography and Physical Processes (PINS Ref APP-043/ Application Ref 6.2.2) chapter. As stated in paragraph 6.11.54 of the Fish and Shellfish chapter (PINS Ref APP-047/ Application Ref 6.2.6) "the potential impact in the O&M phase will be more limited, less frequent, intermittent and localised, they will fall within the envelope assessed for the construction phase" which has been appropriately assessed. Therefore, despite the transcription errors into the maximum design envelope table within the Fish and Shellfish chapter the magnitude and so the significance of the effect have been adequately assessed and the findings of the assessment are based on appropriate assumptions and the maximum parameters presented in the Project Description (PINS Ref APP-042/ Application Ref 6.2.1).
- 110 The Applicant notes that the Marine Geology, Oceanography and Physical Processes chapter (PINS Ref APP-043/ Application Ref 6.2.2) does not explicitly present the maximum disturbance volume for O&M activities. However, as stated in paragraph 2.11.101 of the Marine Geology, Oceanography and Physical Processes chapter (PINS Ref APP-043/ Application Ref 6.2.2) the assessment (in paragraphs 2.10.32 *et seq.*) of SSC and associated bed level change during the construction phase utilises similar techniques, if the activities are required.
- 111 The Applicant notes that the Benthic Subtidal and Intertidal Ecology chapter (PINS Ref APP-046/ Application Ref 6.2.5) does not explicitly present the maximum disturbance volume for O&M activities. However, the assessment of cable repair works, including reburial, is provided in paragraphs 5.11.26 *et seq* and is based on appropriate assumptions and the maximum parameters presented in the Project Description (PINS Ref APP-042/ Application Ref 6.2.1). Therefore, this disparity will not alter the findings of the assessment.

112 Therefore, the Applicant is seeking to consent a maximum disturbance volume for the O&M activities of 3,039,000m³.

Draft DCO

113 The maximum disturbance sediment volume for O&M activities is not presented within the draft DCO.

3.8 O&M vessel numbers

Project Description

114 As presented in Table 1.30 of the Project Description (PINS Ref APP-042/ Application Ref 6.2.1) the total number of O&M round trips to port undertaken by O&M vessels will be 307 per year. These trips will be undertaken by six vessels in total (two small CTV O&M vessels, one large O&M vessel, one lift vessel, one cable maintenance vessel and three auxiliary vessels).

Environmental Statement

- 115 The Offshore Ornithology, Marine Mammals, Infrastructure and Other Users and Shipping and Navigation chapters (PINS Ref APP-045, APP-048, APP-052 and APP-051/ Application Refs 6.2.4, 6.2.7, 6.2.11 and 6.2.10) each derived the O&M vessel parameters from the Project Description (PINS Ref APP-042/ Application Ref 6.2.1). The Marine Mammals and Infrastructure and Other Users chapters have assessed 307 vessel movements per year, but both have presented the number of vessels as five, this is a typographical error and does not affect the findings of the assessments as the total vessel movements have been accurately transcribed and considered.
- 116 The Shipping and Navigation chapter (PINS Ref APP-051/ Application Ref 6.2.10) has assessed two transits per day, this is precautionary, as 307 transits per year is equivalent to approximately 0.84 transits per day. The assessments have assessed a greater number of transits than the required consent and concluded the effect to be not significant. The apparent disparity between the assessment and the requested value for consent means that the assessment in this case is overly precautionary and a consent for a reduced value does not therefore alter the findings of the assessment.

Draft DCO

117 The maximum number of vessels and trips are not presented within the draft DCO.

3.9 Safety zones

Environmental Statement

- 118 The safety zones are not provided within the Project Description (PINS Ref APP-042/6.2.1) but are considered to be best working practice. The following safety zones may be applied for:
 - 500 m surrounding all construction activities and vessels; and
 - O&M activities:
 - o 50 m surrounding WTGs;
 - 50 m surrounding the Met Mast;
 - o 50 m surrounding the OSS substation; and
 - o 500 m surrounding any major maintenance activities.
- 119 Commercial Fisheries; Shipping and Navigation; and Infrastructure and Other Users (PINS Ref APP-047, APP-050, APP-051 and APP-052/ Application Refs 6.2.9, 6.2.10 and 6.2.11) have each presented the safety zones as defined in paragraph 118.
- 120 The Fish and Shellfish chapter (PINS Ref APP-047/ Application Ref 6.2.6) presents the maximum safe working area surrounding the infrastructure of 1,052,035 m² during the O&M phase, there is a slight disparity as the chapter has not accounted for the met mast foundation and a typographic error where the chapter considered a 500 m safety zone surrounding the OSS. The maximum extent of permanent safety zones are 282,743 m² (34 WTG (50 m buffer), one met mast (50 m buffer) and one OSS (50 m buffer)). Paragraph 6.11.71 of the Fish and Shellfish chapter (PINS Ref APP-047/ Application Ref 6.2.6) identifies that the overall effect will be Negligible beneficial, therefore reducing this area to account for the disparity, will not alter the findings of this assessment and net beneficial effect is still anticipated.

Draft DCO

121 The safety zones are not presented within the draft DCO as they would be applied for under separate legislation.

4 Conclusion

- 122 The Applicant has reviewed and audited the transcription of the Project Description into the assessments (ES and RIAA). The Applicant can confirm that the transcription errors, as identified in this note do not alter the findings of the assessments as outlined in Sections 2 and 3. Therefore, no further assessment of effects is required.
- Table 7 provides a summary of the transcription into the ES ad RIAA however the table should be reviewed in conjunction with the clarifications presented in Sections 2 and 3.

Table 7: Transcription audit of maximum design scenario tables

				PINS Ref	/Applicatio	on Ref													
Phase	Infra Type	Description	Requested consent value	APP- 043/ 6.2.2	APP- 044/ 6.2.3	APP- 045/6.2 .4	APP- 046/6.2 .5	APP- 047/6.2 .6	APP- 048/6.2 .7	APP- 049/ 6.2.8	APP- 050/ 6.2.9	APP- 051/6.2 .10	APP- 052/6.2 .11	APP- 053/6.2 .12	APP- 054/6.2 .13	APP- 055/6.2 .14	APP- 148/ 8.14	APP- 083/6.4 .5.3	REP2- 018- 019/ 5.2
		Width per cable jetting (m)	10	10	10	N/A	10	1	n/a	N/A	N/A	N/A	10	n/a	10	N/A	N/A	N/A	1
		Width per cable ploughing (m)	12	12	N/A	N/A	12	12	12	N/A	N/A	N/A	N/A	n/a	12	N/A	N/A	N/A	N/A
		Length per cable (m)	30,000	30,000	30,000	N/A	30,000	30,000	30,000	N/A	N/A	23,000	30,000	n/a	30,000	N/A	N/A	20,000	30,000
		Depth (m)	3	3	3	N/A	3	3	3	N/A	N/A	N/A	3	n/a	3	N/A	N/A	N/A	3
		Disturbance Area (jetting) (km ²)	1.2	N/A	1.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	n/a	1.2	N/A	N/A	N/A	N/A
		Pre-sweeping Area of the OECC (km ²)	0.48	0.48	0.48	N/A	0.48	0.48	N/A	N/A	5kmper cable [≠]	N/A	0.48	N/A	0.48	N/A	N/A	N/A	0.48
		Disturbance area for pre- lay grapnel run along EC route (km ²)	2.4	N/A	N/A	N/A	N/A	2.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	S	Disturbance area for EC in intertidal (m ²)	80,000	N/A	N/A	N/A	80,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Cable	Disturbance area for EC in subtidal (m ²)	1,440,000	1,440,0 00	1,440,0 00	N/A	1,440,0 00	1,440,0 00	1,440,0 00	N/A	N/A	N/A	1,440,0 00	N/A	N/A	N/A	1,440,0 00	N/A	1,440,0 00
	Export	Total volume of sediment removed via pre- sweeping(m ³)	1,440,000	1,440,0 00	1,440,0 00	n/a	1,440,0 00	1,440,0 00	n/a	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1,440,0 00	N/A	N/A
onstructi		Seabed Volume disturbed during export cable installation (m ³)	900,000	900,000	1,200,0 00	N/A	900,000	180,000	N/A	N/A	N/A	N/A	1,740,0 00	N/A	N/A	N/A	N/A	N/A	900,000
0		Disturbance area for EC in intertidal (m ²)	80,000	N/A	N/A	N/A	80,000. 00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	80,000
		HDD pit dimensions (m)	20x20	20x20	20x20	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	20x20	N/A	N/A	N/A	N/A
		Cofferdam dimensions (m)	165x25	165x25	165x25	N/A	165x25	N/A	165x25	N/A	N/A	N/A	N/A	N/A	165x25	N/A	N/A	N/A	165x25
		Seawall dimensions (m)	155x18.5	155x18. 5	N/A	N/A	155x18. 5	N/A	155x18. 5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	155x18. 5
		Permanent Saltmarsh Loss (m ²)	1,398.9	1,398.9	N/A	N/A	1,400	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Working area in saltmarsh (m ²)	3,872	N/A	4,702	N/A	7,376	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3,872	N/A	N/A	N/A	3,872
		Length (km)	64	64	64	N/A	6	64	64	N/A	64	N/A	64	N/A	64	N/A	N/A	N/A	64
	les	Width (m)	1	1	*	N/A	1	1	1	N/A	N/A	N/A	1	N/A	1	N/A	N/A	N/A	1
	cabl	Depth (m)	3	3	3	N/A	N/A	3	3	N/A	N/A	N/A	3	N/A	N/A	N/A	N/A	N/A	3
	ray .	Disturbance Area (km ²)	0.64	*	0.30	N/A	0.64	0.64	0.30	N/A	N/A	N/A	N/A	N/A	0.60	N/A	N/A	N/A	0.64
	-ari	Disturbance Volume (m ³)	48,000	48,000	N/A	N/A	48,000	96,000	*	N/A	N/A	N/A	96,000	N/A	N/A	N/A	N/A	N/A	48,000
	Inter	Disturbed sediment areafrom IAC installation (km ²)	0.64	N/A	N/A	N/A	0.64	1	0.3	N/A	N/A	N/A	N/A	N/A	0.6	N/A	N/A	N/A	N/A

				PINS Ref	/Applicatio	on Ref													
Phase	Infra Type	Description	Requested consent value	APP- 043/ 6.2.2	APP- 044/ 6.2.3	APP- 045/6.2 .4	APP- 046/6.2 .5	APP- 047/6.2 .6	APP- 048/6.2 .7	APP- 049/ 6.2.8	APP- 050/ 6.2.9	APP- 051/6.2 .10	APP- 052/6.2 .11	APP- 053/6.2 .12	APP- 054/6.2 .13	APP- 055/6.2 .14	APP- 148/ 8.14	APP- 083/6.4 .5.3	REP2- 018- 019/ 5.2
		Total seabed preparation volume per WTG (m ³)	9,600	9,600	9,600	N/A	9,60	9,600	9,600	N/A	N/A	N/A	*	N/A	N/A	N/A	N/A	N/A	9,600
		Total seabed preparation volume per OSS (m ³)	9,600	9,600	9,600	N/A	9,600	9,600	N/A	N/A	N/A	N/A	*	N/A	N/A	N/A	N/A	N/A	9,600
		Total seabed preparation volume for the met mast (m ³)	9,600	9,600	N/A	N/A	9,600	9,600	N/A	N/A	N/A	N/A	*	N/A	N/A	N/A	N/A	N/A	9,600
		Total seabed preparation volume (m ³)	288,000	288,000	268,800	N/A	288,000	288,000	N/A	N/A	N/A	N/A	288,000	N/A	N/A	N/A	N/A	N/A	288,000 ((and 278,400)
		Seabed preparation area per WTGs (m ²)	3,200	N/A	N/A	N/A	3,200	N/A	N/A	N/A	N/A								
	SL	Total seabed prep for foundations (m ²)	96,000	N/A	N/A	N/A	89,600 & OSS	N/A	N/A	N/A	N/A								
oundatior	oundatior	Maximum spoil (drilling) volume per foundation (m ³) (max)	1,325	1,325	1,325	N/A	*	*	1,325	N/A	N/A	N/A	N/A	N/A	*	*	1,325	N/A	N/A
	Ĕ	Spoil (drilling) volume WTGs (m ³)	19,627	19,627	22,531	N/A	*	20,527	19,627	N/A	N/A	N/A	N/A	N/A	*	*	19,627	N/A	N/A
		Spoil (drilling) volume per OSS (m ³)	1,000	900	1,000	N/A	*	*	900	N/A	N/A	N/A	N/A	N/A	*	*	1,000	N/A	N/A
		Spoil (drilling) volume per foundation (met mast) (m ³)	1,155	1,325	1,325	N/A	*	*	*	N/A	N/A	N/A	N/A	N/A	*	*	1,155	N/A	N/A
		Spoil (drilling) Volume Total(m³)	21,782	21,852	23,531	N/A	N/A	n/a	21,852	N/A	N/A	N/A	20,782	N/A	*	*	21,782	N/A	N/A
		Maximum Hammer energy (kJ)	5,000	N/A	N/A	5,000	5,000	5,000	5,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5,000
		Maximum total piling duration (hours)	300	N/A	N/A	*	N/A	300	300	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	300
		Minimum Spacing of WTGs (m)	716x480	716x48 0	716x48 0	716x48 0	N/A	N/A	N/A	N/A	716x 480	760x 418	N/A	WCS [∞]	N/A	N/A	N/A	N/A	716x 480
		Seabed disturbance area from foundations (m ²)	5,400	N/A	N/A	N/A	5,400	5,400	N/A	N/A	N/A	N/A	N/A	N/A	5,400	N/A	N/A	N/A	5,400
	andling	Seabed disturbance area from OSS topside installation (m ²)	150	N/A	N/A	N/A	*	150	N/A	N/A	N/A	N/A	N/A	N/A	150	N/A	N/A	N/A	*
	Anchor Ha	Seabed disturbance area from export cable installation (m ²)	34,560	N/A	N/A	N/A	34,560	34,560	N/A	N/A	N/A	N/A	34,560	N/A	34,560	N/A	N/A	N/A	34,560
		Seabed disturbance area from inter-array cable installation (m ²)	30,600	N/A	N/A	N/A	30,600	29,700	N/A	N/A	N/A	N/A	30,600	N/A	29,700	N/A	N/A	N/A	30,600

				PINS Ref	/Applicatio	on Ref													
Phase	Infra Type	Description	Requested consent value	APP- 043/ 6.2.2	APP- 044/ 6.2.3	APP- 045/6.2 .4	APP- 046/6.2 .5	APP- 047/6.2 .6	APP- 048/6.2 .7	APP- 049/ 6.2.8	APP- 050/ 6.2.9	APP- 051/6.2 .10	APP- 052/6.2 .11	APP- 053/6.2 .12	APP- 054/6.2 .13	APP- 055/6.2 .14	APP- 148/ 8.14	APP- 083/6.4 .5.3	REP2- 018- 019/ 5.2
		Total Seabed disturbance area (m ²)	70,710	N/A	N/A	N/A	70,560	69,810	N/A	N/A	N/A	N/A	65,160	N/A	69,810	N/A	N/A	N/A	70,560
		Seabed disturbance area per foundations (m ²)	942.5	N/A	N/A	N/A	942.5	*	N/A	N/A	N/A	N/A	*	N/A	N/A	N/A	N/A	N/A	942.5
		Seabed disturbance area from OSS topside installation (m ²)	942.5	N/A	N/A	N/A	942.5	*	N/A	N/A	N/A	N/A	*	N/A	N/A	N/A	N/A	N/A	942.5
	JVs	Seabed disturbance area from export cable installation (m ²)	942.5	N/A	N/A	N/A	942.5	*	N/A	N/A	N/A	N/A	*	N/A	N/A	N/A	N/A	N/A	942.5
	JL	Total seabed disturbance area from foundations (m ²)	32,044	N/A	N/A	N/A	33,929	33,930	N/A	N/A	N/A	N/A	39,329	N/A	33,929	N/A	N/A	N/A	33,929
		Disturbance volume from JUV footprints during foundation installation assuming maximum penetration (m ²)	480,665	N/A	N/A	N/A	508,935	N/A	N/A	N/A	N/A								
	sels	Construction vessel round trips per year	1,160	N/A	N/A	N/A	1,160	N/A	1,160	N/A	N/A	N/A	1,160	N/A	N/A	N/A	N/A	N/A	1,160
	Vesse	Maximum number of construction Vessels on site	48	N/A	N/A	48	N/A	N/A	48	N/A	48	48	N/A	N/A	48	N/A	N/A	N/A	48
O&M		Total area of cable protection in OECC (excluding crossings) (m ²)	210,000	*	N/A	N/A	*	210,000	N/A	N/A	N/A	*	N/A	N/A	210,000	N/A	N/A	N/A	210,000
0&M	Cable	% of EC requiring protection	25	25	N/A	N/A	25	25	25	N/A	N/A	N/A	N/A	N/A	25	N/A	N/A	N/A	25
O&M	Export (Total area for cable crossings in the OECC (m ²)	80,000	80,000	N/A	N/A	*	80,000	N/A	N/A	N/A	N/A	N/A	N/A	80,000	N/A	N/A	N/A	80,000
O&M		Total area of cable protection in OECC (including crossings) (m ²)	290,000	*	N/A	N/A	*	290,000	N/A	N/A	N/A	N/A	N/A	N/A	290,000	N/A	N/A	N/A	290,000
O&M	les	Area of cable protection for IAC (excluding crossing)(m ²)	80,000	*	N/A	N/A	80,000	80,000	N/A	N/A	N/A	N/A	N/A	N/A	80,000	N/A	N/A	N/A	80,000
0&M	ay cab	Area of protection for J- tubing (m ²)	17,500	N/A	N/A	N/A	17,500	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	17,500
0&M	er-arr	Area of cable protection for IAC (crossing)(m ²)	12,000	12,000	N/A	N/A	12,000	12,000	N/A	N/A	N/A	N/A	N/A	N/A	12,000	N/A	N/A	N/A	12,000
O&M	Int	Total cable protection for IAC (including crossings) (m ²)	92,000	*	N/A	N/A	*	92,000	N/A	N/A	N/A	N/A	N/A	N/A	*	N/A	N/A	N/A	*

				PINS Ref	/Applicatio	on Ref													
Phase	Infra Type	Description	Requested consent value	APP- 043/ 6.2.2	APP- 044/ 6.2.3	APP- 045/6.2 .4	APP- 046/6.2 .5	APP- 047/6.2 .6	APP- 048/6.2 .7	APP- 049/ 6.2.8	APP- 050/ 6.2.9	APP- 051/6.2 .10	APP- 052/6.2 .11	APP- 053/6.2 .12	APP- 054/6.2 .13	APP- 055/6.2 .14	APP- 148/ 8.14	APP- 083/6.4 .5.3	REP2- 018- 019/ 5.2
0&M	ر	Maximum area of scour protection for WTGs (m ²)	219,912.0	N/A	N/A	N/A	219,912	251,328	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	219,912
0&M	tectior	Maximum area of scour protection for a OSS (m ²)	7,854	N/A	N/A	N/A	7,854	8901.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7,854
0&M	scour pro	Maximum area of scour protection for a met mast (m ²)	7,854	N/A	N/A	N/A	7,854	8901.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7,854
0&M	0)	Total Maximum area of scour protection (m ²)	235,620	N/A	N/A	N/A	235,620	267,036	N/A	N/A	N/A	N/A	N/A	N/A	235,620	N/A	N/A	N/A	235,620
0&M	10	Maximum footprint area per WTGs (m ²)	1,256.6	N/A	N/A	N/A	1,256	1,256	N/A	N/A	N/A	N/A	N/A	N/A	*	N/A	N/A	N/A	1,256
0&M	lations	Maximum footprint area per OSS (m ²)	942.5	N/A	N/A	N/A	1,256	1,256	N/A	N/A	N/A	N/A	N/A	N/A	*	N/A	N/A	N/A	1,256
0&M	Found	Maximum footprint area per met mast (m ²)	1,256.6	N/A	N/A	N/A	1,256	1,256	N/A	N/A	N/A	N/A	N/A	N/A	*	N/A	N/A	N/A	1,256
0&M		Maximum footprint area for foundations (m ²)	37,385	N/A	N/A	N/A	37,680	37,680	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	37,680
0&M	Vs	Maximum JUV disturbance area for WTG O&M activities (m ²)	57,680	N/A	N/A	N/A	N/A	38,453	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
0&M	UL	Maximum JUV disturbance area for OSS O&M activities (m ²)	2,121	N/A	N/A	N/A	N/A	1,470	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
O&M	General	Safe working area surrounding infrastructure (m ²)	1,060,288	N/A	N/A	N/A	N/A	1,052,0 35	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
0&M		Maximum area of disturbance for IAC replacement (m ²)	140,000	N/A	N/A	N/A	*	140,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
0&M		Maximum area of disturbance for IAC reburial (m ²)	3,840,000	N/A	N/A	N/A	*	3,840,0 00	*	N/A	*	N/A	N/A	N/A	*	N/A	N/A	N/A	N/A
O&M	activities	Maximum area of disturbance for export cable O&M works (m ²)	72,000	N/a	N/A	N/A	*	72,000	*	N/A	*	N/A	N/A	N/A	*	N/A	N/A	N/A	N/A
O&M	0&M	Total maximum area of disturbance for O&M cable works (m ²)	4,111,801	N/a	N/A	N/A	*	4,111,8 01	*	N/A	*	N/A	N/A	N/A	*	N/A	N/A	N/A	N/A
0&M		Maximum volume of disturbance for IAC replacement (m ³)	105,000	N/A	N/A	N/A	*	576,000	*	N/A	*	N/A	N/A	N/A	*	N/A	N/A	N/A	N/A
0&M		Maximum volume of disturbance for export	54,000	N/A	N/A	N/A	*	2,700	*	N/A	*	N/A	N/A	N/A	*	N/A	N/A	N/A	N/A

				PINS Ref	/Applicatio	on Ref													
Phase	Infra Type	Description	Requested consent value	APP- 043/ 6.2.2	APP- 044/ 6.2.3	APP- 045/6.2 .4	APP- 046/6.2 .5	APP- 047/6.2 .6	APP- 048/6.2 .7	APP- 049/ 6.2.8	APP- 050/ 6.2.9	APP- 051/6.2 .10	APP- 052/6.2 .11	APP- 053/6.2 .12	APP- 054/6.2 .13	APP- 055/6.2 .14	APP- 148/ 8.14	APP- 083/6.4 .5.3	REP2- 018- 019/ 5.2
		cable O&M works replacement (m ³)																	
O&M		Total maximum volume of disturbance for O&M cable works (m ³)	3,039,000	N/A	N/A	N/A	*	596,700	*	N/A	*	N/A	N/A	N/A	*	N/A	N/A	N/A	N/A
0&M	S	Maximum rotor blade diameter (m)	220	N/A	220	N/A	220	N/A	N/A	N/A	N/A	N/A							
O&M	WTG	Minimum height of lowest blade tip above HAT (m)	22	N/A	22	N/A	22	N/A	N/A	N/A	N/A	N/A							
0&M		Maximum number of O&M vessels on site	6	N/A	N/A	6	N/A	N/A	5	N/A	N/A	*	5	N/A	N/A	N/A	N/A	N/A	N/A
0&M		O&M vessel round trips per year	307	N/A	N/A	307	307	N/A	307	N/A	N/A	N/A	307	N/A	307	N/A	N/A	N/A	307
O&M		Safe working distance around all infrastructure during construction (m)	500	N/A	500	500	500	N/A	N/A	N/A	N/A	N/A	N/A						
O&M	/essels	Advisory safe working distance around all construction vessels (m)	500	N/A	500	500	500	N/A	N/A	N/A	N/A	N/A	N/A						
0&M	/	Safe working distance from WTGs (m)	50	N/A	N/A	N/A	N/A	50	N/A	N/A	50	50	50	N/A	N/A	N/A	N/A	N/A	N/A
0&M		Safe working distance from OSS (m)	50	N/A	N/A	N/A	N/A	500	N/A	N/A	50	50	50	N/A	N/A	N/A	N/A	N/A	N/A
0&M		Safe working distance around all major maintenance activities (m)	500	N/A	N/A	N/A	N/A	500	N/A	N/A	500	500	500	N/A	N/A	N/A	N/A	N/A	N/A

This page has been left intentionally blank.

