VATTENFALL

Vattenfall Wind Power Ltd

Thanet Extension Offshore Wind Farm

Annex 2-3: Geophysical Investigation Report 2 of 3 - Geophysical Site Survey

June, 2017, Revision A
Document Reference: 6.4.2.3.2
Pursuant to: APFP Reg. 5(2)(a)

Vattenfall Wind Power Ltd

Thanet Extension Offshore Wind Farm
Annex 2-3: Geophysical Investigation Report 2 of 3-Geophysical Site Survey June, 2018

Drafted By:	Fugro Group
Approved By:	Helen Jameson
Date of Approval	June 2018
Revision	A

Copyright © 2018 Vattenfall Wind Power Ltd
All pre-existing rights reserved

F. GEOHAZARD CHART

Drawing	Chart Name	Scale
Geohazard Chart	GE051_TE_GEOHAZARD_NU_10K	$1: 10,000$

G. UHR SEISMIC PROCESSING REPORT

Fugro

Geophysical Site Survey

UK Continental Shelf, North Sea

Thanet Extension Offshore Wind Farm

UHR SEISMIC DATA PROCESSING REPORT

July to September 2016
Fugro Report No.: GE051-R1 / Appendix G

Revision 0
Vattenfall Wind Power Limited

Prepared by:	Fugro Survey B.V.
	Prismastraat 4
	2631 RT Nootdorp
	P.O. Box 130
	2630 AC Nootdorp
	The Netherlands
	Phone +31 70 3111444
	Fax +31 70 3111838
	E-mail: FSBVinfo@fugro.com
	Trade Register Nr: 34070322 / VAT Nr:005621409B11
	Thanet Offshore Wind Limited
	clo Vattenfall Offshore Wind Power
	1't Floor
	1 Tudor Street
	London
	EC4Y OAH

0	Final Issue	C. Chalut-Natal	G.Bais	P-P. Lebbink	03 April 2016
1	Issue for Approval	C. Chalut-Natal	G.Bais	G.Bais	25 November 2016
Rev	Description	Prepared	Checked	Approved	Date

VATTENFALL WIND POWER LTD.
GEOPHYSICAL SITE SURVEY, UHR SEISMIC DATA PROCESSING REPORT

CONTENTS

1. UHR SEISMIC DATA ACQUISITION AND QC 1
1.1 Introduction 1
1.2 Data Quality Control 3
1.3 Acquisition Parameters 4
1.4 Source Receiver Offset 5
1.5 Source Stability 5
1.6 QC Processing Flow - Sparker data 6
1.6.1 Transcription 6
1.6.2 Near Trace Plot 6
1.6.3 Gain Recovery 6
1.6.4 Frequency Filter 6
1.6.5 Trace Editing 6
1.6.6 CMP Gather 6
1.6.7 Brute Velocity Analysis 6
1.6.8 NMO Correction 7
1.6.9 Front End Mute 7
1.6.10 Brute Stack 7
1.6.11 Noise Analysis 7
1.6.12 Processing Test 7
1.6.13 Navigation Merge 7
1.7 QC Processing Flow - Minigun Data 7
1.7.1 Transcription 7
1.7.2 Near Trace Plot 7
1.7.3 Gain Recovery 7
1.7.4 Frequency Filter 7
1.7.5 Trace Editing 8
1.7.6 CMP Gather 8
1.7.7 Brute Velocity Analysis 8
1.7.8 NMO Correction 8
1.7.9 Front End Mute 8
1.7.10 Brute Stack 8
1.7.11 Noise Analysis 8
1.7.12 Navigation Merge 8
2. UHR SEISMIC PROCESSING SUMMARY 9
2.1 Offshore Data Processing 9
2.2 Description of Sparker Data Processing 9
2.2.1 Transcription 9
2.2.2 Geometry Assignment and Trace Editing 9
2.2.3 Pre-processing 9
2.2.4 Denoising 9
2.2.5 Demultiple 10
2.2.6 Velocity Analysis 10
2.2.7 CMP Gather and Navigation Merging 10

VATTENFALL WIND POWER LTD.
 THANET EXTENSION OFFSHORE WIND FARM GEOPHYSICAL SITE SURVEY, UHR SEISMIC DATA PROCESSING REPORT

2.2.8 NMO Correction 10
2.2.9 Front End Mute 10
2.2.10 Stack 10
2.2.11 Deconvolution After Stack (DAS) 10
2.2.12 Filter 11
2.2.13 FX filter 11
2.2.14 Post-stack FK filter 11
2.2.15 Targeted Demultiple (Areas 2A and 2B) 11
2.2.16 Velocity Smoothed Field 11
2.2.17 Post-stack Kirchhoff Time Migration 11
2.2.18 Gabor Deconvolution 12
2.2.19 NLMEAN Random Noise Attenuation 12
2.2.20 Tides Correction and Final Statics 12
2.2.21 SEG-Y (True Amplitude) 12
2.2.22 SEG-Y (Equalized) 12
2.2.23 SEG-Y (Depth) 12
2.3 Description of Minigun Data Processing 13
2.3.1 Transcription 13
2.3.2 Geometry Assignment and Trace Editing 13
2.3.3 Pre-processing 13
2.3.4 Denoising 13
2.3.5 Residual Statics Corrections 13
2.3.6 Demultiple 14
2.3.7 Velocity Analysis 14
2.3.8 CMP Gather and Navigation Merging 14
2.3.9 NMO Correction 14
2.3.10 Front End Mute 14
2.3.11 Stack 14
2.3.12 Targeted Demultiple 14
2.3.13 FK Filter 15
2.3.14 Velocity Smoothed Field 15
2.3.15 Post-stack Kirchhoff Time Migration 15
2.3.16 Time Variant Filter 15
2.3.17 Tides Correction and Final Statics 15
2.3.18 SEG-Y (True Amplitude) 15
2.3.19 SEG-Y (Equalized) 15
2.3.20 Velocity Adjustment 15
2.3.21 SEG-Y (Depth) 16
2.4 Final Processing Sequence and Parameters 16
APPENDICES 20

APPENDICES
A. SPARKER NEAR TRACE: EXAMPLE OF A NEAR TRACE SECTION
B. SPARKER SHOT GATHERS FROM LINE 1_TS_01
C. STACKS OF SPARKER LINE 1_TS_01: PRE-STACK ROUTINES
D. VELOCITY ANALYSIS: EXAMPLE OF VELOCITY PICKING FOR SPARKER DATA
E. STACKS OF SPARKER LINE 1_TS_01: POST-STACK ROUTINES
F. DEPTH STACKS OF SPARKER LINE 1_TS_01
G. MINIGUN NEAR TRACE: EXAMPLE OF A NEAR TRACE SECTION
H. MINIGUN SHOT GATHERS FROM LINE M570
I. STACKS OF MINIGUN LINE M570: PRE-STACK ROUTINES
J. VELOCITY ANALYSIS: EXAMPLE OF VELOCITY PICKING
K. STACKS OF MINIGUN LINE M570: POST-STACK ROUTINES
L. DEPTH STACK OF MINIGUN LINE M570
M. FEATHER ANGLE COMPARISON
N. RESOLUTION: SPECTRAL ANALYSIS AND RESOLUTION ESTIMATION
O. UNCERTAINTIES EVALUATION ON INTERSECTIONS BETWEEN FINAL STACK IN DEPTH
P. QC LOGS
Q. OBSERVER LOG

TABLES

Table 1.1: Number of kilometres processed 2
Table 1.2: Seismic lines details 2
Table 1.3: Streamer depth and notch frequency 6
Table 2.1: Final processing sequence and parameters - Sparker data 17
Table 2.2: Front end mute 18
Table 2.3: Final processing sequence and parameters - Minigun data 18
Table 2.4: Front end mute for Minigun data 19
Table 2.5: Time variant band pass filter values for Minigun data 19
Table 2.6: SEG-Y binary headers 19

ABBREVIATIONS

AGC	Automatic Gain Controller
CDP	Common Depth Point
CMP	Common Middle Point
CVA	Claritas Velocity Analysis
DAS	Deconvolution After Stack
FFT	Fast Fourier Transform
LAT	Lowest Astronomical Tide
MBES	MultiBeam Echo Sounder
NMO	Normal Move Out
RMS	Root Mean Square
SRME	Surface Related Multiple Elimination
SVD	Single Value Decomposition
SWNA	Surface Wave Noise Attenuation
TFDN	Time-Frequency De-Noise
UHR	Ultra High Resolution

1. UHR SEISMIC DATA ACQUISITION AND QC

1.1 Introduction

The purpose of the Ultra High Resolution seismic survey is to provide interpretable seismic sections to show the thickness of the main geological formations and to locate any structural complexities or geohazards.

During the acquisition, strong tidal currents affected the data quality in all acquisition directions:

- Lines run into the current directions had low feather angle but the high speed through the water increased turbulence and noise on the streamer, inducing source and streamer instability;
- Lines run in the opposite current direction were less noisy but the feather angle was high;
- Lines run with lateral current presented very high feather angle and source and streamer instability.

For comparison, two lines, one with a low feather angle and the other with a high feather angle for both the sparker and the minigun data are shown in Appendix M .

For minigun data (Block 3, 4 and 5), the challenge was to fix the amplitude variation due to the difficulty of balancing the streamer, the attenuation of the long-period multiples mainly associated with the seafloor and the removal of the high vessel noise.

For sparker data (Block1, $2 A$ and $2 B$), the major processing challenges were the attenuation of the strong secondary bubbles produced by the source, the attenuation of the long-period and the removal of the high vessel noise.

Sparker systems have a reputation of generating long and complex seismic signatures due to secondary bubbles which are considered as short path multiple. Secondary bubbles generate destructive interference that can strongly attenuate amplitudes at some frequencies of particular interest and severely degrade the vertical resolution of the data. Therefore, one of the main aims of the processing was to reduce this multiple energy to boost the vertical resolution of the data and to increase the signal to noise ratio. To see this improvement in resolution produced by the processing, refer to Appendix E - Figure 0.10 to Figure 0.14 .

For both sparker and minigun data, elimination of multiple reflections was addressed with the SRME algorithm in the pre-stack phase and with a targeted demultiple (a combination of different routines) in the post-stack phase (refer to Appendix B- Figure 0.5 and Appendix C- Figure 0.8 to see the effects of the demultiple routines for Sparker data, refer to Appendix H - Figure 0.23 and Appendix I-Figure 0.27 for minigun data).

Vessel noise was greatly attenuated in the pre-stack phase with a combination of denoise routine as Time Frequency Denoise, Wavelet Denoise, surface wave attenuation and FK filter (refer to Appendix B - Figure 0.4 and C - Figure 0.7 for sparker data and refer to Appendix H-Figure 0.21 and Appendix I -Figure 0.25 for minigun data).

Time to depth conversion was done considering the entire dataset to minimise mismatches between sparker and minigun lines. Examples of intersections between lines of each block are presented in Appendix O and the shifts measured on different reflectors are reported in Appendix Table 1. Most part of the mismatches are lower than 1.5 m and the maximum values are lower than 2 m in depth, which confirms the data consistency between all lines. Higher mismatches are found at intersections between sparker and minigun lines. Indeed, sparker and minigun data are not directly comparable due to their different frequency content. There is a maximum mismatch of 2.5 m at an intersection between Sparker and minigun lines on a sea bed high.

213 lines were processed, for a total of 1058 km full fold (refer to Table 1.1). Orientation and spacing of the lines are given in the Table 1.2.

Table 1.1: Number of kilometres processed

Block	Number of km total	Number of km full fold)
1	336.07	331.75
2 A	29.32	28.21
2 B	288.44	284.26
3	256.91	254.32
4	88.89	87.04
5	73.59	72.23
Total	1073.22	1057.81

Table 1.2: Seismic lines details

Block / Source	Lines	Orientation	Number of lines	Spacing [m]
Block 1 / Sparker	Main lines	138°	27	100
		318°	27	
	Cross lines	48°	2	1000
		$228{ }^{\circ}$	4	
Block 2A / Sparker	Main lines	89°	8	100
		$269{ }^{\circ}$	5	
	Cross lines	48°	1	NA
		138°	1	
Block 2B / Sparker	Main lines	48°	23	100
		$228{ }^{\circ}$	27	
	Cross lines	$138{ }^{\circ}$	5	1000
		318	2	
Block 3 / Minigun	Main lines	138°	15	100
		318°	12	
	Cross lines	48°	5	1000
		$228{ }^{\circ}$	4	
Block 4 / Minigun	Main lines	93°	14	100
		273°	11	
	Cross lines	228°	1	NA

Block / Source	Lines	Orientation	Number of lines	Spacing [m]
Block 5 / Minigun	Main lines	17°	10	100
		197°	7	
	Cross lines		2	

1.2 Data Quality Control

At the beginning of the survey, pulse tests were performed for both sources. These tests are registered with a calibrated hydrophone and enable to check the conformity of the sources signatures with the manufacturer's signatures libraries.

The number of tips and the source power of the Sparker were tested during the first test lines to achieve the best trade-off between penetration and resolution. 360 tip and a source power of 600 J were chosen as the best values.

Streamer depth was also tested to obtain the best compromise between resolution and good signal to noise ratio. The chosen streamer depth was 0.5 m . For a detailed description of these values refer to the QC logs in Appendix P.

Streamer depth was monitored by three depth controllers, two of which were also compass birds. Streamer feather angles were regulated using the compass birds. This for two reasons: the shallow depth of the target and the short length of the streamer. Noise levels were checked at the start and at the end of all the lines. All the observations regarding feather angle, bird depths and noise levels were annotated on the observer and QC logs (refer to Appendix Q and P).

On board quality control of the UHR data was performed by experienced seismic processors utilising the CGG Uniseis seismic processing. Parameter tests (e.g. notch frequency analysis), noise analysis and preliminary processing were completed in order to produce a preliminary brute stack for each survey line (Figure 1.1).

Line 5_TG_07, neartrace ch. 2

www.fugro.com

Figure 1.1: Example of parameter test (notch frequency analysis)

1.3 Acquisition Parameters

The acquisition parameters for the Sparker UHR survey were as follows:

Sparker	GSO $540(360)$ tip sparker
Source tow depth	0.5 m
Source output energy	$600 / 800 \mathrm{~J}$
Shot point interval	1.56 m
Streamer	Geometrics GeoEel solid streamer
Streamer tow depth	0.5 m
Length active section	150 m
No. of Groups	48
Hydrophones per group	4
Group interval	3.125
Streamer sensitivity	$20 \mu \mathrm{~V} / \mu \mathrm{B}$
Record length	330 ms
Sampling interval	$0.250 \mathrm{~ms}(1 / 4 \mathrm{th})$
Lateral offset	5.1 m
Inline Offset	5.0 m

The acquisition parameters for the Minigun UHR survey were as follows:

Minigun	Sleeve gun 5 cu.in.
Source tow depth	0.75 m
Source output energy	5 Cu.in
Shot point interval	3.125 m
Streamer	Geometrics GeoEel solid streamer
Streamer tow depth	0.75 m
Length active section	150 m
No. of Groups	48
Hydrophones per group	4
Group interval	3.125
Streamer sensitivity	$20 \mu \mathrm{~V} / \mu \mathrm{B}$
Record length	330 ms
Sampling interval	$0.250 \mathrm{~ms} \mathrm{(1/4th)}$
Lateral offset	5.1 m
Inline Offset	5.0 m

1.4 Source Receiver Offset

In order to ensure reliable source-receiver geometry, offsets were carefully checked on the seismic data. This was done by measuring the first arrival times in the shot domain and converting the times to metres using the sound velocity profile data.

1.5 Source Stability

The stability, quality and amplitude of the source was evaluated during the onboard quality control process. These attributes are best exemplified in the shape of the first arrival wavelet (a visible pulse recorded of the event travelling directly through the water from the source array to the first trace). Each trace in a shot gather will record a first arrival. However, the direct wave gets distorted by the receiver ghost and by the merging of the first arrival and the water bottom event on the farther offsets. Therefore, the first trace of each shot is selected and displayed next to each other to produce a near trace section. On the near trace section the direct wave can be visually inspected to confirm the stability of the wavelet shape. Furthermore, the first arrival will always be recorded at the same time from shot to shot unless there is a change in the tow depth of the source or receiver cable.

The recorded wavelet of the sparker was stable in shape and quite stable in time throughout the whole survey showing the high quality repeatability of the source used. Indeed, the variations in time were due to the strong currents and the sea conditions.

The recorded minigun wavelet presented some variations in time for the same environmental conditions. At the beginning of the survey, the gun controller was not firing at a constant time rate inducing sharp lateral changes in the data. Residual static corrections were tested in the office during acquisition and the decision was made that the problem could be addressed by processing and that these lines were acceptable.

The source stability was also evaluated with the power spectrum of the first arrival and the water bottom reflection. A change in depth of the source or receiver will result in differences in the frequencies recorded. Some correspondences between streamer depth and notch frequency are given in Table 1.3.

Table 1.3: Streamer depth and notch frequency

Streamer depth (m)	Notch frequency (Hz)
0.2	3795
0.4	1898
0.7	1084
0.8	949

1.6 QC Processing Flow - Sparker data

1.6.1 Transcription

The field data were converted from SEG-D format to CGG Uniseis internal format.

1.6.2 Near Trace Plot

The near trace was plotted and checked carefully to determine if there is a timing problem.

An example of a near trace plot is given in Appendix A.

1.6.3 Gain Recovery

$\mathrm{A} \mathrm{T}^{2}$ amplitude gain recovery to correct seismic data for geometrical spreading was used.

1.6.4 Frequency Filter

A Butterworth shaped frequency filter was applied in order to limit the frequencies to the useful signal range. The optimal low cut and high cut values chosen were 150 Hz and 1800 Hz respectively.

1.6.5 Trace Editing

The data was inspected in the shot domain to assess the signal to noise ratio, noise types, and other types of issues. Missing shots and shots with dead traces were logged in order to help further processing. Channel 23 was spiky during the whole Thanet survey. A polarity check was performed on the first line of the survey; no reverted polarity was detected.

Examples of raw shot gather and shot gather after gain recovery and band pass filter are given in Appendix B- Figure 0.1 and Figure 0.2.

1.6.6 CMP Gather

Seismic data was sorted into 48 fold CMP gathers.

1.6.7 Brute Velocity Analysis

A brute velocity was picked in the middle of the first acquired line using a recorded water velocity of 1517 m/s.
1.6.8 NMO Correction

The CMP gathers were Normal Move Out (NMO) corrected using the Dix $2^{\text {nd }}$ order equation. Velocity picked in the previous step was used.

1.6.9 Front End Mute

A brute outer trace mute removed the regions of the CMP gather which suffered unacceptable NMO stretch.

1.6.10 Brute Stack

Stacking was performed using $1 / \sqrt{ } \mathrm{N}$ mute compensation.

1.6.11 Noise Analysis

For each trace, the Root Mean Square (RMS) amplitude was computed in the shot domain in a selected time window. A trapezoidal time window was chosen above the first arrival to assess the level of noise.

1.6.12 Processing Test

To better evaluate the data quality and the efficiency of processing, some routines were run for QC. Prestack routines as despiking, FK filter and deconvolution and post stack routine including migration help in rejecting or accepting the seismic lines.

1.6.13 Navigation Merge

When available, navigation data were merged with seismic data in order to determine potential navigation processing issues or missed shots.

1.7 QC Processing Flow - Minigun Data

1.7.1 Transcription

The field data were converted from SEG-D format to CGG Uniseis internal format.

1.7.2 Near Trace Plot

The near trace was plotted and checked carefully to determine if there is a timing problem.

An example of a near trace plot is given in Appendix G.

1.7.3 Gain Recovery

$\mathrm{A} \mathrm{T}^{2}$ amplitude gain recovery to correct seismic data for geometrical spreading was used.

1.7.4 Frequency Filter

A Butterworth shaped frequency filter was applied in order to limit the frequencies to the useful signal range. The optimal low cut and high cut values chosen were 40 Hz and 1800 Hz respectively.

1.7.5 Trace Editing

The data was inspected in the shot domain to assess the signal to noise ratio, noise types, and other types of issues. Missing shots and shots with dead traces were logged in order to help further processing. Channel 23 was spiky during the whole Thanet survey. A polarity check was performed on the first line of the survey; no reverted polarity was detected.

Examples of raw shot gather and shot gather after gain recovery and band pass filter are given in Appendix H - Figure 0.19 and Figure 0.20 .

1.7.6 CMP Gather

Seismic data was sorted into 24 fold CMP gathers.

1.7.7 Brute Velocity Analysis

A brute velocity was picked in the middle of the first acquired line using a recorded water velocity of $1517 \mathrm{~m} / \mathrm{s}$.

1.7.8 NMO Correction

The CMP gathers were Normal Move Out (NMO) corrected using the Dix $2^{\text {nd }}$ order equation. Velocity picked in the previous step was used.

1.7.9 Front End Mute

A brute outer trace mute removed the regions of the CMP gather which suffered unacceptable NMO stretch.

1.7.10 Brute Stack
 Stacking was performed using $1 / \sqrt{ } \mathrm{N}$ mute compensation.

1.7.11 Noise Analysis

For each trace, the Root Mean Square (RMS) amplitude was computed in the shot domain in a selected time window. A trapezoidal time window was chosen above the first arrival to assess the level of noise.

1.7.12 Navigation Merge

When available, navigation data were merged with seismic data in order to determine potential navigation processing issues or missed shots.

2. UHR SEISMIC PROCESSING SUMMARY

2.1 Offshore Data Processing

The UHR lines were processed in the Fugro Oceansismica Office in Rome, using the CGG Uniseis seismic processing package.

The processing flow was thoroughly tested to get the best improvement in the seismic data quality. Shot editing was initially carried out; several tests were done to choose the seismic processing parameters. At each new test stage, the data quality is analysed on both shots and stacks display.

2.2 Description of Sparker Data Processing

2.2.1 Transcription

Field data were converted to CGG Uniseis internal format.

2.2.2 Geometry Assignment and Trace Editing

Geometry assignment to traces was applied; bad shots and traces were omitted and dummy shots inserted where necessary.

2.2.3 Pre-processing

An amplitude gain recovery was applied to correct seismic data for geometrical spreading. A wide Butterworth band pass filter was applied to remove the low frequency swell noise.

2.2.4 Denoising

Time-Frequency De-Noise (TFDN) was applied to reduce swell noise and other kinds of noise in the shot gathers. TFDN works by transforming a number of traces in a short sliding time window to the frequency domain. In this window and working on single frequencies at a time it computes an attribute value (median, low quartile etc.) of the spectral amplitude. If any frequency component in a given trace is larger than a threshold (defined as a fraction of the computed attribute), TFDN attenuates the anomalous amplitude at that frequency, in the current trace under investigation, to the level of the threshold attribute.

FK filtering is often used to remove linear coherent noise because data with different dips in the TX domain maps in different regions of the FK domain. The data is transformed from the TX to the FK domain with a 2D Fast Fourier Transform (FFT). Before the transformation the data is expanded (the number of traces and the number of samples are both rounded up to a greater power of two), a necessity for the FFT. A filter is constructed in the FK Domain selecting zones which are to be passed or rejected. In this case, polygons were picked to delimit the area containing the dipping noise to be rejected. After muting, the data is inverse transformed in the TX domain.

To attenuate coherent noise a Surface Wave Noise Attenuation (SWNA) routine was also applied. The method is basically an averaging of samples from adjacent traces at each temporal frequency.

To attenuate random and coherent noise a surgical mute was applied in the wavelet domain. A variation on the Discrete Wavelet transform called a Stationary Wavelet transform was used to convert the data in the wavelet domain

To remove spikes an automatic trace editing routine (despike) was applied. This routine despikes zeroes in trace windows which have an abnormal peak-to-median or a mean which lies outside a specified standard deviation.

Time-Frequency De-Noise (TFDN) was also applied to reduce swell noise and other kind of noise in the common offset domain. An example of denoise effects can be seen in Appendix C - Figure 0.7.

2.2.5 Demultiple

To reduce multiple energy, SRME (Surface Related Multiple Elimination) was carried out. SRME uses the geometry of shot recording to estimate all possible multiples that can be generated by the surface. Before evaluating the multiple model, the recorded data was extrapolated to zero offset and a mute was applied to the input shot records to remove direct arrival and guided wave energy. The predicted multiples energy was removed from the input gathers with a double adaptive matching algorithm, the first done in the offset plain domain and the second in the shot domain. Before adaptive subtraction, the modelled multiples were NMO corrected and any energy above the first seafloor multiple was removed by muting. An example of demultiple effects can be seen in Appendix C - Figure 0.8.

2.2.6 Velocity Analysis

Seismic velocities were picked every 500 m using Uniseis Interactive Velocity Analysis (MGIVA) package. Velocity analysis included semblance displays, interactive gather and stack, constant velocity stack panels and full line stacks showing the location of the pickings (refer to Appendix D Figure 0.9).

2.2.7 CMP Gather and Navigation Merging

Seismic data were sorted into 48 fold CMP gathers and merged with navigation.

2.2.8 NMO Correction

The CMP gathers were NMO corrected using the Dix $2^{\text {nd }}$ order equation. The velocity picked in the previous step was used.

2.2.9 Front End Mute

An outer trace mute was applied to remove the regions of the CMP gather which suffered unacceptable NMO stretch. A single mute profile was used for all the lines.

2.2.10 Stack

Stacking was performed using $1 / \sqrt{ } \mathrm{N}$ compensation, where N is the actual fold of stack at some particular time in the section ($1<\mathrm{N}<\mathrm{MAXFOLD}$).

2.2.11 Deconvolution After Stack (DAS)

For spiking or predictive deconvolution the Wiener-Levinson algorithm is applied to the autocorrelation of the derivation window to produce a time domain operator which will be either spiking or predictive, depending on the specified operator and gap length. Then, the operator is convolved with the original trace in the time-domain. Operator and gap lengths were chosen to produce a spiking time domain operator to remove Sparker secondary bubbles and therefore to enhance the vertical resolution. Four
operators were used to account for the signal variation with time and two successive DAS were applied (refer to Appendix E - Figure 0.11).

2.2.12 Filter

A Butterworth band pass filter was applied to remove extra noise.

2.2.13 FX filter

FX Deconvolution is a process designed to effectively attenuate random noise by prediction of the non-random signal content in a seismic trace. Events with similar dips appear as a sinusoidal complex signal along a given frequency slice, and are therefore predictable. For each frequency in the transforms, an optimum deconvolution operator is used to predict the next trace in the sequence. Any difference between the predicted waveform and the actual one can be classified as noise, and removed.

2.2.14 Post-stack FK filter

FK filtering is often used to remove linear coherent noise because data with different dips in the TX domain maps in different regions of the FK domain. The data is transformed from the TX to the FK domain with a 2D Fast Fourier Transform (FFT). Before the transformation the data is expanded (the number of traces and the number of samples are both rounded up to a greater power of two), a necessity for the FFT. A filter is constructed in the FK Domain selecting zones which are to be passed or rejected. In this case, polygons were picked to delimit the area containing the dipping noise to be rejected. After muting the data is inverse transformed in the TX domain.

Refer to Appendix E - Figure 0.12 for stack after FX and FK filters.

2.2.15 Targeted Demultiple (Areas 2A and 2B)

Single Value Decomposition (SVD) was used to remove the first and second order water-bottom multiple residual energy. SVD is a powerful tool for detecting laterally coherent signals in multi trace recordings. It constructs an orthogonal (data dependent) set of directions ordered according to the degree of variance they witness. These directions form the basis elements for a transform called a Karhunen-Loeve transform.

2.2.16 Velocity Smoothed Field

A smoothed velocity field derived from picked velocities was used for migration. Spatial smoothing of velocity fields was performed by blending the field at each control position with contributions from its neighbours. The neighbouring contributions are down weighted by an inverse radial distance scheme.

2.2.17 Post-stack Kirchhoff Time Migration

To collapse diffractions and move reflectors to their true subsurface position a post-stack Kirchhoff time migration was applied. A spherical spreading factor of $1 /($ root TV squared) was applied before summation. A wavelet shaping factor was applied to correct distortions of the amplitude and the phase spectra introduced by the summation. An Obliquity factor was applied to take in account the angle dependency of amplitudes (refer to Appendix E - Figure 0.13).

2.2.18 Gabor Deconvolution

The Gabor transform is a short window Fourier transform that allows a time-frequency representation of the time domain seismic trace. The signal is first multiplied by a Gaussian function and the output function is then transformed with a Fourier transform. The deconvolution process itself is implemented as a time-frequency domain spectral division based on the Gabor transform. An average deconvolution operator is derived from the Gabor spectrum and applied for the whole ensemble.

2.2.19 NLMEAN Random Noise Attenuation

The method is based on the redundancy present in the data. Each seismic sample is replaced by the weighted average of all the other samples in a window. The weight of each sample in the average is dependent on the similarity between the neighbourhoods of the considered samples, regardless of proximity. This makes the average non local.

Refer to Appendix E - Figure 0.14 for stack after Gabor deconvolution and random noise attenuation.

2.2.20 Tides Correction and Final Statics

Time shifts were applied to correct for the tidal effect. Tide corrections derived from static shifts were applied to match the multibeam water bottom which was vertically referenced to the Lowest Astronomical Tide (LAT). From the P1/90, this water bottom was imported in the seismic stack as a horizon, and then a shift was applied to obtain the best match between seismic water bottom and MultiBeam Echo Sounder (MBES) water bottom for the overall line.

2.2.21 SEG-Y (True Amplitude)

True Amplitude migrated SEG-Y outputs were performed with a standard 3200 byte EBCDIC textual header which contains the recording data and processing flow.

2.2.22 SEG-Y (Equalized)

Automatic Gain Controller (AGC) Equalization was applied to balance the final section. To equalize the section a time window was slid sample-by-sample to derive the "amplitude model" for the traces. To avoid the problem of large amplitude events casting shadows over adjacent weaker events, two different length AGC windows were used. At any sample, the model trace was derived from whichever model gave the greater value. Furthermore, the original character of the section is often lost because noise is equalised to the same level as coherent signal. The equalisation has no respect for any signal "stand-out". To solve this problem, a percentage of equalisation was defined and applied. SEG-Y outputs were performed with a standard 3200 byte EBCDIC textual header which contains the recording data and processing flow. True amplitude sections are preferred for interpretation. (Refer to Appendix E - Figure 0.16 for equalized section).

2.2.23 SEG-Y (Depth)

Data was converted from the time to the depth domain using the smoothed velocity field derived from pickings. . For each line the true Amplitude migrated section was output using a standard 3200 byte EBCDIC textual header which contains the recording data and processing flow.

2.3 Description of Minigun Data Processing

2.3.1 Transcription

Field data were converted to CGG Uniseis internal format.

2.3.2 Geometry Assignment and Trace Editing

Geometry assignment to traces was applied; bad shots and traces were omitted and dummy shots inserted where necessary.

2.3.3 Pre-processing

An amplitude gain recovery was applied to correct seismic data for geometrical spreading. A wide Butterworth band pass filter was applied to remove the low frequency swell noise.

2.3.4 Denoising

Time-Frequency De-Noise (TFDN) was applied to reduce swell noise and other kind of noise in the shot gathers. TFDN works by transforming a number of traces in a short sliding time window to the frequency domain. In this window and working on single frequencies at a time it computes an attribute value (median, low quartile etc.) of the spectral amplitude. If any frequency component in a given trace is larger than a threshold (defined as a fraction of the computed attribute), TFDN attenuates the anomalous amplitude at that frequency, in the current trace under investigation, to the level of the threshold attribute.

To remove spikes an automatic trace editing routine (despike) was applied. This routine despikes zeroes in trace windows which have an abnormal peak-to-median or a mean which lies outside a specified standard deviation.

To attenuate coherent noise a Surface Wave Noise Attenuation (SWNA) routine was also applied. The method is basically an averaging of samples from adjacent traces at each temporal frequency.

An example of denoise effects can be seen in Appendix I - Figure 0.25.

2.3.5 Residual Statics Corrections

A combination of two routines has been used to compensate the source firing variation.

NEBULA computes statics based on summed cross-correlations at source and receiver location. It uses a pilot trace constructed at each CDP using a weighted mix of stacked traces or input from an external stack data set. Input CDP must be NMO corrected and muted. Cross-correlations of the pilot trace with traces in the respective CDP gather are summed into buffers for each source and receiver station number before being resampled and picked to derive a static values that are output to disk files and then applied to seismic data.

PASTA is an automatic residual statics programme which applies static shifts to traces on a CDPconsistent basis, using cross-correlations of NMO-corrected CDP gather traces with a CDP pilot trace for each depth point.

An example of data after residual statics correction effects can be seen in Appendix I.

2.3.6 Demultiple

To reduce multiple energy, SRME (Surface Related Multiple Elimination) was carried out. SRME uses the geometry of shot recording to estimate all possible multiples that can be generated by the surface. Before evaluating the multiple model, the recorded data was extrapolated to zero offset and a mute was applied to the input shot records to remove direct arrival and guided wave energy. The predicted multiples energy was removed from the input gathers with a double adaptive matching algorithm, the first done in the offset plain domain and the second in the shot domain. Before adaptive subtraction, the modelled multiples were NMO corrected and any energy above the first seafloor multiple was removed by muting. An example of demultiple effects can be seen in Appendix I - Figure 0.27.

2.3.7 Velocity Analysis

Seismic velocities were picked every 500 m using Uniseis Interactive Velocity Analysis (MGIVA) package. Velocity analysis included semblance displays, interactive gather and stack, constant velocity stack panels and full line stacks showing the location of the pickings (refer to Appendix J Figure 0.28).

2.3.8 CMP Gather and Navigation Merging

Seismic data were sorted into 24 fold CMP gathers and merged with navigation.

2.3.9 NMO Correction

The CMP gathers were NMO corrected using the Dix $2^{\text {nd }}$ order equation. The velocity picked in the previous step was used.

2.3.10 Front End Mute

An outer trace mute was applied to remove the regions of the CMP gather which suffered unacceptable NMO stretch. A single mute profile was used for all the lines.

2.3.11 Stack

Stacking was performed using $1 / \sqrt{ } \mathrm{N}$ compensation, where N is the actual fold of stack at some particular time in the section ($1<\mathrm{N}<$ MAXFOLD).

2.3.12 Targeted Demultiple

Single Value Decomposition (SVD) was used to remove the first and second order water-bottom multiple residual energy. SVD is a powerful tool for detecting laterally coherent signals in multi trace recordings. It constructs an orthogonal (data dependent) set of directions ordered according to the degree of variance they witness. These directions form the basis elements for a transform called a Karhunen-Loeve transform (refer to Appendix K - Figure 0.30).

2.3.13 FK Filter

FK filtering is often used to remove linear coherent noise because data with different dips in the TX domain maps in different regions of the FK domain. A tapered fan shaped filter was applied to the data in the F-K domain with rejected data outside of the fan (refer to Appendix K - Figure 0.31).

2.3.14 Velocity Smoothed Field

A smoothed velocity field derived from picked velocities was used for migration. Spatial smoothing of velocity fields was performed by blending the field at each control position with contributions from its neighbours. The neighbouring contributions are down weighted by an inverse radial distance scheme.

2.3.15 Post-stack Kirchhoff Time Migration

To collapse diffractions and move reflectors to their true subsurface position a post-stack Kirchhoff time migration was applied. A spherical spreading factor of $1 /($ root TV squared) was applied before summation. A wavelet shaping factor was applied to correct distortions of the amplitude and the phase spectra introduced by the summation. An Obliquity factor was applied to take in account the angle dependency of amplitudes (refer to Appendix K - Figure 0.32).

2.3.16 Time Variant Filter

A Time Variant Butterworth shaped frequency filter was applied to enhance the signal to noise ratio of the final stack. Different windows and high cut / low cut values were tested in order to ensure the best results with minimum loss of information. Amplitude decay was analysed and a final gain function was applied (refer to Appendix K - Figure 0.33).

2.3.17 Tides Correction and Final Statics

Time shifts were applied to correct for the tidal effect. Static shifts were applied to match the multibeam water bottom which was vertically referenced to the Lowest Astronomical Tide (LAT). From the P1/90, this water bottom was imported in the seismic stack as a horizon, and then a shift was applied to obtain the best match between seismic water bottom and MultiBeam Echo Sounder (MBES) water bottom for the overall line.

2.3.18 SEG-Y (True Amplitude)

True Amplitude migrated SEG-Y outputs were performed with a standard 3200 byte EBCDIC textual header which contains the recording data and processing flow.

2.3.19 SEG-Y (Equalized)

Automatic Gain Controller (AGC) Equalization was applied to balance the final section. To equalize the section a time window was slid sample-by-sample to derive the "amplitude model" for the traces. SEG-Y outputs were performed with a standard 3200 byte EBCDIC textual header which contains the recording data and processing flow. True amplitude sections are anyway preferred for interpretation (refer to Appendix K -Figure 0.35 for equalized section).

2.3.20 Velocity Adjustment

The stacking smoothed velocities were used to perform the time to depth conversion. These time to depth conversion velocities could not be calibrated on stratigraphy as no information was available on
the depth in the survey area. As sparker data are more reliable at the depth of interest (shallower part) the decision was made to adjust the velocities of the minigun data in order to reduce the discrepancies at the intersection between sparker and minigun depth sections. So a variation on the previously smoothed velocities was applied, as a percentage of the original velocity.

2.3.21 SEG-Y (Depth)

Data was converted from the time to the depth domain using the smoothed velocity field derived from pickings. For each line the true amplitude migrated section was output using a standard 3200 byte EBCDIC textual header which contains the recording data and processing flow. An example of final sections can be seen in Appendix L - Figure 0.36.

2.4 Final Processing Sequence and Parameters

Table 2.1 to
Table 2.5 indicate the main parameters and the final processing sequence used to process the UHR data.

VATTENFALL WIND POWER LTD.
THANET EXTENSION OFFSHORE WIND FARM
GEOPHYSICAL SITE SURVEY, UHR SEISMIC DATA PROCESSING REPORT

Table 2.1: Final processing sequence and parameters - Sparker data

Transcription	From SEG-D to CGG Uniseis internal format.
Static correction for instrumental delay	22 ms
Geometry assignment and Traces Edit	
Geometrical divergence correction	T^{2} amplitude gain recovery
Band Pass Filter	$18 \mathrm{~dB} /$ Oct, $40 \mathrm{~Hz}-1800 \mathrm{~Hz}, 53 \mathrm{~dB} / \mathrm{Oct}$
Time Frequency Denoise (TFDN) - pass 1	0 to 1800 Hz ; Application from 100 ms to 320 ms ; Attribute $=$ Median; Threshold $=4$ * Median
Time Frequency Denoise (TFDN) - pass 2	0 to 100 Hz ; Application from 0 ms to 320 ms ; Attribute = Lower Quartile (LQT); Threshold = 4 * LQT
FK Filter	Polygon muting in the FK domain
Surface Wave Noise Attenuation (SWNA)	Surface velocity 2000 m/s
WAVlet DeNoise (WAVDN)	
Despike	
Time Freqeuncy Denoise in Common offset domain	0 to 1800 Hz ; Application from 80 ms to 320 ms ; Attribute $=$ Median; Threshold $=4$ * Median
SRME	Extrapolation to zero offset; Time shift: 0 ms
Match in common offset domain	Filter length 20 ms ; Window length 100 ms
Match in shot domain	Filter length 20 ms ; Window length 100 ms
Velocity Analysis	every 500 m
Velocity smoothed field	Weight $=1 / r^{\wedge} 0.1$ ($r=$ radial distance) Search radial distance $=2000 \mathrm{~m}$
CMP sorting \& Navigation Assignment	48 fold
NMO Correction	Dix $2^{\text {nd }}$ Order
Front End Mute	A single mute for all lines - see Table 2.2
Stack	1/Root N compensation
Deconvolution After Stack (DAS)	4 operators / trace Operator 5 ms , Gap 2.4 ms Definition window 30-100 ms Application time 30 ms Operator 5 ms , Gap 2.4 ms Definition window 70-100 ms Application time 80 ms Operator 5 ms , Gap 2.5 ms Definition window $150-250 \mathrm{~ms}$ Application time 160 ms Operator 5 ms , Gap 4 ms Definition window 200-300 ms Application time 220 ms
Deconvolution After Stack (DAS)	1 operator / trace Operator 7.55 ms , Gap 2.25 ms Definition window 20-63 ms Application time 30 ms
Band Pass filter	$18 \mathrm{~dB} /$ Oct, $200 \mathrm{~Hz}-1500 \mathrm{~Hz}, 53 \mathrm{~dB} /$ Oct
FX Filter	
FK Filter	Polygon muting in the FK domain
Targeted Demultiple (Areas 2A and 2B)	Single Value Decomposition
Post stack Kirchhoff migration	180 traces half-aperture; No velocity variation
Gabor deconvolution (GABOR)	
Non Local Mean (NLMEAN)	
Tide Corrections and Static Shifts	Vertical reference to LAT
SEG-Y (True Amplitude)	Migrated True Amplitude
SEG-Y (Equalized)	AGC parameters: Major derivation window length: 200 ms Minor derivation window length: 15 ms Percentage of equalisation: 30
SEG-Y (Depth)	Migrated True Amplitude

Details about position of shot point and CDP numbers and their coordinates in the SEG-Y headers are given in Table 2.6.

Table 2.2: Front end mute

Offset (m)	Time (ms)	Offset (m)	Time (ms)
7	18	90	90
37	32	111	118
46	38	139	153
58	53	152	171
71	71		

Table 2.3: Final processing sequence and parameters - Minigun data

Transcription	From SEG-D to CGG Uniseis internal format.
Static correction for instrumental delay	4 ms
Geometry assignment and Traces Edit	
Geometrical divergence correction	T^{2} amplitude gain recovery
Band Pass Filter	$18 \mathrm{~dB} /$ Oct, $40 \mathrm{~Hz}-1800 \mathrm{~Hz}, 53 \mathrm{~dB} / \mathrm{Oct}$
Time Frequency Denoise (TFDN) - pass 1	0 to 100 Hz ; Application from 0 ms to $300 / 330 \mathrm{~ms}$; Attribute = Lower Quartile (LQT); Threshold $=4$ * LQT
Time Frequency Denoise (TFDN) - pass 2	0 to 120 Hz ; Application from 180 ms to $300 / 330 \mathrm{~ms}$; Attribute $=$ Lower Quartile (LQT); Threshold $=4$ * LQT
Surface Wave Noise Attenuation (SWNA)	Surface velocity 2000 m/s
WAVlet DeNoise (WAVDN)	
Despike	
NEBULA	
PASTA	
SRME	Extrapolation to zero offset; Time shift: 0 ms
Match in common offset domain	Filter length 5 ms ; Window length 30 ms
Match in shot domain	Filter length 5 ms ; Window length 30 ms
Velocity Analysis	every 500 m
Velocity smoothed field	Weight $=1 / r^{\wedge} 0.1$ ($r=$ radial distance) Search radial distance $=2000 \mathrm{~m}$
CMP sorting \& Navigation Assignment	24 fold
NMO Correction	Dix $2^{\text {nd }}$ Order
Front End Mute	Keyed on water bottom - see Table 2.4
Stack	1/Root N compensation
Targeted Demultiple (Areas 2A and 2B)	Single Value Decompostion
FX Filter (Blocks 3 and 4)	
FK Filter	+/-0.8 ms / trace
Targeted Demultiple	Single Value Decompostion
Post stack Kirchhoff migration	180 traces half-aperture; No velocity variation
Time Variamt band Pass Filter	see Table 2.5
Tide Corrections and Static Shifts	Vertical reference to LAT
SEG-Y (True Amplitude)	Migrated True Amplitude
SEG-Y (Equalized)	AGC Derivation window 100 ms
Velocity variation	$100 \mathrm{~ms}-91 \%$, 200 ms - 94\%, 330 ms -101\%
SEG-Y (Depth)	Migrated True Amplitude

Details about position of shot point and CDP numbers and their coordinates in the SEG-Y headers are given in Table 2.6.

Table 2.4: Front end mute for Minigun data

Trace	Time (ms)	Trace	Time (ms)	Trace	Time (ms)
Water bottom $\mathbf{2 6} \mathbf{~ m s}$		Water bottom $\mathbf{5 3} \mathbf{~ m s}$		Water bottom $\mathbf{6 9} \mathbf{~ m s}$	
1	22	1	49	1	65
11	22	11	50	15	65
19	45	23	86	21	86
35	72	35	101	27	101
47	121	47	129	47	120

Table 2.5: Time variant band pass filter values for Minigun data

Low-cut slope (dB/octave)	Low-cut freq. $(\mathbf{H z})$	High-cut freq. $(\mathbf{H z})$	High-cut slope (dB/octave)	Start Application Time $(\mathbf{m s})$
13	50	750	48	0
13	40	550	48	110

Table 2.6: SEG-Y binary headers

Headers	Bytes
Shot point number	$17-20$
CDP number	$21-24$
CDP X coordinates	$73-76$ and $81-84$
CDP Y coordinates	$77-80$ and $85-88$

APPENDICES

A. SPARKER NEAR TRACE: EXAMPLE OF A NEAR TRACE SECTION
B. SPARKER SHOT GATHERS FROM LINE 1_TS_01
C. STACKS OF SPARKER LINE 1_TS_01: PRE-STACK ROUTINES
D. VELOCITY ANALYSIS: EXAMPLE OF VELOCITY PICKING FOR SPARKER DATA
E. STACKS OF SPARKER LINE 1_TS_01: POST-STACK ROUTINES
F. DEPTH STACKS OF SPARKER LINE 1_TS_01
G. MINIGUN NEAR TRACE: EXAMPLE OF A NEAR TRACE SECTION
H. MINIGUN SHOT GATHERS FROM LINE M570
I. STACKS OF MINIGUN LINE M570: PRE-STACK ROUTINES
J. VELOCITY ANALYSIS: EXAMPLE OF VELOCITY PICKING
K. STACKS OF MINIGUN LINE M570: POST-STACK ROUTINES
L. DEPTH STACK OF MINIGUN LINE M570
M. FEATHER ANGLE COMPARISON
N. RESOLUTION: SPECTRAL ANALYSIS AND RESOLUTION ESTIMATION
O. UNCERTAINTIES EVALUATION ON INTERSECTIONS BETWEEN FINAL STACK IN DEPTH
P. QC LOGS
Q. OBSERVER LOG
B. SPARKER SHOT GATHERS FROM LINE 1_TS_01

Figure 0.2: Sparker raw shots. Note the low frequency swell noise.

Figure 0.3: Sparker shots after editing phase. The band pass filter has removed the low frequency swell noise. The signal to noise ratio is very low, in particular note the high linear vessel noise at late times.

Figure 0.4: Sparker shots after denoise routines. Linear noise has been greatly reduced by the FK filtering.

Figure 0.5: Sparker shots after SRME

Figure 0.9: Line 1_TS_01 CDP Gather (left) - semblance (centre) - constant percentage velocity stack (right).
GEOPHYSICAL SITE SURVEY，UHR SEISMIC DATA PROCESSING REPORT

VATTENFALL WIND POWER LTD.

THANET EXTENSION OFFSHORE WIND FARM

H. MINIGUN SHOT GATHERS FROM LINE M570

Figure 0.19: Minigun raw shots

Figure 0.20: Minigun shots after edit

Figure 0.21: Minigun shots after denoise

Figure 0.22: Minigun shots after residual statics corrections - The routines are applied on the NMO-corrected and muted CDP gather, note the effect of the mute back in shot gathers.

Figure 0.23: Minigun after SRME

Figure 0.29: Stack after velocity picking
STACKS OF MINIGUN LINE M570: POST-STACK ROUTINES
K.
Figure 0.34: Brute stack for comparison with final stack
GEOPHYSICAL SITE SURVEY, UHR SEISMIC DATA PROCESSING REPORT

DEPTH STACK OF MINIGUN LINE M570

Figure 0.36: Final true amplitude depth section
GEOPHYSICAL SITE SURVEY, UHR SEISMIC DATA PROCESSING REPORT

GEOPHYSICAL SITE SURVEY, UHR SEISMIC DATA PROCESSING REPORT

Figure 0.40: Minigun line 3 TG_24 - Final Stack - True Amplitude Migrated - Feather angle 19 S.

N. RESOLUTION: SPECTRAL ANALYSIS AND RESOLUTION ESTIMATION

P wave Velocity (m / s)	1600	2700	1600	2700
Frequence (Hz)	313	313	188	188
Lamda (m)	5,1	8,6	8,5	14,4
Lambda/4 (m)	1,3	2,2	2,1	3,6

Figure 0.41: Resolution spectral analysis for minigun data.

P wave Velocity (m / s)	1600	2700	1600	2700
Frequence (Hz)	563	563	469	469
Lamda (m)	2,8	4,8	3,4	5,7
Lambda/4 (m)	0,7	1,2	0,9	1,4

Figure 0.42: Resolution spectral analysis for sparker data.
VATTENFALL WIND POWER LTD.
GEOPHYSICAL SITE SURVEY, UHR SEISMIC DATA PROCESSING REPORT
Appendix Table 1: Intersections mismatch

Appendix Table 1: Intersections mismatch							
Intersections	Depth of obs. 1 (m)	Mismatch I (m)	Depth of obs. II (m)	Mismatch II (m)	Depth of obs. III (m)	Mismatch III (m)	Note
1_TS_01-2A_TS_06	22	0	50	<0.5	155	<1	Sparker
2A_TS_06-2B_TS_01_F	23	0	50	<1.5	150	<1.5	Sparker
2B_TS_01_F-3_TG_02	18	<0.5	53	<1	155	<1	Sparker-Minigun: difference in amplitude
3_TG_02-4_TG_01_A	17	<0.5	95	<0.5	157	<1.5	Minigun
4_TG_01_A-M570	46	<1	58	<1	158	<2	Minigun
M570-1_TS_01	44	<2.5	58	<0.5	150	<1.5	Minigun - sparker, intersection on water bottom high

P. QC LOGS
FUGRO OCEANSISMICA S.p.A.
DIGITAL SEISMIC DATA QC LOG

FUGRO OCEANSISMICA S.p.A.
DIGITAL SEISMIC DATA QC LOG

FUGRO OCEANSISMICA S.p.A.
DIGITAL SEISMIC DATA QC LOG

FUGRO OCEANSISMICA S.p.A.
DIGITAL SEISMIC DATA QC LOG

FUGRO OCEANSISMICA S.p.A.
DIGITAL SEISMIC DATA QC LOG

FUGRO OCEANSISMIICA S.p.A.
DIGITAL SEISMIC DATA QC LOG

FUGRO OCEANSISMICA S.p.A.
DIGITAL SEISMIC DATA QC LOG

Inline Offset (to center first group) 5 m , Lateral offset 5.1 m , Water velocity $1517 \mathrm{~m} / \mathrm{s}$
Geometrics solid 48 channels, Group Int 3.125, Streamer Depth 0.75 m

Geometrics GeoEI, Record Length 300 ms Sample Rate 0.25 ms ., System Delay 4 ms .

$99-1149$
$99-913$
$99-1113$
$99-973$

$99-1038$
$99-2560$
$1999-4424$
$99-766$
99

3_TG_XL_03 \quad| | | 100 | 1148 | |
| :--- | :--- | :--- | :--- | :--- |

3_TG_XL_02

世
\vdots
\vdots
\vdots
\vdots

N_{1}
0_{1}
σ_{1}
σ^{2}
4_TG_09

3_TG_07_A
FUGRO OCEANSISMICA S.p.A.
DIGITAL SEISMIC DATA QC LOG

Sleave Guns 5 Cu in, Gun Depth 0.75 m , Shot Int 3.125 .
Inline Offset (to center first group) 5 m , Lateral offset 5.1 m , Water velocity $1517 \mathrm{~m} / \mathrm{s}$
Geometrics solid 48 channels, Group Int 3.125, Streamer Depth 0.75 m
IMPORTANT NOTES:
2. Some lines had been re-run up to three or even four times; still without being able to improve significantly on the data quality. Realistically there is no point in continuing these re-runs

M570			100	3434	$196{ }^{\circ}$	99-3435	14.00	23.00	0.3	1.5	4P	A	Bad shot 2228,2229. Noisy around 2580. 2229 extrashot. Swell noise worsening of the weather at EOL
5_TG_16			100	1484	17°	99-1485	15.10	8.80	0.5	2.6	8P	A	far channels out of specs through the line. Strong currents from behind
5_TG_14			100	1536	17°	99-1537	20.40	13.20	0.2	1.9	3P	M	Strong current, streamer not balanced in the second half of the line. Accepet after discussion with the office
5_TG_09			100	1654	197°	99-1565	22.5	14.9	0.3	1.4	12P	A	109 extrashot, 110 bad shot. Noisy due to currents
5_TG_12			100	1578	17°	99-1579	17.9	23.2	0.2	1.3	6 S	A	Noise from astern around 600. 823 extrashot, 824 bad shot. Noisy due to weather
5_TG_07			100	1710	197°	99-1711	17.4	15.1	0.4	1.0	11P	A	146 extrashot, 147 bad shot. Far channels not balanced through the line, currents from behind
5_TG_10			100	1620	17°	99-1621	22.8	18	0.1	1.2	2S/2P	M	Poor streamer balancing due to currents and seastate. Noisy, spiky. Accepted after discussion with the office
5_TG_08			100	1652	17°	99-1659	-	30.4	0.4	1.2	12P	M	193 extrashot, 194 bad shot. 378 extrashot, 379 bad shot. Very noisy through the line due to weather. Accepted after discussion with the office.
5_TG_05			100	763	17°	99-764	19.6	14.1	0.4	1.3	6.25	A	Noisy due to weather. Streamer not balanced especially on the far channels.
5_TG_04			100	672	197°	99-673	19.2	17.9	0.4	1.0	2.25	A	Noisy due to weather
5_TG_01			100	405	197°	99-406	17.9	14.2	0.2	1.2	1 P	A	Some slight blanking. Noise due to weather
gun controller replacement													
5_TG_15_D			4000	5447		3999-5448	13.00	13.50	0.4	1.6	6 S	A	46074881 missfire
5_TG_11_D			4000	5549		3999-5550	31.00	20.00	0.4	1.3	4P	A	48415516 missfire, 5072 bad shott
5_TG_13_E			5000	6494		4999-6495	16.00	-	0.5	1.2	9 S	A	6231 missfire
5_TG_03_B			2000	2484		1999-2485	16.00	18.00	0.3	1.5	10P	A	noisy due to strong currant and poor seastate. Best possible result
5_TG_06_C			3000	3753		2999-3755	33.00	21.00	0.3	1.3	6 S	A	3084 bad shot. 3364 missfire
5_TG_XL_01			100	1216		99-1217	23.00	14.00	0.3	1.1	18 S	A	Hifg FA, starting from 12
5_TG_02_C			3000	3395		2999-3395	17.00	16.00	0.5	1.0	10P	A	lost fix 3072
5_TG_XL_02_B			2000	2396		1999-2397	11.50	15.00	0.4	1.2	12P	A	2061 missfire

