

Vattenfall Wind Power Ltd

Thanet Extension Offshore Wind Farm

Annex 4-4: Collision Risk Modelling Report

June, 2018, Revision A

Document Reference: 6.4.4.4

Pursuant to: APFP Reg. 5(2)(a)

Vattenfall Wind Power Ltd

Thanet Extension Offshore Wind Farm

Annex 4-4: Collision Risk Modelling Report

June, 2018

Drafted By:	APEM
Approved By:	Helen Jameson
Date of Approval	June 2018
Revision	Α

Copyright © 2018 Vattenfall Wind Power Ltd
All pre-existing rights reserved

Thanet Extension Environmental Statement Volume 4, Chapter 4, Annex 4

Collision Risk Modelling Report

Vattenfall Wind Power Ltd APEM Ref; P00001227-03 June 2018

Laura Jervis, Sean Sweeney and Roger Buisson

Client: Vattenfall Wind Power Ltd

Address: 1 Tudor Street

London

EC4Y 0AH

Project reference: P00001227-03

Date of issue: 5th June 2018

Project Director:	Mark Rehfisch
Project Manager:	Sean Sweeney
Other:	Laura Jervis & Roger Buisson

APEM Ltd Riverview A17 Embankment Business Park Heaton Mersey Stockport SK4 3GN

> Tel: 0161 442 8938 Fax: 0161 432 6083

Registered in England No. 02530851

This document should be cited as:

APEM (2018). Thanet Extension Environmental Statement Volume 4, Chapter 4, Annex 4 – Thanet Extension OWF Collision Risk Modelling Report. APEM Scientific Report P1227-03, for Vattenfall Wind Power Limited, June 2018.

Registered in England No. 2530851, Registered Address Riverview A17 Embankment Business Park, Heaton Mersey, Stockport, SK4 3GN

Revision and Amendment Register

Version Number	Date	Section(s)	Page(s)	Summary of Changes	Approved by
1.0	29/01/2018	All	All	Creation	LJ
1.1	19/03/2018	All	All	Amended to include all 24 months of bird survey data	LJ
1.2	04/04/2018	All	All	Review before client issue	SS
1.3	15/05/2018	All	All	Amends during ES Review process	SS
2.0	24/05/2018	All	All	Comments from client	JL
2.1	31/05/2018	All	All	Amends post client review FINAL VERSION	RB
2.2	05/06/2018	All	All	FINAL VERSION	SS

Contents

1.	Inti	ntroduction9				
2.	2. Methodology11					
2.	1	Avoidance Rates				
2.	2	Species Biometrics				
2.	3	Proportion at Potential Collision Risk Height12				
2.	4	Density of Birds in Flight13				
2.	5	Turbine Parameters14				
3.	Re	sults17				
3.	1	Gannet17				
3.	2	Kittiwake18				
3.	3	Lesser black-backed gull20				
3.	4	Herring gull22				
3.	5	Great black-backed gull23				
4.	Re	ferences				
Арр	Appendix 1 – Gannet monthly collision rates28					
Арр	Appendix 2 – Kittiwake monthly collision rates					
Арр	Appendix 3 – Lesser black-backed gull monthly collision rates					
Appendix 4 – Herring gull monthly collision rates						
Арр	Appendix 5 – Great black-backed gull monthly collision rates40					
Арр	Appendix 6 – Nocturnal Sensitivity43					
Арр	Appendix 7 – Band Option 1 Results45					

List of Figures

Figure 4 Monthly predicted kittiwake collision rates for Band Option 2 with associated 95% CLs for density data	
Figure 5 Monthly predicted kittiwake collision rates (Band Option 2, 98.9% AR) with associated 95% CLs for flight height distribution data20)
Figure 6 Monthly predicted lesser black-backed gull collision rates for Band Option 2 with associated 95% CLs for density data	
Figure 7 Monthly predicted lesser black-backed gull collision rates (Band Option 2, 98.9% AR) with associated 95% CLs for flight height distribution data	
Figure 8 Monthly predicted herring gull collision rates for Band Option 2 with associated 95% CLs for density data	
Figure 9 Monthly predicted herring gull collision rates (Band Option 2, 98.9% AR) with associated 95% CLs for flight height distribution data23	
Figure 10 Monthly predicted great black-backed gull collision rates for Band Option 2 with associated 95% CLs for density data	•
Figure 11 Monthly predicted great black-backed gull collision rates (Band Option 2, 98.9% AR) with associated 95% CLs for flight height distribution data	

List of Tables

Table 2Species biometrics used in the collision risk modelling of the proposed ThanetExtension for five species: gannet, kittiwake, lesser black-backed gull, herring gull, and greatblack-backed gull12

Table 3Proportion (%) at potential collision risk height (PCH) used in the Band CRM Option2 of the proposed Thanet Extension Offshore Wind Farm using data with maximum likelihoodwith 95% lower and upper CLs from SOSS-0213

Table 4Monthly value for the mean density, with associated lower and upper confidencelimits presented in square brackets, of flying birds used in the CRM of the proposed ThanetExtension for five species: gannet, kittiwake, lesser black-backed gull, herring gull, and greatblack-backed gull13

Table 5Wind turbine specification for the proposed Thanet Extension15

Table 8Annual predicted gannet collision rates for Band Option 2 using best estimate,lower and upper 95% confidence limits (CL) around generic flight height distribution data....17

Table 10Annual predicted kittiwake collision rates for Band Option 2 using best estimate,lower and upper 95% confidence limits (CL) around generic flight height distribution data....19

Table 11Annual predicted lesser black-backed gull collision rates for Band Option 2 using
best estimate, lower and upper 95% confidence limits (CL) around Thanet Extension flying
density20

Table 13Annual predicted herring gull collision rates for Band Option 2 using bestestimate, lower and upper 95% confidence limits (CL) around Thanet Extension flying density22

Table 17Monthly and annual gannet collision risk estimates using mean lower CL densitywith generic flight height distribution and associated upper and lower CLs28

Table 20Monthly and annual kittiwake collision risk estimates using mean lower CLdensity with generic flight height distribution and associated upper and lower CLs31

Table 23Monthly and annual lesser black-backed gull collision risk estimates using meanlower CL density with generic flight height distribution and associated upper and lower CLs 34

Table 25Monthly and annual lesser black-backed gull collision risk estimates using meanupper CL density with generic flight height distribution and associated upper and lower CLs 36

Table 29Monthly and annual great black-backed gull collision risk estimates using meanlower CL density with generic flight height distribution and associated upper and lower CLs 40

Table 30Monthly and annual great black-backed gull collision risk estimates using meandensity with generic flight height distribution and associated upper and lower CLs41

Table 31Monthly and annual great black-backed gull collision risk estimates using meanupper CL density with generic flight height distribution and associated upper and lower CLs 42

 Table 32
 ES and PEIR nocturnal activity factors as used for the collision risk assessment...

 43

Table 38Band collision risk model Option 1 with associated avoidance rates for ThanetExtension for five species: gannet, kittiwake, lesser black-backed gull, herring gull, and greatblack-backed gull45

Table 42Annual predicted lesser black-backed gull collision rates for Band Option 1 using best estimate, lower and upper 95% confidence limits (CL) around Thanet Extension flying density
Table 43Annual predicted herring gull collision rates for Band Option 1 using bestestimate, lower and upper 95% confidence limits (CL) around Thanet Extension flying density46
Table 44Annual predicted great black-backed gull collision rates for Band Option 1 using best estimate, lower and upper 95% confidence limits (CL) around Thanet Extension flying density
Table 45Monthly and annual gannet collision risk estimates for Band Option 1 using mean density, upper and lower CLs with APEM derived site-specific flight heights for proportion at PCH47
Table 46Monthly and annual kittiwake collision risk estimates for Band Option 1 using mean density, upper and lower CLs with APEM derived site-specific flight heights for proportion at PCH48
Table 47Monthly and annual lesser black-backed gull collision risk estimates for BandOption 1 using mean density, upper and lower CLs with APEM derived site-specific flightheights for proportion at PCH
Table 48Monthly and annual herring gull collision risk estimates for Band Option 1 using mean density, upper and lower CLs with APEM derived site-specific flight heights for proportion at PCH50
Table 49Monthly and annual great black-backed gull collision risk estimates for BandOption 1 using mean density, upper and lower CLs with APEM derived site-specific flightheights for proportion at PCH
Table 50Annual predicted gannet collision rates for Band Option 1 using best estimate,lower and upper 95% confidence limits (CL) around Thanet Extension flying density with areduction in nocturnal activity
Table 51Annual predicted kittiwake collision rates for Band Option 1 using best estimate,lower and upper 95% confidence limits (CL) around Thanet Extension flying density with areduction in nocturnal activity
Table 52Annual predicted lesser black-backed gull collision rates for Band Option 1 using best estimate, lower and upper 95% confidence limits (CL) around Thanet Extension flying density with a reduction in nocturnal activity
Table 53Annual predicted herring gull collision rates for Band Option 1 using bestestimate, lower and upper 95% confidence limits (CL) around Thanet Extension flying densitywith a reduction in nocturnal activity
Table 54Annual predicted great black-backed gull collision rates for Band Option 1 using best estimate, lower and upper 95% confidence limits (CL) around Thanet Extension flying density with a reduction in nocturnal activity

1. Introduction

The main potential risks to birds from offshore wind farms are collision; disturbance or displacement; barrier to movement; and habitat change or loss. There is an increase in potential risk of collision with wind turbines if they are located in areas in which there is a high level of flight activity. That high level of flight activity can be associated with locations where food supplies are concentrated or with areas where there is a high turnover of individuals (possibly commuting daily between nesting and feeding areas or passing through the area on seasonal migrations). The potential collision risk can be estimated using collision risk modelling (CRM).

Collision risk modelling has been carried out for the proposed Thanet Extension Offshore Wind Farm (Thanet Extension) to provide information for five seabird species; gannet, kittiwake, lesser black-backed gull, herring gull and great black-backed gull, using the Band (2012) collision risk Microsoft Excel spreadsheet that has been designed specifically for application to offshore wind farm developments.

Masden (2015) developed the Band (2012) model through the creation of the package 'BandModel' in the R statistical program (http://www.r-project.org). This was in response to feedback from stakeholder interviews that the Microsoft Excel version of the Band (2012) model was occasionally difficult to use and error-prone. The Masden (2015) version of the Band (2012) model required uncertainty to be accounted for in the form of Standard Deviations (SD) around input parameters, and applied a method of Monte Carlo simulation used by McAdam (2005) to allow for these. Previous advice from Statutory Nature Conservation Bodies (SNCBs) suggested that the Masden (2015) application of the Band (2012) model was the preferred method of collision risk assessment. As such, the collision risk modelling undertaken for the Thanet Extension Preliminary Environmental Information Report (PEIR) was based on this advice (APEM, 2017). However, following a review funded by Natural England of the Masden (2015) programme undertaken by MacArthur Green (Trinder, 2017), it was determined that a number of improvements were required before the 'BandModel' R package would be deemed as the agreed method for collision risk modelling for the basis of the assessment of collision mortality rates from proposed offshore wind farm developments.

Following the Trinder (2017) review, the advice from SNCBs was to revert to using the Band (2012) spreadsheet with an element of variation to coincide with the Band (2012) guidance (paragraph 14, page 7), which was previously overlooked in applications for offshore wind farm developments: "...*it is recommended that 'best estimates' are deployed, and with them an analysis of the uncertainty or variability surrounding each estimate and the range within which the collision risk can be assessed with confidence."* It was agreed that the variability in the input parameters for this report would relate to the density estimates of birds in flight and the generic SOSS-02 flight height distribution data (Johnston *et al.*, 2014).

Two Band CRM options (the technique and input parameters are explained in Section 2) were run for Thanet Extension and the outputs are presented in this report:

- 1. Basic Band CRM Option 2 with generic flight heights from the SOSS-02 flight height distribution data within Johnston *et al.*, 2014; and
- 2. Basic Band CRM Option 1 with site-specific flight heights to determine the proportion of birds flying at potential collision height (PCH). The PCHs used for this modelling option were calculated from flight heights estimated from high-resolution aerial digital still imagery collected by APEM at the Thanet Offshore Wind Farm, the Thanet

Extension Offshore Wind Farm and a 4 km buffer surrounding it. These data were deemed unsuitable for impact assessment purposes. The results of these CRM outputs are presented in Appendix 7.

The outputs from Band CRM Option 2 are presented in this report with a range of avoidance rates, upper and lower confidence limits (CLs) of SOSS-02 flight height distribution data, and upper and lower CLs of density of birds in flight. The outputs from Band CRM Option 2 (with generic flight heights from the SOSS-02 flight height distribution data within Johnston *et al.*, 2014) provide the mortality predictions for use in the assessment of potential collision risk for Thanet Extension that are presented in the Environmental Statement (Volume 2, Chapter 4: Offshore Ornithology (Document Ref 6.2.4)). The number of birds predicted to collide with the wind turbines per year are presented in Section 3 of this report.

A third data set was also received from the Offshore Renewables Joint Industry Programme (ORJIP) Bird Collision Avoidance Study conducted at Thanet Offshore Wind Farm. This data set was subject to review for its application in impact assessment. That review concluded that due to ongoing uncertainties in relation the most appropriate use of these data in association with other CRM parameters, such as avoidance rates, these data and use in the current Band CRM model was not considered further for impact assessment purposes.

A third Band CRM option, the Extended Band Option 3, which utilises the generic flight height distribution to calculate risk across the rotor swept area was considered in the PEIR (APEM, 2017). However, through consultation with Natural England, it was concluded that this option should not considered in the impact assessment of Thanet Extension, due to unresolved issues with the application of the data applied within it and the outcomes from it.

2. Methodology

The CRM methodology outlined by Band (2012) has been followed for the modelling and assessment of impacts predicted for the proposed Thanet Extension Offshore Wind Farm.

Basic Band CRM Option 2 (using the generic SOSS-02 flight height distribution data) CRM was carried out using the Basic Band model that applies a uniform distribution of bird flights between the lowest and the highest levels of the rotors. The proportion of birds flying between the lowest and the highest levels of the rotors (i.e. at PCH) was determined from the results of the SOSS-02 project (Cook et al., 2012) that analysed the flight height measurements taken from boat-based seabird surveys conducted around the UK. The model was updated following (2014), revised published spreadsheet Johnston et al. and the (filename: "Final_Report_SOSS02_FlightHeights2014") was used to determine the 'generic' percentage of flights at PCH and associated upper and lower CLs for each species based on the proposed project's wind turbine parameters.

The parameters used in the Band CRM are presented in Sections 2.1 to 2.6. Five species were used in the collision risk modelling: gannet, kittiwake, lesser black-backed gull, herring gull and great black-backed gull. Fulmar was excluded because too few individuals were recorded in Thanet Extension to warrant further assessment (see APEM, 2018). The selection of these species for the focus of collision risk assessment for the Thanet Extension ES Chapter was agreed with Natural England and RSPB through the evidence plan process (See APEM, 2018, Section 4.3).

2.1 Avoidance Rates

The species-specific avoidance rates that were applied in the modelling are presented in Table 1. The avoidance rates that have been selected for use in the CRM follow the guidance from Cook *et al.* (2014) and the SNCBs review of avoidance rates to be applied in the Band models (JNCC *et al.*, 2014 in response to Cook *et al.*, 2014).

Table 1Band CRM Option 2 with associated avoidance rates for Thanet Extension for
five species: gannet, kittiwake, lesser black-backed gull, herring gull, and great
black-backed gull

Species	Band Option 2 Avoidance Rate (<u>+</u> SD)
Gannet	0.989 <u>+</u> 0.002
Kittiwake	0.989 <u>+</u> 0.002
Lesser black-backed gull	0.995 <u>+</u> 0.001
Herring gull	0.995 <u>+</u> 0.001
Great black-backed gull	0.995 <u>+</u> 0.001

2.2 Species Biometrics

The species-specific biometric input parameters used in the CRM are provided in Table 2.

Table 2Species biometrics used in the collision risk modelling of the proposed Thanet
Extension for five species: gannet, kittiwake, lesser black-backed gull, herring
gull, and great black-backed gull

Species	Body Length (m)	Wingspan (m)	Flight Speed (ms ⁻¹)	Nocturnal Activity	Flight Type
Gannet	0.94 ¹	1.72 ¹	14.9 ³	1 ⁴ - 2 ⁵	Gliding
Kittiwake	0.39 ¹	1.08 ¹	13.1 ²	2 ⁴ - 3 ⁵	Flapping
Lesser black- backed gull	0.58 ¹	1.42 ¹	13.1 ³	2 ⁴ - 3 ⁵	Flapping
Herring gull	0.60 ¹	1.44 ¹	12.8 ³	2 ⁴ - 3 ⁵	Flapping
Great black- backed gull	0.71 ¹	1.58 ¹	13.7 ³	2 ⁴ - 3 ⁵	Flapping

¹ Robinson (2005)

² Pennycuick (1997)

³ Alerstam *et al.* (2007)

⁴ MacArthur Green (2018, in prep)

⁵ Garthe & Hüppop (2004)

The body length and wingspan of the five key seabirds included in the collision risk modelling were derived from Robinson (2005).

Flight speeds and associated standard deviations for lesser black-backed gull, herring gull, and great black-backed gull were derived from Alerstam *et al.* (2007). The flight speeds for gannet and kittiwake were derived from Pennycuick (1997).

The nocturnal activity rate was based on a 1 to 5 scoring index for each species in Garthe and Hüppop (2004) or King *et al.* (2009), with the spreadsheet converting these factors into nocturnal activity as follows; 1 = 0%, 2 = 25%, 3 = 50%, 4 = 75%, 5 = 100%. It is considered that these nocturnal activity figures are precautionary (MacArthur Green, APEM & Royal HaskoningDHV, 2015). As such, the potential mortality estimates provided in Section 3 Results are based on the reduced nocturnal activity factors (Table 2). These reduced nocturnal activity figures have been based on a review undertaken by MacArthur Green (MacArthur Green, 2015: Appendix 7) for the East Anglia THREE application of a series of seabird research studies that used activity data loggers attached to seabirds which found that the nocturnal activity recorded was much lower than the values derived from Garthe & Hüppop (2004). The potential mortality estimates based on the higher nocturnal activity factors have been provided in Appendix 6. The number of available daylight hours is calculated within the Band (2012) CRM spreadsheet based on the latitude of the wind farm development.

2.3 **Proportion at Potential Collision Risk Height**

The proportion of individuals at potential collision risk height (PCH) was obtained from the SOSS-02 flight height data for all five species (Table 3), which provides generic PCHs and associated lower and upper CLs.

To determine the proportion at potential collision risk height for all five species the data source used the number of individuals in flight recorded between 22 and 202 m, which are considered the worst case scenario rotor swept area for Thanet Extension.

Proportion (%) at potential collision risk height (PCH) used in the Band CRM Table 3 Option 2 of the proposed Thanet Extension Offshore Wind Farm using data with maximum likelihood with 95% lower and upper CLs from SOSS-02

Species	Generic SOSS-02 PCH (%)		
Gannet	10.22 [4.66, 17.25]		
Kittiwake	12.36 [9.33, 14.72]		
Lesser black-backed gull	24.85 [17.14, 40.84]		
Herring gull	28.53 [21.61, 39.91]		
Great black-backed gull	29.12 [24.69, 41.75]		

The method of summing the bands of the upper and lower CLs for the generic Johnston et al. (2014) flight height distribution data should be taken with caution, as SMart Wind (2015) noted for the Hornsea Project Two application:

"Whilst the Applicant has, as requested by Natural England, included these CLs in revised modelling, they do not have confidence that their use within the Band (2012) CRM is appropriate. The Johnston et al. (2014) data is presented in one metre bands between 0-300 m. When considered in isolation these bands represent the proportion of birds from a population that may occur within that flight band with a 95% CL. However, it may not be considered appropriate to simply sum the bands that are presented in the Johnston et al. (2014) supplementary material, as the CLs associated with each band are independent of the CLs associated with other bands within the flight height distribution. If the CLs are summed, the proportion of birds at PCH is artificially increased or decreased by changing the total population of birds in flight within the wind farm and not by altering the proportions within the flight height distribution."

2.4 **Density of Birds in Flight**

Design-based abundance and density estimates with associated 95% CLs were determined for Thanet Extension using data collected from aerial digital surveys (see APEM, 2018). For the five species of key seabirds, the CRM is based on the mean density of flying birds per month (Table 4). These data derived from the 24 months of aerial digital surveys carried out between March 2016 and February 2018 inclusive (APEM, 2018). The mean lower and upper 95% CLs for birds in flight were used as a measure of variability for the flying densities (Table 4).

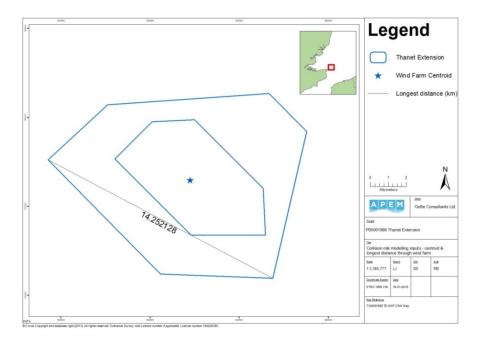
Table 4 Monthly value for the mean density, with associated lower and upper confidence limits presented in square brackets, of flying birds used in the CRM of the

Month	Gannet	Kittiwake	LBB Gull	H Gull	GBB Gull
Jan	0.68 [0.25,1.24]	0.49 [0.19,0.91]	0 [0,0]	0 [0,0]	0.37 [0.07,0.07]
Feb	0.19 [0.02,0.57]	0.76 [0.27,1.38]	0 [0,0]	0 [0,0]	0.38 [0.07,0.07]
Mar	0.83 [0.39,1.40]	0.22 [0.03,0.49]	0.06 [0.01,0.16]	0 [0,0]	0.12 [0.01,0.36]
Apr	0 [0,0]	0.13 [0.01,0.32]	0 [0,0]	0.51 [0.08,1.02]	0 [0,0]
May	0 [0,0]	0.13 [0.01,0.32]	0.06 [0.01,0.19]	0.06 [0.01,0.19]	0.06 [0.01,0.19]
Jun	0 [0,0]	0 [0,0]	0.06 [0.01,0.16]	0.06 [0.01,0.19]	0 [0,0]
Jul	0 [0,0]	0.06 [0.01,0.19]	0.06 [0.01,0.17]	0.18 [0.02,0.47]	0.06 [0.01,0.23]
Aug	0 [0,0]	0 [0,0]	0 [0,0]	0.06 [0.01,0.17]	0 [0,0]
Sep	0 [0,0]	0.13 [0.01,0.38]	0 [0,0]	0 [0,0]	0.13 [0.01,0.37]
Oct	0 [0,0]	0 [0,0]	0 [0,0]	0 [0,0]	0.76 [0.08,2.16]
Nov	1.00 [0.32,1.92]	0.06 [0.01,0.19]	0.06 [0.01,0.24]	0 [0,0]	0.18 [0.02,0.42]
Dec	0.06 [0.01,0.19]	0.38 [0.04,0.88]	0 [0,0]	0.74 [0.13,1.72]	0.44 [0.08,0.94]

proposed Thanet Extension for five species: gannet, kittiwake, lesser black-backed gull, herring gull, and great black-backed gull

2.5 **Turbine Parameters**

The determination of the rotor strike probability for each species is calculated within the Band (2012) CRM spreadsheet based on each species flying in a straight line along the longest length of the wind farm. It incorporates the calculation of rotor strike probability for both upwind and downwind flights and the associated change in mortality risks. Input parameters for the wind turbine specifications used within the CRM are shown in Table 5 and Table 6.



Input Parameter (units in brackets)	Value	Source
Turbine Model (MW)	10	Provided by Vattenfall
Target Power (MW)	340	Provided by Vattenfall
No. of Blades	3	Provided by Vattenfall
Rotor Radius (m)	90	Provided by Vattenfall
Hub Height (m)	114.87	Value for Highest Astronomical Tide (HAT) and Mean Sea Level (MSL) provided by Vattenfall UK and the difference applied to the hub height value of 112 m (see Tidal Offset)
Max. Blade Width (m)	8	Provided by Vattenfall
Tidal Offset (m)	0	No tidal offset due to all parameters being measured against mean sea level
Wind Farm Width (km)	14.252128	Figure 1
Latitude (degrees)	51.430436	Centroid of Thanet Extension, Figure 1
Rotation speed (rpm)	9	Provided by Vattenfall
Large Array Correction	Yes	Standard procedure
Pitch (°)	15	Provided by Vattenfall

Table 5 Wind turbine specification for the proposed Thanet Extension

Wind farm width was calculated using the longest distance across the wind farm which is worst case as this maximises the amount of time a bird could spend in the wind farm (Figure 1). The latitude was calculated from the shapefile provided by Vattenfall Wind Power UK (Vattenfall) and represents the centroid (Figure 1).

Figure 1 Thanet Extension Offshore Wind Farm (the hexagonal centre is the operational Thanet Offshore Wind Farm). The star denotes the wind farm centroid and the line used to estimate the longest distance through the wind farm.

The theoretical maximum operational times for the proposed Thanet Extension's wind turbines represent a worst case scenario. Wind availability, taking into account down time of the turbines due to wind speed being less than 3 ms⁻¹ and greater than 25 ms⁻¹ on a monthly basis from the years 2015 and 2016 was provided by Vattenfall. A mean was calculated from these values (Table 6). The worst case scenario for turbine maintenance is that the turbines are off due to the wind speed being outside of operational parameters. In reality, the down time is likely to be approximately 3-4% and approximately half when the turbines are down due to wind speed.

Month	Monthly Proportion of Time Operational (%)
January	96.0
February	91.5
March	95.0
April	93.5
Мау	86.5
June	88.5
July	91.0
August	91.0
September	91.5
October	89.5
November	95.5
December	94.5

Table 6 Theoretical operational time of the proposed Thanet Extension turbines

3. Results

This section provides a summary of the CRM outputs. For each species the following outputs are presented:

- CRM outputs for Band CRM Option 2 using best estimate and upper and lower CLs around the densities of birds in flight;
- CRM outputs for Option 2 using maximum likelihood, upper and lower CLs for the generic flight height data;
- Figure of Option 2 using CLs around the birds in flight density data; and
- Figure of Option 2 using the CLs around the generic flight height data.

3.1 Gannet

Table 7 presents the annual collision rates for gannet using Band CRM Option 2 incorporating the best estimate and 95% CLs for density data collected within Thanet Extension. Table 8 presents annual collision rates for gannet incorporating the maximum likelihood flight height distribution and associated 95% CL flight height distributions.

Monthly collision rates calculated using best estimate density data and associated 95% CLs are presented in Figure 2.

Monthly collision rates calculated using best estimate density data with associated 95% CLs for flight height distribution data (Band Model Option 2, 98.9% AR) are presented in Figure 3.

Appendix 1 details the monthly CRM outputs for gannet.

Table 7Annual predicted gannet collision rates for Band Option 2 using best estimate,
lower and upper 95% confidence limits (CL) around Thanet Extension flying
density

Band Model (Avoidance Rate)	Option 2 - SOSS-02 (98.9%)
Lower CL	5
Best Estimate	14
Upper CL	26

Table 8Annual predicted gannet collision rates for Band Option 2 using best estimate,
lower and upper 95% confidence limits (CL) around generic flight height
distribution data

Band Model (Avoidance Rate)	Option 2 - SOSS-02 (98.9%)
Lower CL	6
Best Estimate	14
Upper CL	25

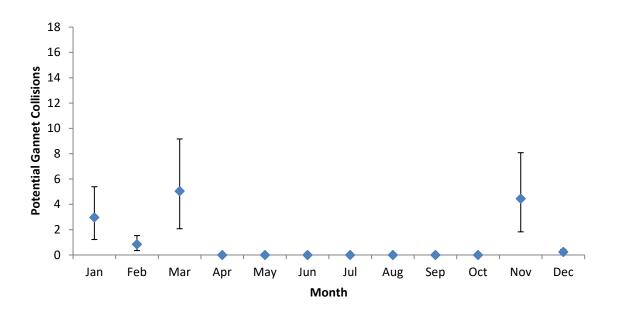
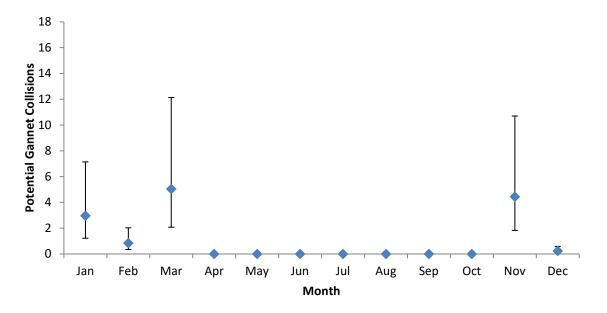



Figure 2 Monthly predicted gannet collision rates for Band Option 2 with associated 95% CLs for density data

3.2 Kittiwake

Table 9 presents the annual collision rates for kittiwake using Band CRM Option 2 incorporating the best estimate and 95% CLs for density data collected within Thanet Extension. Table 10 presents annual collision rates for kittiwake incorporating the maximum likelihood flight height distribution and associated 95% CL flight height distributions.

Monthly collision rates calculated using best estimate density data and associated 95% CLs are presented in Figure 4

Document Ref 6.4.4.4 FINAL

Monthly collision rates calculated using best estimate density data with associated 95% CLs for flight height distribution data (Band Model Option 2, 98.9% AR) are presented in Figure 5.

Appendix 2 details the monthly CRM outputs for kittiwake.

Table 9Annual predicted kittiwake collision rates for Band Option 2 using best estimate,
lower and upper 95% confidence limits (CL) around Thanet Extension flying
density

Band Model (Avoidance Rate)	Option 2 - SOSS-02 (98.9%)
Lower CL	4
Best Estimate	15
Upper CL	32

Table 10Annual predicted kittiwake collision rates for Band Option 2 using best estimate,
lower and upper 95% confidence limits (CL) around generic flight height
distribution data

Band Model (Avoidance Rate)	Option 2 - SOSS-02 (98.9%)
Lower CL	11
Best Estimate	15
Upper CL	18

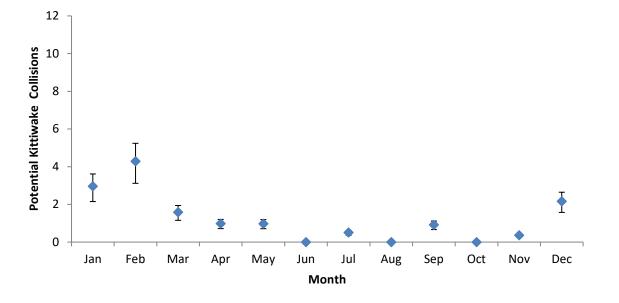


Figure 4 Monthly predicted kittiwake collision rates for Band Option 2 with associated 95% CLs for density data

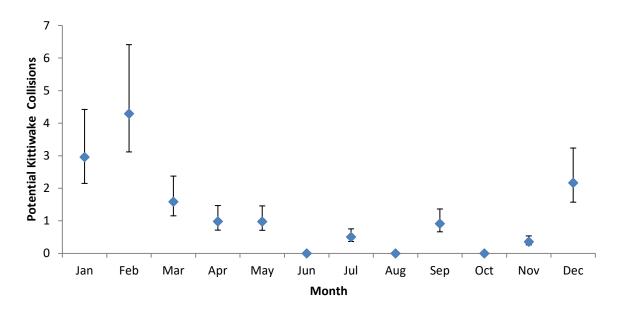


Figure 5 Monthly predicted kittiwake collision rates (Band Option 2, 98.9% AR) with associated 95% CLs for flight height distribution data

3.3 Lesser black-backed gull

Table 11 presents the annual collision rates for lesser black-backed gull using Band CRM Option 2 incorporating the best estimate and 95% CLs for density data collected within Thanet Extension. Table 12 presents annual collision rates for lesser black-backed gull incorporating the maximum likelihood flight height distribution and associated 95% CL flight height distributions.

Monthly collision rates calculated using best estimate density data and associated 95% CLs are presented in Figure 6.

Monthly collision rates calculated using best estimate density data with associated 95% CLs for flight height distribution data (Band Model Option 2, 99.5% AR) are presented in Figure 7.

Appendix 3 details the monthly CRM outputs for lesser black-backed gull.

Table 11Annual predicted lesser black-backed gull collision rates for Band Option 2 using
best estimate, lower and upper 95% confidence limits (CL) around Thanet
Extension flying density

Band Model (Avoidance Rate)	Option 2 - SOSS-02 (98.9%)
Lower CL	0
Best Estimate	2
Upper CL	8

Table 12Annual predicted lesser black-backed gull collision rates for Band Option 2 using
best estimate, lower and upper 95% confidence limits (CL) around generic flight
height distribution data

Band Model (Avoidance Rate)	Option 2 - SOSS-02 (98.9%)
Lower CL	2
Best Estimate	2
Upper CL	4

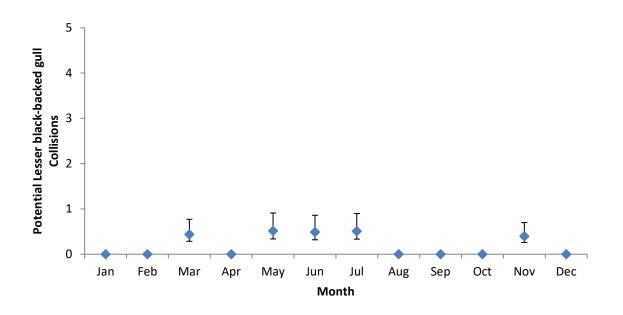


Figure 6 Monthly predicted lesser black-backed gull collision rates for Band Option 2 with associated 95% CLs for density data

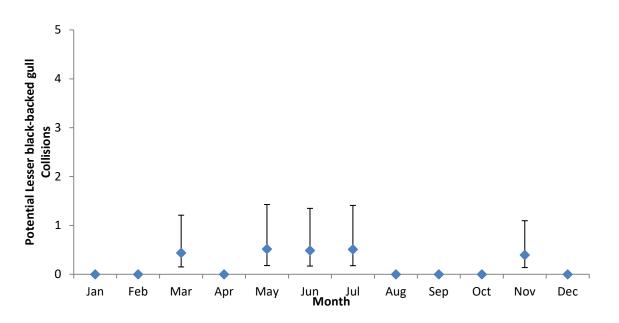


Figure 7 Monthly predicted lesser black-backed gull collision rates (Band Option 2, 98.9% AR) with associated 95% CLs for flight height distribution data

Document Ref 6.4.4.4 FINAL

Page 21

3.4 Herring gull

Table 13 presents the annual collision rates for herring gull using Band CRM Option 2 incorporating the best estimate and 95% CLs for density data collected within Thanet Extension. Table 14 presents annual collision rates for herring gull incorporating the maximum likelihood flight height distribution and associated 95% CL flight height distributions.

Monthly collision rates calculated using best estimate density data and associated 95% CLs are presented in Figure 8.

Monthly collision rates calculated using best estimate density data with associated 95% CLs for flight height distribution data (Band Model Option 2, 99.5% AR) are presented in Figure 9.

Appendix 4 details the monthly CRM outputs for herring gull.

Table 13Annual predicted herring gull collision rates for Band Option 2 using best
estimate, lower and upper 95% confidence limits (CL) around Thanet Extension
flying density

Band Model (Avoidance Rate)	Option 2 - SOSS-02 (98.9%)
Lower CL	2
Best Estimate	14
Upper CL	33

Table 14Annual predicted herring gull collision rates for Band Option 2 using best
estimate, lower and upper 95% confidence limits (CL) around generic flight
height distribution data

Band Model (Avoidance Rate)	Option 2 - SOSS-02 (98.9%)
Lower CL	10
Best Estimate	14
Upper CL	21

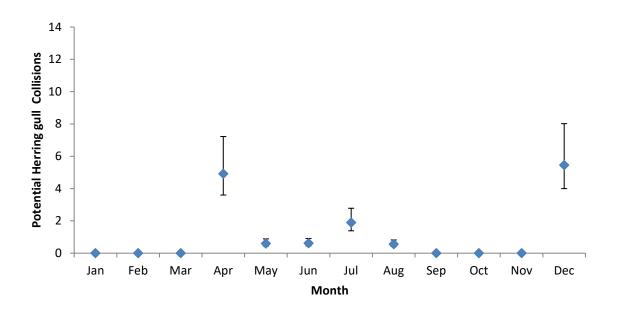
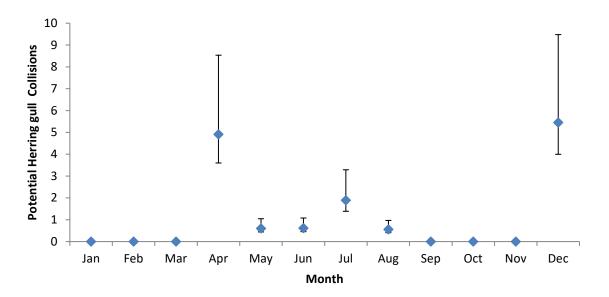
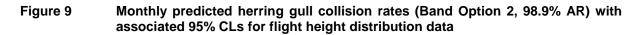




Figure 8 Monthly predicted herring gull collision rates for Band Option 2 with associated 95% CLs for density data

3.5 Great black-backed gull

Table 15 presents the annual collision rates for great black-backed gull using Band CRM Option 2 incorporating the best estimate and 95% CLs for density data collected within Thanet Extension. Table 16 presents annual collision rates for great black-backed gull incorporating the maximum likelihood flight height distribution and associated 95% CL flight height distributions.

Monthly collision rates calculated using best estimate density data and associated 95% CLs are presented in Figure 10.

Monthly collision rates calculated using best estimate density data with associated 95% CLs for flight height distribution data (Band Model Option 2, 99.5% AR) are presented in Figure 11.

Appendix 5 details the monthly CRM outputs for great black-backed gull.

Table 15Annual predicted great black-backed gull collision rates for Band Option 2 using
best estimate, lower and upper 95% confidence limits (CL) around Thanet
Extension flying density

Band Model (Avoidance Rate)	Option 2 - SOSS-02 (98.9%)
Lower CL	3
Best Estimate	22
Upper CL	57

Table 16Annual predicted great black-backed gull collision rates for Band Option 2 using
best estimate, lower and upper 95% confidence limits (CL) around generic flight
height distribution data

Band Model (Avoidance Rate)	Option 2 - SOSS-02 (98.9%)
Lower CL	18
Best Estimate	22
Upper CL	33

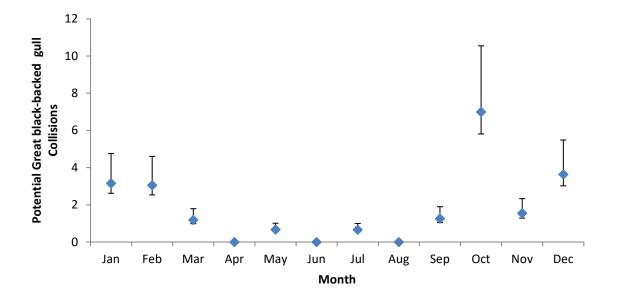


Figure 10 Monthly predicted great black-backed gull collision rates for Band Option 2 with associated 95% CLs for density data

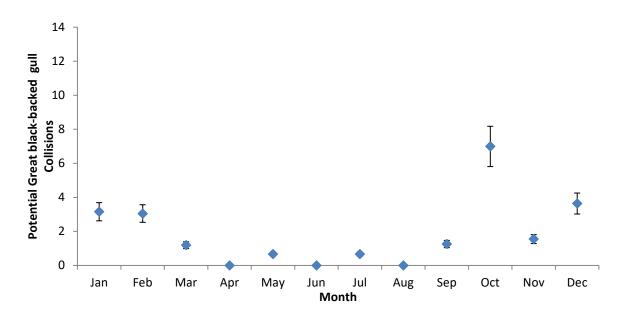


Figure 11 Monthly predicted great black-backed gull collision rates (Band Option 2, 98.9% AR) with associated 95% CLs for flight height distribution data

4. References

Alerstam, T., Rosén, M., Bäckman, J., Ericson, P.G.P., Hellgren, O. (2007) Flight speeds among bird species: allometric and phylogenetic effects. *PLoS Biology* 5(8): 1656-1662.

APEM (2017) Thanet Extension Offshore Wind Farm Preliminary Environmental Information Report Volume 2, Chapter 4: Offshore Ornithology. APEM Ltd Scientific Report P1227, for Vattenfall Wind Power Limited, November 2017.

APEM (2018) Thanet Extension Offshore Wind Farm Environmental Statement Volume 2, Chapter 4: Offshore Ornithology. APEM Ltd Scientific Report P1227, for Vattenfall Wind Power Limited, April 2018.

Band, W. (2012) Using a collision risk model to assess bird collision risks for offshore windfarms. The Crown Estate Strategic Ornithological Support Services (SOSS) report SOSS-02. <u>http://www.bto.org/science/wetland-and-marine/soss/projects</u>. Original published Sept 2011, extended to deal with flight height distribution data March 2012.

Cook, A.S.C.P., Wright, L.J., and Burton, N.H.K. (2012) *A review of flight heights and avoidance rates of birds in relation to offshore windfarms*. The Crown Estate Strategic Ornithological Support Services (SOSS). <u>http://www.bto.org/science/wetland-and-marine/soss/projects</u>.

Cook, A.S.C.P., Humphries, E.M., Masden, E.A. Burton, N.H.K. (2014) *The avoidance rates of collision between birds and offshore turbines.* BTO Research Report No 656 to Marine Scotland Science.

Garthe, S. & Hüppop, O. (2004) Scaling possible adverse effects of marine wind farms on seabirds: developing and applying a vulnerability index. *Journal of Applied Ecology* 41: 724-734.

JNCC, NE, SNH, NRW, NIEA. (2014) *Joint Response from the Statutory Nature Conservation Bodies to the Marine Scotland Science Avoidance Rate Review*. [Downloaded from: <u>http://www.snh.gov.uk/docs/A1464185.pdf</u>]

Johnston, A., Cook, A.S.C.P., Wright, L.J., Humphreys, E.M. and Burton, E.H.K. (2014) Modelling flight heights of marine birds to more accurately assess collision risk with offshore wind turbines. *Journal of Applied Ecology* 51: 31-41.

King, S., Maclean, I., Norman, T. and Prior, A. (2009). *Developing Guidance on Ornithological Cumulative Impact Assessment for Offshore Wind Farm Developers*. COWRIE Ltd, London.

MacArthur Green, APEM & Royal Haskoning DHV. (2015) *East Anglia THREE: Appendix 13.1 Offshore Ornithology Evidence Plan* Volume 3 – Document Reference: 6.3.13(1).

Masden, E. (2015) Developing an avian collision risk model to incorporate variability and uncertainty. *Scottish Marine and Freshwater Science* Vol 6 No 14. Edinburgh: Scottish Government, 43pp. DOI: 10.7489/1659-1.

McAdam, B.J. (2005) A Monte-Carlo Model for Bird / Wind Turbine Collisions. MSc Ecology. University of Aberdeen.

King, S., Maclean, I.M.D., Norman, T. & Prior, A. (2009) *Developing guidance on ornithological cumulative impact assessment for offshore wind developers*. COWRIE.

Pennycuick, C.J. (1997) Actual and 'optimum' flight speeds: field data reassessed. *The Journal of Experimental Biology* 200: 2355-2361.

R-project.org., 2013. *The R Project for Statistical Computing*. [Online]. Available at: http://www.r-project.org.

Robinson, R.A. (2005) *BirdFacts: profiles of birds occurring in Britain & Ireland* (BTO Research Report 407). BTO, Thetford (<u>http://www.bto.org/birdfacts</u>).

Skov, H., Heinanen, S., Norman, T., Ward, R.M., Mendez-Roldan, S. & Ellis, I. (2018). ORJIP Bird Collision and Avoidance Study. Final report - April 2018. The Carbon Trust. United Kingdom. 247 pp.SMart Wind (2015) *Collision Risk Modelling; Addressing Uncertainty Clarification Note: Appendix J to the Response submitted for Deadline I.* Application Reference: EN010053. <u>https://infrastructure.planninginspectorate.gov.uk/wp-</u> <u>content/ipc/uploads/projects/EN010053/EN010053-001016-</u> Appendix%20J_Collision%20Risk%20Modelling;%20Addressing%20Uncertainty%20Clarification%20Note.pdf

Trinder, M. (2017). Offshore wind farms and birds: incorporating uncertainty in collision risk models: a test of Masden (2015). Natural England Commissioned Reports, Number 237, York.

Appendix 1 – Gannet monthly collision rates

Table 17	Monthly and annual gannet collision risk estimates using mean lower CL density with generic flight height distribution and associated
	upper and lower CLs

BO2 - Mea	BO2 - Mean Lower CL Density - Lower SOSS-02 CL												
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	1	0	1	0	0	0	0	0	0	0	1	0	2
98.9	0	0	1	0	0	0	0	0	0	0	1	0	2
99.1	0	0	1	0	0	0	0	0	0	0	0	0	2
BO2 - Mea	n Lower C	L Density	- Maximum	Likelihood	SOSS-02 C	L							
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	1	0	3	0	0	0	0	0	0	0	2	0	6
98.9	1	0	2	0	0	0	0	0	0	0	1	0	5
99.1	1	0	2	0	0	0	0	0	0	0	1	0	4
BO2 - Mea	n Lower C	L Density	- Upper SOS	S-02 CL									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	2	0	5	0	0	0	0	0	0	0	3	0	11
98.9	2	0	4	0	0	0	0	0	0	0	3	0	9
99.1	2	0	4	0	0	0	0	0	0	0	2	0	7

AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	1	0	2	0	0	0	0	0	0	0	2	0	7
98.9	1	0	2	0	0	0	0	0	0	0	2	0	6
99.1	1	0	2	0	0	0	0	0	0	0	1	0	5
BO2 - Mean Density - Maximum Likelihood SOSS-02 CL													
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	4	1	6	0	0	0	0	0	0	0	5	0	16
98.9	3	1	5	0	0	0	0	0	0	0	4	0	14
99.1	2	1	4	0	0	0	0	0	0	0	4	0	11
BO2 - Mea	an Density	- Upper S	OSS-02 CL										
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
	_	-			0	0	0	0	0	0	10	4	20
98.7	6	2	11	0	0	0	0	0	0	0	10	T	29

Table 18 Monthly and annual gannet collision risk estimates using mean density with generic flight height distribution and associated upper and lower CLs

99.1

	assoc	iated upp	er and lowe	er CLs									
BO2 - Mea	O2 - Mean Upper CL Density - Lower SOSS-02 CL												
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	3	1	4	0	0	0	0	0	0	0	4	0	13
98.9	2	1	3	0	0	0	0	0	0	0	4	0	11
99.1	2	1	3	0	0	0	0	0	0	0	3	0	9
BO2 - Mean Upper CL Density - Maximum Likelihood SOSS-02 CL													
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	6	3	10	0	0	0	0	0	0	0	10	1	30
98.9	5	3	9	0	0	0	0	0	0	0	9	1	26
99.1	4	2	7	0	0	0	0	0	0	0	7	1	21
BO2 - Mear	n Upper C	L Density	- Upper SOS	S-02 CL									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	12	5	18	0	0	0	0	0	0	0	18	2	55
98.9	10	5	15	0	0	0	0	0	0	0	16	1	47
99.1	8	4	13	0	0	0	0	0	0	0	13	1	38

Table 19 Monthly and annual gannet collision risk estimates using mean upper CL density with generic flight height distribution and associated upper and lower CLs

Appendix 2 – Kittiwake monthly collision rates

Table 20	Monthly and annual kittiwake collision risk estimates using mean lower CL density with generic flight height distribution and
	associated upper and lower CLs

BO2 - Mea	BO2 - Mean Lower CL Density - Lower SOSS-02 CL												
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	1	1	0	0	0	0	0	0	0	0	0	0	3
98.9	1	1	0	0	0	0	0	0	0	0	0	0	3
99.1	1	1	0	0	0	0	0	0	0	0	0	0	2
BO2 - Mea	n Lower C	L Density	- Maximum	Likelihood	SOSS-02 C	L							
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	1	2	0	0	0	0	0	0	0	0	0	0	4
98.9	1	2	0	0	0	0	0	0	0	0	0	0	4
99.1	1	1	0	0	0	0	0	0	0	0	0	0	3
BO2 - Mea	n Lower C	L Density	- Upper SOS	S-02 CL									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	2	2	0	0	0	0	0	0	0	0	0	0	5
98.9	1	2	0	0	0	0	0	0	0	0	0	0	4
99.1	1	2	0	0	0	0	0	0	0	0	0	0	4

Table 21	Monthly and annual kittiwake collision risk estimates using mean density with generic flight height distribution and associated upper
	and lower CLs

BO2 - Mea	n Density	- Lower S	OSS-02 CL										
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	3	4	1	1	1	0	0	0	1	0	0	2	13
98.9	2	3	1	1	1	0	0	0	1	0	0	2	11
99.1	2	3	1	1	1	0	0	0	1	0	0	1	9
BO2 - Mea	n Density	- Maximu	m Likelihoo	d SOSS-02	CL								
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	3	5	2	1	1	0	1	0	1	0	0	3	17
98.9	3	4	2	1	1	0	1	0	1	0	0	2	15
99.1	2	4	1	1	1	0	0	0	1	0	0	2	12
BO2 - Mea	n Density	- Upper S	OSS-02 CL										
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	4	6	2	1	1	0	1	0	1	0	1	3	21
98.9	4	5	2	1	1	0	1	0	1	0	0	3	18
99.1	3	4	2	1	1	0	1	0	1	0	0	2	15

Document Ref 6.4.4.4 FINAL

	40000	area app											
BO2 - Mea	n Upper C	L Density	- Lower SOS	S-02 CL									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	5	7	3	2	2	0	1	0	2	0	1	4	28
98.9	4	6	3	2	2	0	1	0	2	0	1	4	23
99.1	3	5	2	1	1	0	1	0	2	0	1	3	19
BO2 - Mea	n Upper C	L Density	- Maximum	Likelihood	SOSS-02 C	Ľ							
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	7	9	4	3	3	0	2	0	3	0	1	6	38
98.9	6	8	4	2	2	0	2	0	3	0	1	5	32
99.1	5	6	3	2	2	0	1	0	2	0	1	4	26
BO2 - Mea	n Upper C	L Density	- Upper SOS	S-02 CL									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	8	11	5	3	4	0	2	0	4	0	2	7	47
98.9	7	10	4	3	3	0	2	0	3	0	1	6	39
99.1	6	8	4	2	2	0	2	0	3	0	1	5	32

Table 22 Monthly and annual kittiwake collision risk estimates using mean upper CL density with generic flight height distribution and associated upper and lower CLs

Appendix 3 – Lesser black-backed gull monthly collision rates

 Table 23
 Monthly and annual lesser black-backed gull collision risk estimates using mean lower CL density with generic flight height distribution and associated upper and lower CLs

BO2 - Mea	BO2 - Mean Lower CL Density - Lower SOSS-02 CL												
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	0	0	0	0	0	0	0	0	0	0	0
99.5	0	0	0	0	0	0	0	0	0	0	0	0	0
99.6	0	0	0	0	0	0	0	0	0	0	0	0	0
BO2 - Mea	n Lower C	L Density ·	- Maximum	Likelihood	SOSS-02 C	L							
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	0	0	0	0	0	0	0	0	0	0	0
99.5	0	0	0	0	0	0	0	0	0	0	0	0	0
99.6	0	0	0	0	0	0	0	0	0	0	0	0	0
BO2 - Mea	n Lower C	L Density ·	- Upper SOS	S-02 CL									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	0	0	0	0	0	0	0	0	0	0	1
99.5	0	0	0	0	0	0	0	0	0	0	0	0	1
99.6	0	0	0	0	0	0	0	0	0	0	0	0	0

BO2 - Mea	n Density	- Lower S	OSS-02 CL										
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	0	0	0	0	0	0	0	0	0	0	2
99.5	0	0	0	0	0	0	0	0	0	0	0	0	2
99.6	0	0	0	0	0	0	0	0	0	0	0	0	1
BO2 - Mea	n Density	- Maximu	m Likelihoo	d SOSS-02	CL								
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	1	0	1	1	1	0	0	0	0	0	3
99.5	0	0	0	0	1	0	1	0	0	0	0	0	2
99.6	0	0	0	0	0	0	0	0	0	0	0	0	2
BO2 - Mea	n Density	- Upper S	OSS-02 CL										
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	1	0	1	1	1	0	0	0	1	0	5
99.5	0	0	1	0	1	1	1	0	0	0	1	0	4
99.6	0	0	1	0	1	1	1	0	0	0	1	0	3

Table 24 Monthly and annual lesser black-backed gull collision risk estimates using mean density with generic flight height distribution and associated upper and lower CLs

 Table 25
 Monthly and annual lesser black-backed gull collision risk estimates using mean upper CL density with generic flight height distribution and associated upper and lower CLs

BO2 - Mea	n Upper C	L Density	- Lower SOS	S-02 CL									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	1	0	1	1	1	0	0	0	1	0	6
99.5	0	0	1	0	1	1	1	0	0	0	1	0	5
99.6	0	0	1	0	1	1	1	0	0	0	1	0	4
BO2 - Mea	n Upper C	L Density	- Maximum	Likelihood	SOSS-02 C	L							
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	2	0	2	2	2	0	0	0	2	0	9
99.5	0	0	1	0	2	1	2	0	0	0	2	0	8
99.6	0	0	1	0	1	1	1	0	0	0	1	0	6
BO2 - Mea	n Upper C	L Density	- Upper SOS	S-02 CL									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	3	0	4	3	3	0	0	0	3	0	16
99.5	0	0	2	0	3	3	3	0	0	0	3	0	13
99.6	0	0	2	0	2	2	2	0	0	0	2	0	11

Appendix 4 – Herring gull monthly collision rates

Table 26	Monthly and annual herring gull collision risk estimates using mean lower CL density with generic flight height distribution and
	associated upper and lower CLs

BO2 - Mea	BO2 - Mean Lower CL Density - Lower SOSS-02 CL												
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	0	1	0	0	0	0	0	0	0	1	2
99.5	0	0	0	1	0	0	0	0	0	0	0	1	2
99.6	0	0	0	0	0	0	0	0	0	0	0	1	1
BO2 - Mea	n Lower C	L Density ·	- Maximum	Likelihood	SOSS-02 C	L							
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	0	1	0	0	0	0	0	0	0	1	3
99.5	0	0	0	1	0	0	0	0	0	0	0	1	2
99.6	0	0	0	1	0	0	0	0	0	0	0	1	2
BO2 - Mea	n Lower C	L Density ·	- Upper SOS	S-02 CL									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	0	1	0	0	0	0	0	0	0	2	4
99.5	0	0	0	1	0	0	0	0	0	0	0	1	3
99.6	0	0	0	1	0	0	0	0	0	0	0	1	3

BO2 - Mea	n Density	- Lower S	OSS-02 CL										
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	0	4	1	1	2	0	0	0	0	5	12
99.5	0	0	0	4	0	0	1	0	0	0	0	4	10
99.6	0	0	0	3	0	0	1	0	0	0	0	3	8
BO2 - Mea	n Density	- Maximu	m Likelihoo	d SOSS-02	CL								
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	0	6	1	1	2	1	0	0	0	7	17
99.5	0	0	0	5	1	1	2	1	0	0	0	5	14
99.6	0	0	0	4	0	0	2	0	0	0	0	4	11
BO2 - Mea	n Density	- Upper S	OSS-02 CL										
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	0	9	1	1	3	1	0	0	0	10	25
99.5	0	0	0	7	1	1	3	1	0	0	0	8	21
99.6	0	0	0	6	1	1	2	1	0	0	0	6	17

Table 27 Monthly and annual herring gull collision risk estimates using mean density with generic flight height distribution and associated upper and lower CLs

	assoc	iated upp	er and lowe	er CLs			U				,	U	U	U	
BO2 - Mea	n Upper C	L Density	- Lower SOS	S-02 CL											
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Au	ıg	Sep	Oct		Nov	Dec	Annual
99.4	0	7	3	2	2	C		1	0	2		0	1	4	28
99.5	0	6	3	2	2	C		1	0	2		0	1	4	23
99.6	0	5	2	1	1	(1	0	2		0	1	3	19
BO2 - Mea	n Upper C	L Density	- Maximum	Likelihood	SOSS-02 C	L									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Au	ıg	Sep	Oct		Nov	Dec	Annual
99.4	0	0	0	12	2	2		6	2	0		0	0	15	40
99.5	0	0	0	10	2	2		5	2	0		0	0	13	33
99.6	0	0	0	8	2	2		4	1	0		0	0	10	27
BO2 - Mea	n Upper C	L Density	- Upper SOS	S-02 CL											
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Au	ıg	Sep	Oct		Nov	Dec	Annual
99.4	0	0	0	17	3	Z		9	3	0		0	0	23	59
99.5	-	_	-		_			~	-			•	_		
99.5	0	0	0	15	3	(1)		8	3	0		0	0	19	49

Table 28 Monthly and annual herring gull collision risk estimates using mean upper CL density with generic flight height distribution and associated upper and lower CLs

Appendix 5 – Great black-backed gull monthly collision rates

Table 29	Monthly and annual great black-backed gull collision risk estimates using mean lower CL density with generic flight height
	distribution and associated upper and lower CLs

BO2 - Mea	n Lower C	L Density	- Lower SOS	S-02 CL									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	1	1	0	0	0	0	0	0	0	1	0	1	3
99.5	0	0	0	0	0	0	0	0	0	1	0	1	3
99.6	0	0	0	0	0	0	0	0	0	1	0	0	2
BO2 - Mea	n Lower C	L Density ·	- Maximum	Likelihood	SOSS-02 C	L							
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	1	1	0	0	0	0	0	0	0	1	0	1	4
99.5	1	1	0	0	0	0	0	0	0	1	0	1	3
99.6	0	0	0	0	0	0	0	0	0	1	0	0	3
BO2 - Mea	n Lower C	L Density ·	- Upper SOS	S-02 CL									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	1	1	0	0	0	0	0	0	0	1	0	1	6
99.5	1	1	0	0	0	0	0	0	0	1	0	1	5
99.6	1	1	0	0	0	0	0	0	0	1	0	1	4

BO2 - Mea	n Density	- Lower S	OSS-02 CL										
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	3	3	1	0	1	0	1	0	1	7	2	4	22
99.5	3	3	1	0	1	0	1	0	1	6	1	3	18
99.6	2	2	1	0	0	0	0	0	1	5	1	2	15
BO2 - Mea	n Density	- Maximu	m Likelihoo	d SOSS-02	CL								
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	4	4	1	0	1	0	1	0	2	8	2	4	27
99.5	3	3	1	0	1	0	1	0	1	7	2	4	22
99.6	3	2	1	0	1	0	1	0	1	6	1	3	18
BO2 - Mea	n Density	- Upper S	OSS-02 CL										
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	6	6	2	0	1	0	1	0	2	13	3	7	40
99.5	5	5	2	0	1	0	1	0	2	11	2	5	33
99.6	4	4	1	0	1	0	1	0	2	8	2	4	27

Table 30 Monthly and annual great black-backed gull collision risk estimates using mean density with generic flight height distribution and associated upper and lower CLs

 Table 31
 Monthly and annual great black-backed gull collision risk estimates using mean upper CL density with generic flight height distribution and associated upper and lower CLs

BO2 - Mea	n Upper C	L Density ·	- Lower SOS	S-02 CL									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	7	6	4	0	2	0	3	0	4	20	4	8	57
99.5	6	5	3	0	2	0	2	0	3	17	3	6	47
99.6	5	4	2	0	1	0	2	0	2	13	2	5	38
BO2 - Mea	n Upper C	L Density ·	- Maximum	Likelihood	SOSS-02 C	L							
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	9	7	4	0	3	0	3	0	4	24	4	9	69
99.5	7	6	4	0	2	0	3	0	4	20	4	8	57
99.6	6	5	3	0	2	0	2	0	3	16	3	6	46
BO2 - Mea	n Upper C	L Density ·	- Upper SOS	S-02 CL									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	13	11	7	0	4	0	5	0	7	36	7	14	103
99.5	11	9	6	0	3	0	4	0	6	30	5	12	86
99.6	9	7	4	0	3	0	3	0	5	24	4	9	69

Appendix 6 – Nocturnal Sensitivity

Appendix 6 presents information on the predicted mortalities using Band CRM Option 2 for gannet, kittiwake, lesser black-backed gull, herring gull, and great black-backed gull in relation to a reduction of 1 nocturnal activity factor in comparison to Garthe & Huppop (2004).

Species	ES Nocturnal Activity	PEIR Nocturnal Activity
Gannet	1	2
Kittiwake	2	3
LBB Gull	2	3
H Gull	2	3
GBB Gull	2	3

Table 32ES and PEIR nocturnal activity factors as used for the collision risk assessment

The reduction in mortalities ranged from -0.37 to -4 for lesser black-backed gull and kittiwake respectively.

Table 33Annual predicted gannet collision rates for Band Option 2 using best estimate,
lower and upper 95% confidence limits (CL) around Thanet Extension flying
density with a reduction in nocturnal activity

Band Model (Avoidance Rate)	Option 2 - SOSS-02 (98.9%)
Lower CL	5
Best Estimate	14
Upper CL	26
Reduction	-5

Table 34Annual predicted kittiwake collision rates for Band Option 2 using best estimate,
lower and upper 95% confidence limits (CL) around Thanet Extension flying
density with a reduction in nocturnal activity

Band Model (Avoidance Rate)	Option 2 - SOSS-02 (98.9%)
Lower CL	4
Best Estimate	15
Upper CL	32
Reduction	-4

Table 35Annual predicted lesser black-backed gull collision rates for Band Option 2 using
best estimate, lower and upper 95% confidence limits (CL) around Thanet
Extension flying density with a reduction in nocturnal activity

Band Model (Avoidance Rate)	Option 2 - SOSS-02 (98.9%)
Lower CL	0
Best Estimate	2
Upper CL	8
Reduction	-0.37

Table 36Annual predicted herring gull collision rates for Band Option 2 using best
estimate, lower and upper 95% confidence limits (CL) around Thanet Extension
flying density with a reduction in nocturnal activity

Band Model (Avoidance Rate)	Option 2 - SOSS-02 (98.9%)					
Lower CL	2					
Best Estimate	14					
Upper CL	33					
Reduction	-3					

Table 37Annual predicted great black-backed gull collision rates for Band Option 2 using
best estimate, lower and upper 95% confidence limits (CL) around Thanet
Extension flying density with a reduction in nocturnal activity

Band Model (Avoidance Rate)	Option 2 - SOSS-02 (98.9%)					
Lower CL	3					
Best Estimate	22					
Upper CL	57					
Reduction	-6					

Appendix 7 – Band Option 1 Results

Appendix 7 provides a summary of the CRM outputs based on Band Option 1 using APEM site-specific flight height information. The avoidance rate applicable to Band Option 1 for each species is presented in Table 38. The PCH calculated based on APEM site-specific flight height information is presented in Table 39. Tables 40-44 summarise the CRM outputs for Band CRM Option 1 using best estimate and upper and lower CLs around the densities of birds in flight for each species. The potential monthly mortality estimates are presented in Tables 45-49. The potential mortality estimates based on a reduction in the nocturnal activity for each species are presented in Tables 50-54.

Table 38Band collision risk model Option 1 with associated avoidance rates for Thanet
Extension for five species: gannet, kittiwake, lesser black-backed gull, herring
gull, and great black-backed gull

Species	Band Option 1					
	Avoidance Rate (<u>+</u> SD)					
Gannet	0.989 <u>+</u> 0.002					
Kittiwake	0.989 <u>+</u> 0.002					
Lesser black-backed gull	0.995 <u>+</u> 0.001					
Herring gull	0.995 <u>+</u> 0.001					
Great black-backed gull	0.995 <u>+</u> 0.001					

Table 39Proportion (%) at potential collision risk height (PCH) used in the Band Option 1
collision risk model of the proposed Thanet Extension Offshore Wind Farm using
site-specific data derived from aerial digital surveys (APEM)

Species	Site-specific APEM PCH (%)				
Gannet	20.51				
Kittiwake	48.43				
Lesser black-backed gull	48.00				
Herring gull	38.46				
Great black-backed gull	35.82				

Table 40Annual predicted gannet collision rates for Band Option 1 using best estimate,
lower and upper 95% confidence limits (CL) around Thanet Extension flying
density

Band Model (Avoidance Rate)	Option 1 - APEM (98.9%)
Lower CL	14
Best Estimate	38
Upper CL	72

Table 41Annual predicted kittiwake collision rates for Band Option 1 using best estimate,
lower and upper 95% confidence limits (CL) around Thanet Extension flying
density

Band Model (Avoidance Rate)	Option 1 - APEM (98.9%)
Lower CL	19
Best Estimate	78
Upper CL	172

Table 42Annual predicted lesser black-backed gull collision rates for Band Option 1 using
best estimate, lower and upper 95% confidence limits (CL) around Thanet
Extension flying density

Band Model (Avoidance Rate)	Option 1 - APEM (98.9%)					
Lower CL	1					
Best Estimate	6					
Upper CL	18					

Table 43Annual predicted herring gull collision rates for Band Option 1 using best
estimate, lower and upper 95% confidence limits (CL) around Thanet Extension
flying density

Band Model (Avoidance Rate)	Option 1 - APEM (98.9%)
Lower CL	4
Best Estimate	23
Upper CL	54

Table 44Annual predicted great black-backed gull collision rates for Band Option 1 using
best estimate, lower and upper 95% confidence limits (CL) around Thanet
Extension flying density

Band Model (Avoidance Rate)	Option 1 - APEM (98.9%)
Lower CL	5
Best Estimate	33
Upper CL	84

Table 45Monthly and annual gannet collision risk estimates for Band Option 1 using mean density, upper and lower CLs with APEM derived
site-specific flight heights for proportion at PCH

BO1 - Mean Lower CL Density - APEM Site-Specific													
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	4	0	8	0	0	0	0	0	0	0	5	0	16
98.9	3	0	7	0	0	0	0	0	0	0	4	0	14
99.1	2	0	5	0	0	0	0	0	0	0	3	0	11
BO1 - Mean Density - APEM Site-Specific													
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	10	3	17	0	0	0	0	0	0	0	15	1	45
98.9	8	2	14	0	0	0	0	0	0	0	12	1	38
99.1	7	2	12	0	0	0	0	0	0	0	10	1	31
BO1 - Mea	in Upper C	L Density -	APEM Site-	Specific									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	18	8	28	0	0	0	0	0	0	0	28	2	85
98.9	15	7	24	0	0	0	0	0	0	0	24	2	72
99.1	12	6	19	0	0	0	0	0	0	0	20	2	59

Table 46 Monthly and annual kittiwake collision risk estimates for Band Option 1 using mean density, upper and lower CLs with APEM derived site-specific flight heights for proportion at PCH

BO1 - Mea	n Lower C	L Density	- APEM Site	Specific									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	7	10	1	1	1	0	0	0	1	0	0	1	22
98.9	6	8	1	1	1	0	0	0	1	0	0	1	19
99.1	5	7	1	0	0	0	0	0	0	0	0	1	15
BO1 - Mean Density - APEM Site-Specific													
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	19	27	10	6	6	0	3	0	6	0	2	14	93
98.9	16	23	8	5	5	0	2.68	0	5	0	2	12	78
99.1	13	19	7	4	4	0	2	0	4	0	2	9	64
BO1 - Mean Upper CL Density - APEM Site-Specific													
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
98.7	35	49	22	15	16	0	10	0	17	0	7	32	203
98.9	29	42	19	13	13	0	8.29	0	14	0	6	27	172
99.1	24	34	16	10	11	0	7	0	12	0	5	22	140

Table 47Monthly and annual lesser black-backed gull collision risk estimates for Band Option 1 using mean density, upper and lower CLs
with APEM derived site-specific flight heights for proportion at PCH

BO1 - Mea	n Lower C	L Density -	- APEM Site-	Specific									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	0	0	0	0	0	0	0	0	0	0	1
99.5	0	0	0	0	0	0	0	0	0	0	0	0	1
99.6	0	0	0	0	0	0	0	0	0	0	0	0	1
BO1 - Mea	n Density	- APEM Sit	te-Specific										
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	1	0	1	1	1	0	0	0	1	0	7
99.5	0	0	1	0	1	1	1	0	0	0	1	0	6
99.6	0	0	1	0	1	1	1	0	0	0	1	0	4
BO1 - Mea	n Upper C	L Density	- APEM Site	-Specific									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	4	0	5	4	5	0	0	0	5	0	22
99.5	0	0	3	0	4	3	4	0	0	0	4	0	18
99.6	0	0	2	0	3	3	3	0	0	0	3	0	14

Table 48Monthly and annual herring gull collision risk estimates for Band Option 1 using mean density, upper and lower CLs with APEM
derived site-specific flight heights for proportion at PCH

BO1 - Me	an Lower (CL Density	- APEM Site-	-Specific									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	0	2	0	0	0	0	0	0	0	2	4
99.5	0	0	0	1	0	0	0	0	0	0	0	2	4
99.6	0	0	0	1	0	0	0	0	0	0	0	1	3
BO1 - Mean Density - APEM Site-Specific													
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	0	10	1	1	4	1	0	0	0	11	27
99.5	0	0	0	8	1	1	3	1	0	0	0	9	23
99.6	0	0	0	6	1	1	2	1	0	0	0	7	18
BO1 - Mean Upper CL Density - APEM Site-Specific													
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	0	0	0	19	4	4	10	3	0	0	0	25	65
99.5	0	0	0	16	3	3	8	3	0	0	0	21	54
99.6	0	0	0	13	3	3	7	2	0	0	0	17	44

Table 49Monthly and annual great black-backed gull collision risk estimates for Band Option 1 using mean density, upper and lower CLs with
APEM derived site-specific flight heights for proportion at PCH

BO1 - Mea	n Lower C	L Density	- APEM Site-	Specific									
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	1	1	0	0	0	0	0	0	0	1	0	1	6
99.5	1	1	0	0	0	0	0	0	0	1	0	1	5
99.6	1	1	0	0	0	0	0	0	0	1	0	1	4
BO1 - Mean Density - APEM Site-Specific													
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	6	5	2	0	1	0	1	0	2	12	3	6	39
99.5	5	5	2	0	1	0	1	0	2	10	2	5	33
99.6	4	4	1	0	1	0	1	0	1	8	2	4	26
BO1 - Mean Upper CL Density - APEM Site-Specific													
AR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
99.4	13	11	7	0	4	0	5	0	7	35	6	14	101
99.5	11	9	5	0	3	0	4	0	6	29	5	11	84
99.6	9	7	4	0	3	0	3	0	4	24	4	9	68

Table 50Annual predicted gannet collision rates for Band Option 1 using best estimate,
lower and upper 95% confidence limits (CL) around Thanet Extension flying
density with a reduction in nocturnal activity

Band Model (Avoidance Rate)	Option 1 - APEM (98.9%)
Lower CL	14
Best Estimate	38
Upper CL	72
Reduction	-14

Table 51Annual predicted kittiwake collision rates for Band Option 1 using best estimate,
lower and upper 95% confidence limits (CL) around Thanet Extension flying
density with a reduction in nocturnal activity

Band Model (Avoidance Rate)	Option 1 - APEM (98.9%)
Lower CL	19
Best Estimate	78
Upper CL	172
Reduction	-20

Table 52Annual predicted lesser black-backed gull collision rates for Band Option 1 using
best estimate, lower and upper 95% confidence limits (CL) around Thanet
Extension flying density with a reduction in nocturnal activity

Band Model (Avoidance Rate)	Option 1 - APEM (98.9%)
Lower CL	1
Best Estimate	6
Upper CL	18
Reduction	-1

Table 53Annual predicted herring gull collision rates for Band Option 1 using best
estimate, lower and upper 95% confidence limits (CL) around Thanet Extension
flying density with a reduction in nocturnal activity

Band Model (Avoidance Rate)	Option 1 - APEM (98.9%)
Lower CL	4
Best Estimate	23
Upper CL	54
Reduction	-5

Table 54Annual predicted great black-backed gull collision rates for Band Option 1 using
best estimate, lower and upper 95% confidence limits (CL) around Thanet
Extension flying density with a reduction in nocturnal activity

Band Model (Avoidance Rate)	Option 1 - APEM (98.9%)
Lower CL	5
Best Estimate	33
Upper CL	84
Reduction	-8

