

East Anglia TWO Offshore Windfarm

Habitat Regulations Assessment

Appendix 2 – Information to Support AA Report - Screening Matrices (Clean)

Applicant: East Anglia TWO Limited Document Reference: 5.3.2 SPR Reference: EA2-DWF-ENV-REP-IBR-000932_002 Pursuant to APFP Regulation: 5(2)(g)

Author: Royal HaskoningDHV Date: 2nd November 2020 Revision: Version 02

Applicable to East Anglia TWO

Revision Summary						
Rev Date Prepared by Checked by Approved by						
001	08/10/2019	Paolo Pizzolla	Julia Bolton	Helen Walker		
002	02/11/2020	Paolo Pizzolla	Lesley Jamieson	Rich Morris		

Description of Revisions					
Rev	Page	Section	Description		
001	n/a	n/a	Final for Submission		
002	n/a	n/a	Final for Submission following Exa Qs 1.2.3		

Glossary of Acronyms

AA	Appropriate Assessment
APP	Application Document
EIA	Environmental Impact Assessment
EMF	Electromagnetic Field
HRA	Habitats Regulations Assessment
LSE	Likely Significant Effect
SAC	Special Area of Conservation
SCI	Site of Community Importance
SPA	Special Protection Area

Glossary of Terminology

Applicant	East Anglia TWO Limited.
East Anglia TWO project	The proposed project consisting of up to 75 wind turbines, up to four offshore electrical platforms, up to one construction, operation and maintenance platform, inter-array cables, platform link cables, up to one operational meteorological mast, up to two offshore export cables, fibre optic cables, landfall infrastructure, onshore cables and ducts, onshore substation, and National Grid infrastructure.
East Anglia TWO windfarm site	The offshore area within which wind turbines and offshore platforms will be located.
European site	Sites designated for nature conservation under the Habitats Directive and Birds Directive, as defined in regulation 8 of the Conservation of Habitats and Species Regulations 2017 and regulation 18 of the Conservation of Offshore Marine Habitats and Species Regulations 2017. These include candidate Special Areas of Conservation, Sites of Community Importance, Special Areas of Conservation and Special Protection Areas.
Evidence Plan Process (EPP)	A voluntary consultation process with specialist stakeholders to agree the approach to the EIA and the information required to support HRA.
Natura 2000 site	A site forming part of the network of sites made up of Special Areas of Conservation and Special Protection Areas designated respectively under the Habitats Directive and Birds Directive.
Offshore cable corridor	This is the area which will contain the offshore export cables between offshore electrical platforms and landfall.
Offshore development area	The East Anglia TWO windfarm site and offshore cable corridor (up to Mean High Water Springs).
Offshore export cables	The cables which would bring electricity from the offshore electrical platforms to the landfall. These cables will include fibre optic cables.
Offshore infrastructure	All of the offshore infrastructure including wind turbines, platforms, and cables.

Table of Contents

1	Introduction	1
2	Screening Matrices	2
2.1	Effects Considered	2
2.2	Sites Considered	3
2.3	Assessment of potential effects	16

1 Introduction

- 1. This document provides the Information to Support Appropriate Assessment Report screening matrices for the proposed East Anglia TWO project. The matrices summarise information provided in *Appendix 1* (Offshore Habitats Regulations Assessment (HRA) Screening) of the Information to Support Appropriate Assessment (AA) report (document reference 5.3).
- 2. For Deadline 1 this document has been revised to address the following:
 - A request from the Examining Authority to include the following sites that were missing from the Screening Matrices submitted with the application (Question 1.2.3):
 - Plymouth Sound and Estuaries Special Area of Conservation (SAC)
 - o Severn Estuary SAC
 - River Avon SAC
 - Havet Omkring Nordre Ronner (SAC or Special Protection Area (SPA) not stated)
 - Knudegrund SAC
 - Lønstrup Rødgrund SAC
 - Sandbanker ud for Thorsminde SAC
 - Sandbanker ud for Thyboron SAC
 - Thyboron Stenvolde Site of Community Importance (SCI)
 - o Littoral Cauchois SAC
 - Panache De La Gironde Et Plateau Rocheux De Cordouan (Système Pertuis Gironde) SAC
 - o Pertuis Charentais SAC
 - o Mühlenberger Loch SPA
 - o SchleswigHolsteinisches Elbastuar und angrenzende Flachen SAC
 - Unterelbe SCI
 - Saxa Water SPA and Ramsar site (this was a typographic error in the HRA screening report (APP-044) and should be 'Hamford Water SPA and Ramsar site'. Hamford Water SPA and Ramsar site was excluded from the screening matrices in error and has now been included)
 - o Schleswig-Holsteinisches Elbastuar und angrenzende Flachen SAC

• Provide a revised version of the matrices with footnotes updated to include document and paragraph number references to the application materials where the evidence can be found (Question 1.2.4).

2 Screening Matrices

2.1 Effects Considered

3. Potential effects upon the European sites which are considered within the submitted Information to Support AA report are provided in *Table 2.1*.

Site Type	Feature(s)	Potential Effects						
SPA	All birds	Offshore effects:						
		Collision mortality						
		Displacement/Disturbance						
		Barrier effect						
		Cumulative/ In-combination						
		Onshore effects:						
		Direct effects within SPA boundary						
		Direct effects on ex-situ habitats						
		Indirect effects within SPA boundary						
		Indirect effects on ex-situ habitats						
SAC/SCI	Benthic habitats	 Permanent loss (and introduction of new sediment where applicable) 						
		Temporary physical disturbance						
		Smothering due to increased suspended sediment						
		Re- mobilisation of contaminated sediments						
		Underwater noise and vibration						
		Cumulative/ In-combination						
	Marine	Underwater noise						
	mammals	Vessel Interactions						
		Indirect effects on prey						
		Changes to water quality						
		Cumulative/ In-combination						

Table 2.1 Potential Effects consider in Screening

Site Type	Feature(s)	Potential Effects
	Fish	 Permanent loss (and introduction of new sediment where applicable)
		Temporary physical disturbance
		Smothering due to increased suspended sediment
		Re- mobilisation of contaminated sediments
		Underwater noise and vibration
		Electromagnetic fields (EMF)
		Cumulative/ In-combination
	Terrestrial	Direct effects (e.g. habitat loss)
		 Impacts on ex-situ habitats functionally connected to the SAC
		 Impacts from alterations to geology and land contamination
		Disturbance due to groundwater / hydrology changes
		Impacts from noise disturbance
		Impacts from changing air quality
		Impacts from light disturbance
		Impacts from visual disturbance

2.2 Sites Considered

- 4. The methodology for screening of sites and effects is discussed in *Appendix 1* of the Information to Support AA report.
- 5. The following sites displayed in *Table 2.2* were included in the Screening stage.

East Anglia TWO	Designated site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
Reference Number						
1	Abberton Reservoir SPA & Ramsar	✓				
2	Abers - Côtes des légendes SAC		✓			
3	Agger Tange, Nissum Bredning, Skibsted Fjord og Agerø SAC		✓			

Table 2.2 Sites included in Screening

East Anglia TWO	Designated site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
Reference Number						
4	Ålborg Bugt, Randers Fjord Og Mariager Fjord SAC		×			
5	Alde, Ore and Butley Estuaries SAC			√		
6	Alde-Ore Estuary SPA & Ramsar	~				
7	Anholt og havet nord for SAC		V			
8	Archipel des Glénan SAC		~			
9	Baie De Canche Et Couloir Des Trois Estuaires SAC		✓ 		v	
10	Baie de Morlaix SAC		~			
11	Baie de Seine Occidentale SAC		~			
12	Baie de Seine Occidentale SPA	✓				
13	Baie de Seine Orientale SAC	✓	√			
14	Baie du Mont Saint- Michel SAC		~			
15	Balgö SAC		~			
16	Bancs Des Flandres SAC		×	✓		
17	Bassurelle Sandbank SAC			✓		
18	Benacre to Easton Bavents SPA	~				
19	Benfleet and Southend Marshes SPA & Ramsar	Ý				

East Anglia TWO Reference	Designated site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
Number						
20	Berwickshire and North Northumberland Coast SAC		✓	~		
21	Blackwater Estuary (Mid-Essex Coast Phase 4) SPA & Ramsar	~				
22	Borkum-Riffgrund SCI		✓		~	
23	Borkum-Riffgrund SPA	✓				
24	Braemar Pockmarks SAC			~		
25	Breydon Water SPA & Ramsar	✓				
26	Broadland SPA & Ramsar	✓				
27	Bruine Bank pSPA	✓				
28	Buchan Ness to Collieston Coast SPA	✓				
29	Calf of Eday SPA	✓				
30	Cap Sizun SAC		✓			
31	Chausey SAC	✓	✓			
32	Chaussée de Sein SAC		✓			
33	Chesil Beach and The Fleet SPA & Ramsar	✓				
34	Chichester and Langstone Harbours SPA & Ramsar	1				
35	Colne Estuary (Mid- Essex Coast Phase 2) SPA & Ramsar	V				
36	Copinsay SPA	✓				
37	Coquet Island SPA	✓				

East Anglia TWO	Designated site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
Reference Number						
38	Côte de Granit Rose- Sept Iles SAC	✓	✓			
39	Cromarty Firth SPA & Ramsar	~				
40	Crouch and Roach Estuaries (Mid-Essex Coast Phase 3) SPA & Ramsar	~				
41	Deben Estuary SPA & Ramsar	✓				
42	Dengie (Mid-Essex Coast Phase 1) SPA & Ramsar	*				
43	Doggerbank SCI		✓			
44	Doggersbank SCI		✓			
45	Dornoch Firth and Loch Fleet SPA & Ramsar	~				
46	Dornoch Firth and Morrich More SAC		V			
47	Dråby Vig SAC		✓			
48	Dünenlandschaft Süd- Sylt SAC		✓			
49	Dunes De La Plaine Maritime Flamande SAC		*	~		
50	East Caithness Cliffs SPA	✓				
51	Essex Estuaries SAC			~		
52	Estuaire de la Canche, dunes picardes plaquées sur l'ancienne falaise, forêt d'Hardelot et falaise d'Equihen SAC		~			

East Anglia TWO	Designated site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
Reference Number						
53	Estuaire de la Seine SCI		~			
54	Estuaires et Littoral Picards (baies de Somme et d'Authie) SAC		Ý		~	
55	Exe Estuary SPA & Ramsar	✓				
56	Fair Isle SPA	✓				
57	Falaise du Bessin Occidental SPA	✓				
58	Falaises du Cran Aux Oeufs et du Cap Gris- Nez, Dunes du Chatelet, Marais de Tardinghen et Dunes de Wissant SAC		~	V		
59	Faray and Holm of Faray SAC		~			
60	Farne Islands SPA	✓				
61	Fetlar SPA	✓				
62	Firth of Forth SPA & Ramsar	✓				
63	Firth of Tay & Eden Estuary SPA & Ramsar	✓				
64	Firth of Tay & Eden Estuary SAC		~			
65	Flamborough and Filey Coast SPA	✓				
66	Flamborough Head SAC			×		
67	Forth Islands SPA	✓				
68	Foula SPA	✓				

East Anglia TWO Reference	Designated site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
Number						
69	Foulness (Mid-Essex Coast Phase 5) SPA & Ramsar	V				
70	Fowlsheugh SPA	✓				
71	Frisian Front SPA	✓				
72	Gibraltar Point SPA & Ramsar	✓				
73	Great Yarmouth North Denes SPA	✓				
74	Greater Wash SPA	✓				
75	Gule Rev SCI		~			
76	Gullmarsfjorden SAC		~			
77	Haisborough, Hammond and Winterton SAC			✓		
78	Hamburgisches Wattenmeer SCI		~			
79	Hamford Water SPA & Ramsar	✓				
80	Havet Omking Norde Ronner SAC		~			
81	Helgoland mit Helgoländer Felssockel SAC		√			
82	Hermaness, Saxa Vord and Valla Field SPA	✓				
83	Hesselø med omliggende stenrev SAC		~			
84	Hirsholmene, havet vest herfor og Ellinge Å's udløb SAC		×			

East Anglia TWO	Designated site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
Reference Number						
85	Hornsea Mere SPA	✓				
86	Hoy SPA	✓				
87	Humber Estuary SAC		~	✓	✓	
88	Humber Estuary SPA & Ramsar	1				
89	Hund und Paapsand SCI		~			
90	Imperial Dock Lock, Leith SPA	~				
91	Inner Dowsing, Race Bank and North Ridge SCI			~		
92	Inner Moray Firth SPA & Ramsar	1				
93	Isle of May SAC		~			
94	Klaverbank SAC		~			
95	Knudegrund SAC		~			
96	Kosterfjorden- Väderöfjorden SAC		V			
97	Kungsbackafjorden SAC		~			
98	Küsten- und Dünenlandschaften Amrums SAC		*			
99	Lindisfarne SPA & Ramsar	~				
100	Littoral Cauchois SAC			✓		
101	Littoral Seino-Marin SPA	~				
102	Loch of Strathbeg SPA & Ramsar	✓				

East Anglia TWO Reference Number	Designated site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
103	Lønstrup Rødgrund SAC		✓			
104	Løgstør Bredning, Vejlerne og Bulbjerg SAC		*			
105	Lovns Bredning, Hjarbæk Fjord og Skals, Simested og Nørre Ådal, Skravad Bæk SAC		~			
106	Malmöfjord SAC		✓			
107	Marais du Cotentin et du Bessin - Baie des Veys SAC		*			
108	Margate and Long Sands SCI			✓		
109	Marwick Head SPA	✓				
110	Måseskär SAC		✓			
111	Medway Estuary and Marshes SPA & Ramsar	✓				
112	Minsmere to Walberswick Heaths and Marshes SAC			✓	~	
113	Minsmere-Walberswick SPA & Ramsar	✓				
114	Montrose Basin SPA & Ramsar	1				
115	Moray and Nairn Coast SPA & Ramsar	✓				
116	Mousa SPA	✓				
117	Mousa SAC		✓			

East Anglia TWO Reference Number	Designated site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
118	Muhlenberger Loch SPA		V	√	√	
119	Nationalpark Niedersächsisches Wattenmeer SAC		v			
120	Nibe Bredning, Halkær Ådal og Sønderup Ådal SAC		v			
121	Nidingen SAC		~			
122	Noordzeekustzone SAC		~	✓	✓	
123	Nordre älvs estuarium SAC		~			
124	Nordvästra Skånes havsområde SAC		~			
125	North Caithness Cliffs SPA	✓				
126	North Norfolk Coast SPA & Ramsar	✓				
127	North Norfolk Sandbanks and Saturn Reef SAC			~		
128	Northumbria Coast SPA & Ramsar	✓				
129	Noss SPA	✓				
130	NTP S-H Wattenmeer und angrenzende Küstengebiete SAC		*			
131	Oosterschelde SAC		~			
132	Orfordness - Shingle Street SAC			v		
133	Östliche Deutsche Bucht SPA	V				

East Anglia TWO	Designated site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
Reference Number						
134	Ouessant-Molène SAC		✓			
135	Outer Thames Estuary SPA	✓				
136	Papa Stour SPA	✓				
137	Panache De La Gironde Et Plateau Rocheux De Cordouan (Systeme Pertuis Gironde) SAC		Ý	✓	~	
138	Papa Westray (North Hill and Holm) SPA	✓				
139	Pater Noster- skärgården SAC		✓			
140	Pentland Firth Islands SPA	✓				
141	Pertuis Charentais SAC		×	✓	✓	
142	Plymouth Sound and Estuaries SAC			*	~	
143	Portsmouth Harbour SPA & Ramsar	✓				
144	Presqu'ile de Crozon SAC		V			
145	Ramsar-Gebiet S-H Wattenmeer und angrenzende Küstengebiete SPA					
146	Récifs et marais arrière- littoraux du Cap Lévi à la Pointe de Saire SAC		*			
147	Récifs Gris-Nez Blanc- Nez SAC		~	√		
148	Ridens et dunes hydrauliques du détroit du Pas-de-Calais SAC		✓	*		

East Anglia TWO Reference Number	Designated site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
149	River Avon SAC				✓	
150	River Derwent SAC				✓	
151	Ronas Hill - North Roe and Tingon SPA	 ✓ 				
152	Rousay SPA	✓				
153	Sälöfjorden SAC		✓			
154	Sanday SAC		✓			
155	Sandbanker ud for Thyboron SAC		~			
156	Sandbanker ud for Thorsminde SAC		~			
157	Sandlings SPA	✓				✓
158	SBZ 1 / ZPS 1 SAC		✓			
159	SBZ 2 / ZPS 2 SAC	✓				
160	SBZ 3 / ZPS 3 SAC	✓				
161	Scanner Pockmark SAC			✓		
162	Schleswig- Holsteinisches Elbastuar und angrenzende Flachen SAC		~	~	√	
163	Seevogelschutzgebiet Helgoland SPA	✓				
164	Severn Estuary SAC			✓	~	
165	Skagens Gren og Skagerrak SAC		✓			
166	Solent and Southampton Water SPA & Ramsar	V				
167	Soteskär SAC		×			

East Anglia TWO	Designated site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
Reference Number						
168	Southern North Sea SAC		~			
169	St Abb`s Head to Fast Castle SPA	✓				
170	Staverton Park and the Thicks Wantisden SAC					*
171	Steingrund SAC		✓			
172	Store Rev SCI		~			
173	Stour and Orwell Estuaries SPA & Ramsar	V				
174	Strandenge på Læsø og havet syd herfor SAC		×			
175	Sumburgh Head SPA	✓				
176	Sydlige Nordsø SAC		~			
177	Sylter Außenriff SCI	✓	\checkmark			
178	Teesmouth and Cleveland Coast SPA & Ramsar	×				
179	Thames Estuary and Marshes SPA & Ramsar	×				
180	Thanet Coast and Sandwich Bay SPA & Ramsar	×				
181	Thanet Coast SAC			~		
182	The Swale SPA & Ramsar	1				
183	The Wash and North Norfolk Coast SAC		~	✓		
184	The Wash SPA & Ramsar	V				

East Anglia TWO Reference Number	Designated site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
185	Thyboron Stenvolde SCI		✓			
186	Tregor Goëlo SAC		✓			
187	Troup, Pennan and Lion`s Heads SPA	\checkmark				
188	Unterelbe SCI				~	
189	Unterems und Außenems SCI		✓			
190	Vadehavet med Ribe Å, Tved Å og Varde Å vest for Varde SAC		×			
191	Venø, Venø Sund SAC		✓			
192	Vlaamse Banken SAC		✓	~	~	
193	Vlakte van de Raan SCI/SAC		✓		~	
194	Voordelta SAC and SPA	✓	✓	~	~	
195	Vrångöskärgården SAC		✓			
196	Waddenzee SPA	✓				
197	Waddenzee SAC		✓	~		
198	West Westray SPA	✓				
199	Westerschelde & Saeftinghe SAC				~	
200	Winterton – Horsey Dunes SAC		~			
201	Yell Sound Coast SAC		✓			
202	Ythan Estuary, Sands of Forvie and Meikle Loch SPA	V				

2.3 Assessment of potential effects

- 6. A summary of the evidence presented in the determination of the risk of likely significant effects (LSE) on the relevant qualifying features of a site is detailed within the footnotes to the screening matrices below.
- 7. The following abbreviations are used within the screening matrices:
 - Y = LSE **cannot** be excluded
 - N = LSE **can** be excluded
 - C = construction
 - O = operation
 - D = decommissioning
- 8. Where effects are not applicable to a particular feature they are greyed out.

Site	1	1													
Name of European Site:	Abberto	on Reserv	oir SPA a	and Rams	ar										
Distance to East Anglia TWO (km)	88 (win	3 (windfarm site) and 62 (offshore cable corridor)													
Site Features	Likely ef	ely effect(s) of East Anglia TWO													
	Collision	Ilision mortality Displacement/Disturbance Barrier Effect Cumulative/In-combination													
	С	C O D C O D C O D C													
Wintering and passage waterbird assemblage including as named features shoveler <i>Anas clypeata</i> , teal <i>Anas crecca</i> , wigeon <i>Mareca</i> <i>penelope</i> , gadwall <i>Mareca strepera</i> , pochard <i>Mareca strepera</i> , tufted duck <i>Aythya fuligula</i> , goldeneye <i>Bucephala</i> <i>clangula</i> , mute swan <i>Cygnus olor</i> , coot <i>Fulica atra</i> , great crested grebe <i>Podiceps cristatus</i>		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)			
Breeding cormorant <i>Phalacrocorax</i> carbo		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)			

a) Survey data show little or no evidence of the SPA features found at that site occurring in the East Anglia TWO windfarm site, and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO windfarm site (see section 5.1 of Appendix 12.2 (APP-470), none of these species were recorded in the East Anglia TWO windfarm site). Also see Table 8.2 of the HRA Screening Report (APP-044)).

b) Maximum foraging range of breeding cormorants from their colonies is 35km (Thaxter et al. 2012); the East Anglia TWO site is therefore located beyond the maximum range and so has no breeding season connectivity. It is extremely unlikely that cormorants from Abberton Reservoir SPA would visit the East Anglia TWO windfarm site in the non-breeding season as they mostly overwinter in freshwater habitat in southern England Survey data show no evidence of cormorant occurring in the East Anglia TWO windfarm site (see section 5.1 of Appendix 12.2 (APP-470).

1

Site

Name of European Site:

Abberton Reservoir SPA and Ramsar

c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Abberton Reservoir SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	2	2														
Name of European Site:	Abers -	Abers - Côtes Des Legendes SAC														
Distance to East Anglia TWO (km)	599 (win	599 (windfarm site)														
Site Features	Likely ef	Likely effect(s) of East Anglia TWO														
	Underw	Underwater noise Vessel Interactions Indirect effects on prey Changes to water quality In-combination														
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	
Grey seal Halichoerus grypus	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)	
a) The distance between the would result in no potentia	•	•	-		-								uals from	n this site	9	
Name of European Site:	Agger T	ange, N	lissum	Brednii	ng, Skib	sted Fjc	ord og A	gerø SA	NC							
Distance to East Anglia TWO (km)	603															
Site Features	Likely ef	ect(s) c	of East A	Anglia T	WO											

Site	3														
	Underwater noise		Vesse	Vessel Interactions			Indirect effects on prey			ges to w /	ater	In-combination			
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal Phoca vitulina	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
a) The distance between the potential for LSE (see para	•	•	-		-			•			als from	this site	would re	sult in n	0

Site	4	4														
Name of European Site:	Ålborg l	lborg Bugt, Randers Fjord og Mariager Fjord SAC														
Distance to East Anglia TWO (km)	843	43														
Site Features	Likely ef	ely effect(s) of East Anglia TWO														
	Underw	ater noi	se	Vessel Interactions Indirect effects on prey							Changes to water quality			In-combination		
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	
Harbour seal Phoca vitulina	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)	
a) The distance between the potential for LSE (see par	•	•	-		-			•			als from	this site	would re	esult in n	ıO	

Site Name of European Site: Distance to East Anglia TWO (km)	5 Alde, 0 3.6	Ore and	d Butle	ey Estu	aries S	AC												
Site Features	Likely	effect(s) of Ea	st Angli	a TWC)												
	Perma	nent lo	SS	Temp physi distur			Smoth increa suspe sedim	ended	lue to	-	nobilisat minateo nents			rwater i ibration		In-cor	nbinati	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Offshore habitats			·	·	·	·											·	
Mudflats and sandflats not covered by seawater at low tide	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
Estuaries	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
Atlantic Salt Meadows	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
a) Within range of theo 121 of the HRA Scr					ent depo	osition)	but effe	ect negli	gible a	s featur	es are	primaril	y sedin	nentary	(see pa	aragrap	hs 120	and

Site	6											
Name of European Site:	Alde-Ore	Estuary S	PA and R	amsar								
Distance to East Anglia TWO (km)	37 (windfa	arm site) a	and 4 (offs	shore cab	le corrido	or)						
Site Features	Likely e	ffect(s) of	East Angli	a TWO								
	Collisior	n mortality		Displace	ement/Dist	urbance	Barrier E	Effect		Cumulat	ive/In-com	nbination
	С	0	D	С	0	D	С	0	D	С	0	D

Site	6	- (
Name of European Site: Distance to East Anglia TWO (km)	Alde-Ore E 37 (windfa			ble corrid	lor)						
Breeding lesser black-backed gulls Larus fuscus		Y (a)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (h)	Y (a)	N (h)
Breeding marsh harrier Circus aeruginosus		N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)
Breeding avocet <i>Recurvirostra</i> avosetta		N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (h)	N (h)	N (h)
Breeding little tern Sternula albifrons		N (e)	N (e)	N (e)	N (e)	N (e)	N (e)	N (e)	N (e)	N (e)	N (e)
Breeding Sandwich tern Sterna sandvicensis		N (f)	N (f)	N (f)	N (f)	N (f)	N (f)	N (f)	N (h)	N (h)	N (h)
Nonbreeding ruff <i>Philomachus pugnax</i> avocet, redshank <i>Tringa totanus</i>		N (g)	N (g)	N (g)	N (g)	N (g)	N (g)	N (g)	N (h)	N (h)	N (h)
Seabird assemblage of international importance		Y (i)	N (h	N (h	N (h	N (h	N (h	N (h	N (h	Y (i)	N (h

a) Model predictions of collision mortality indicate that LSE cannot be ruled out at screening and so requires further consideration (see paragraph 266 of the HRA Screening Report (APP-044)).

b) Evidence indicates that lesser black-backed gulls are not affected by displacement, disturbance or barrier effects at offshore wind farms (see Table 12.4 Chapter 12 – Offshore Ornithology (APP-060).

c) Marsh harrier is a migrant species. Satellite tracking suggests that marsh harriers migrate overland to the south coast of England and over the Channel to France, rather than across the North Sea.

d) Avocet has not been observed in the East Anglia TWO windfarm site during bird surveys (see section 5.1 of Appendix 12.2 (APP-470)). It is highly unlikely that avocets from this SPA will migrate through the East Anglia TWO windfarm site, and if they did, their flight height is likely not to be at collision risk height.

Site		6
Name	of European Site:	Alde-Ore Estuary SPA and Ramsar
		37 (windfarm site) and 4 (offshore cable corridor)
e)	-	mum foraging range of 11km from colonies, so would have no connectivity with the East Anglia TWO site. Migrating e 'extremely coastal on passage with very few sightings in open ocean or inland' (Forrester et al. 2007), so are unlikely ia TWO windfarm site.
f)	However, only very small num	a maximum foraging range of 54km from colonies, so would have connectivity with the East Anglia TWO windfarm site. Thers of terns of any species were observed in the East Anglia TWO site in surveys (see section 5.2 of Appendix 12.2 The terns from this SPA population will form a very small fraction of the very small total numbers of terns passing the site
g)	470)). It is highly unlikely that	re not observed during bird surveys at the East Anglia TWO windfarm site (see section 5.1 of Appendix 12.2 (APP- these birds would migrate through the East Anglia TWO site as their migration is likely to take a coastal route and cross The English Channel. If they did migrate through the East Anglia TWO site their flight height is likely not to be at
h)	-	le to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination at Alde-Ore Estuary SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044)).
i)	and some birds from that SPA	nave connectivity with East Anglia TWO. This SPA holds the closest large colony of these species to East Anglia TWO, a may pass through East Anglia TWO during migration (screened in as per paragraph 266 of the HRA Screening Report as assessed for project-alone so no HRA assessment required within the Information to Support Appropriate (3)).

Site	7														
Name of European Site:	Anhol	t og hav	vet nor	d for SA	C										
Distance to East Anglia TWO (km)	904														
Site Features	Likely	effect(s)	of Eas	t Anglia	TWO										
	Under	water no	oise	Vessel	Interact	ions	Indirec prey	t effects	on	Chang quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the potential for LSE (see par 044)	•	•	-		-			•							

Site	8														
Name of European Site:	Archip	oel des	Glénan	SAC											
Distance to East Anglia TWO (km)	638														
Site Features	Likely	effect(s)	of Eas	t Anglia	TWO										
	Under	water no	oise	Vessel	Interact	ions	Indirec prey	t effects	on	Chang quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the potential for LSE (see particular)	•	•	•		•						als from	this site	would re	esult in n	0

Site				9																	
Name of Eur	opean	Site:		Bai	e de Ca	anche e	t coulo	ir des	trois e	stuai	res SA	C									
Distance to I (km)	East A	nglia 1	wo	168																	
Marine Mam	mals																				
Site Features	;		L	ikely e	ffect(s)	of East	Anglia	TWO													
			l	Inderw	ater no	ise	Vesse	el Inter	actions		Indired prey	t effects	on	Chai quali	-	water		In-com	bination	1	
			C	;	0	D	С	0	D		С	0	D	С	0	D		С	0	D	
Harbour porp <i>phocoena</i>	oise P	hocoer	na N	l (a)	N (a)	N (a)	N (a)	N (a	a) N ((a)	N (a)	N (a)	N (a)	N (a)	2	N	(a)	N (a)	N (a)	N (a))
Grey seal <i>Ha</i> grypus	lichoei	rus	N	l (a)	N (a)	N (a)	N (a)	N (a	a) N ((a)	N (a)	N (a)	N (a)	N (a))	N	(a)	N (a)	N (a)	N (a))
Harbour seal	Phoce	a vitulin	a N	l (a)	N (a)	N (a)	N (a)	N (a	a) N ((a)	N (a)	N (a)	N (a)	N (a))	N	(a)	N (a)	N (a)	N (a)	
Fish			I			1	1			1				<u> </u>			I				
Site	Likel	y effect	(s) of E	ast Ar	nglia TV	VO															
Features	-	anent at loss		phys	iporary sical irbance					of c	mobili ontami iments			water ibratior			romag (EMF		In-coi	nbinati	ion
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Salmon Salmo salar	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)

Site				9																	
Name of Eur	opean	Site:		Baie	de Ca	nche e	t could	oir des	trois e	stuaire	es SAC										
Distance to I (km)	East A	nglia 1	wo	168																	
Site	Likely	y effect	(s) of E	ast An	glia TW	10															
Features	Perm	anent at loss		Temp physi	oorary		to inc	hering creased ended nent			nobilisa ntamina nents			rwater vibratio			romagr (EMF)		In-co	mbinati	ion
	С	0	D	С	0	С	0	С	0	С	0	D	С	0	D	С	0	D	С	0	D
Sea lamprey Petromyzon marinus	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
River lamprey <i>Lampetra</i> <i>fluviatilis</i>	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Allis shad <i>Alosa alosa</i>	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 219 and 220 for harbour seal, paragraphs 190 and 191 for grey seal and paragraphs 168 and 169 for harbour porpoise, of the HRA Screening Report (APP-044)).

Site	9
Name of European Site:	Baie de Canche et couloir des trois estuaires SAC
Distance to East Anglia TWO km)	168
, .	he East Anglia TWO Scoping Report that transboundary impacts on fish would be scoped out of the EIA. We have therefore onsideration in the HRA (see Appendix 10.1 (APP-462).

Site	10														
Name of European Site:	Baie I	De Morl	aix SAC	;											
Distance to East Anglia TWO (km)	552														
Site Features	Likely	effect(s) of Eas	t Anglia	TWO										
	Under	water n	oise	Vessel	Interact	ions	Indired prey	t effects	on	Chang quality	es to wa	iter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal Halichoerus grypus	N(b)	N(b)	N(a)	N(b)	N(a)	N(b)	N(b)	N(b)	N(b)	N(b)		N(b)	N(b)	N(b)	N(b)
a) The distance between th potential for LSE (see pa	•	•	-		-			•			als from	this site	would re	sult in n	0

 Site
 11

 Name of European Site:
 Baie de Seine Occidentale SAC

Distance to East Anglia TWO (km)	350														
Site Features	Likely	effect(s) of Eas	t Anglia ⁻	TWO										
	Under	water n	oise	Vessel	Interact	ions	Indired prey	ct effects	on	Chang quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	C	0	D	C	0	D	С	0	D
Harbour porpoise <i>Phocoena</i> phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the	notontio	limpool	rongo				ho ovtor	at of only	offoot or	, individu	ale from	thia aita	would re	oult in n	

 a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraph 219 and 220 for harbour seal and paragraphs 168 and 169 for harbour porpoise and Table 7.3 of the HRA).Screening Report (APP-044)).

Site	12											
Name of European Site:	Baie	de Seiı	ne Occ	cidentale	SPA							
Distance to East Anglia TWO (km)	350											
Site Features		effect	· · · · ·	ast Anglia Displace	a TWO ement/Dist	urbance	Barrier	Effect		Cumu	Ilative/In-combi	nation
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding, wintering and passage waterbirds		N(a)		N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(b)	N(b)	N(b)

- a) Survey data show little or no evidence of Baie de Seine Occidentale SPA features occurring in the East Anglia TWO site, and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site, as most migrant waterfowl moving between northern breeding areas and southern wintering areas and using staging areas such as Baie de Seine Occidentale in France pass along the west European flyway along the continental coast rather than crossing the North Sea to the UK. At a distance of 341km, the chances of birds from this SPA moving through the East Anglia TWO site are extremely small (see section 5.1 of Appendix 12.2 (APP-470), none of SPA features were recorded in the East Anglia TWO windfarm site). Also see Table 8.2 of the HRA Screening Report (APP-044)).
- b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Baie de Seine Occidentale SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	13															
Name of European Site:	Baie o	Baie de Seine Orientale SAC														
Distance to East Anglia TWO (km)	324															
Site Features	Likely	Likely effect(s) of East Anglia TWO														
	Underwater noise			Vessel Interactions			Indirect effects on			Change	es to wa	ter	In-combination			
							prey			quality						
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	
Harbour porpoise <i>Phocoena</i> phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)	
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)	
a) The distance between the potential for LSE (see particular for LSE (see particular for LSE (see particular for LSE for the potential for LSE (see particular for the potential for LSE for the potential for th	•	•	•		•			•							0	

Site	14
Name of European Site:	Baie du Mont Saint-Michel SAC

Distance to East Anglia TWO (km)	520														
Site Features	Likely	effect(s) of Eas	t Anglia ⁻	TWO										
	Under	water n	oise	Vessel Interactions			Indired	ct effects	on	Chang	es to wa	ter	In-combination		
							prey			quality					
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the	e potentia	l impac	t range	of East A	nglia TV	VO and t	he exter	nt of any	effect or	n individu	als from	this site	would re	sult in n	0

potential for LSE (see paragraph 219 and 220 for harbour seal and paragraphs 190 and 191 for grey seal and Table 7.3 of the HRA Screening Report (APP-044)).

Site	15														
Name of European Site:	Balgö	SAC													
Distance to East Anglia TWO (km)	903														
Site Features	Likely effect(s) of East Anglia TWO														
	Underwater noise			Vessel Interactions			Indirec prey	t effects	on	Chang quality	es to wa	ter	In-combination		
	С	0	D	С	0	D	C	0	D	C	0	D	С	0	D
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the potential for LSE (see par	•	•	•		0								would re	sult in n	0

Site		16																
Name of European Bancs des F Site:				Bancs des Flandres SAC														
Distance to Eas Anglia TWO (km		82 (w	indfarm	n site) a	nd 93 (offshore	cable c	orridor)									
Marine Mammal																		
Site Features	Likely	effect(s	s) of Eas	st Anglia	a TWO													
	Underwater noise				Vessel Interactions			Indirect effect			Chang		es to water		combir	combination		
	C 0 D		D		С	0	D	С	C (D	C	0	D	С		0	D
Harbour porpoise Phocoena phocoena	N(a)	N(a)) N((a)	N(a)	N(a)	N(a)	N(a)	1 (N(a)	N(a)	N(a)		N(a)) N	(a)	N(a)	N(a)
Grey seal Halichoerus grypus	Y(c)	Y(c)) Y((C)	N(a)	N(a)	N(a)	N(a)	1 (N(a)	N(a)	N(a)		N(a)) N	(a)	N(a)	N(a)
Harbour seal Phoca vitulina	N(a)	N(a)) N(a)	N(a)	N(a)	N(a)	N(a)	1 (N(a)	N(a)	N(a)		N(a)) N	(a)	N(a)	N(a)
Benthic Habitat	5																	
Site Features	Perma	SS	phys	oorary ical rbance		Smothering increased suspended sediment		ed led		Re- mobilisa contaminate sediments				oise	e In-combinat		ion	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea water all the time	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)		N (b)	N (b)	N (b)	N (b)

Site		16
Name Site:	of European	Bancs des Flandres SAC
	nce to East a TWO (km)	82 (windfarm site) and 93 (offshore cable corridor)
a)	potential for LSE	ween the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no (see paragraph 219 and 220 for harbour seal, paragraphs 190 and 191 for grey seal and paragraphs 168 and 169 for harbour ole 7.3 of the HRA Screening Report (APP-044)).
b)	•	greed through the scoping and Evidence Plan Process (EPP) (see Appendix 9.1 (APP-458) that transboundary effects are scoped in the distance to sites in other Members States jurisdictions) these have also been screened out from consideration for HRA
c)	The East Anglia ⁻ cannot be ruled o	TWO windfarm site is within the foraging range of grey seal and therefore the potential for LSE from underwater noise impacts out.

Site Name of Euro	Name of European Site: Distance to East Anglia TWO (km)				relle Sa	ndbank	SAC											
Distance to Ea (km)	(m)			169 (w	rindfarm	site) ar	nd 172 (d	offshore	e cable d	corridor)								
Site Features	ite Features Likely effect(s) of E			ast Angl	ia TWO													
	Perr	nanen	t loss	Temp disturi	orary ph bance	ysical	Smoth increa suspe sedim	nded	ue to		obilisatio ninated ents			water n ibration	oise	In-cor	nbinatior	า
	C O D		С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	

Site				17													
Name of Euro	pean S	Site:		Bassu	relle Sai	ndbank	SAC										
Distance to Ea (km)	ast An	glia T	WO	169 (w	indfarm	site) an	nd 172 (c	offshore	cable c	orridor))						
Sandbanks which are slightly covered by sea water all the time	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)					

		vents SP/ ridor)	4								
ikely effec	ct(s) of E	ast Anglia	a TWO								
ollision m	nortality		Displace	ement/Dis	turbance	Barrier	Effect		Cumula	tive/In-cor	mbination
c c	C	D	С	0	D	С	0	D	С	0	D
Ν	N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
Ν	N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
Ν	N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
.i	ikely effer collision m collision f collision f collis	ikely effect(s) of E ollision mortality	ollision mortality O D N (a) N (a)	ikely effect(s) of East Anglia TWO ollision mortality Displace O D C N (a) N (a) N (a)	ikely effect(s) of East Anglia TWO ollision mortality O D D C O O N (a) N (a) N (a) N (a) N (a) N (a)	N (a) N (a) Displacement/Disturbance O D C O N (a) N	ollision wortality Displacewent/Disturbance Barrier I ollision wortality Displacewent/Disturbance Barrier I ollision O D C O D C N (a) N (a) N (a) N (a) N (a) N (a) N (a) N (a)	ikely effect(s) of East Anglia TWO ollision mortality Displacement/Disturbance Barrier Effect O O D C O O O O O O O O O O O O O O O O	N (a) N (a) N (a) N (a) Displacement/Disturbance Barrier Effect O D C O D C O D N (a) N (a) N (a) N (a) N (a) N (a) N (a) N (a) N (a)	Anglia TWO Displacement/Disturbance Barrier Effect Cumular O D C O D C O D C N (a) N (a)	Anglia TWO ollision mortality Displacement/Disturbance Barrier Effect Cumulative/In-construction O D C O D C O D C O N (a) N

Name of European Site:	9 Senfleet & S 10 (windfai											
Site Features	Likely e	ffect(s) of	East Angli	ia TWO								
	Collision	n mortality	,	Displac	ement/Dis	turbance	Barrier I	Effect		Cumula	tive/In-co	mbination
	С	0	D	С	0	D	С	0	D	С	0	D
Wintering and passage waterbird assemblage including as named features brent goose <i>Branta bernicla</i> , dunlin <i>Calidris alpina</i> , knot <i>Calidris</i> <i>canutus</i> , ringed plover <i>Charadrius</i> <i>hiaticula</i> , grey plover <i>Pluvialis</i> <i>squatarola</i>		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)

b) Survey data show little or no evidence of Benfleet & Southend Marshes SPA features occurring in the East Anglia TWO site, and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site during migration (see section 5.1 of Appendix 12.2 (APP-470), none of these species were recorded in the East Anglia TWO windfarm site). Also see Table 8.2 of the HRA Screening Report (APP-044)).

c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Benfleet & Southend Marshes SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044)).

Site			20																		
Name of Eu	opean	Site:	Berw	ickshi	re and	North	Northu	mberla	and Co	ast S/	٩C										
Distance to TWO (km)	East A	nglia	4126	(wind	farm si	ite) and	l 407 (c	offshor	e cabl	e corr	idor)										
Marine Mam	mals																				
Site	Likely	effect	s) of E	ast An	glia TV	/0															
Features	Unde	rwater	noise	Vess Intera	el actions		Indire prey	ct effec	cts on	Char wate	-		In-con	nbinatic	'n						
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	1					
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)						
Benthic Hab	oitats																				
Site Features	Perma	anent l	OSS		empora isturba	ary phy nce	sical		hering ased s nent			-	iobilisat minate ents		-		vater no pration	ise	In-com	ibination	
	С	0	D	C	;	0	D	С	0	D		С	0	D	С		0	D	С	0	D
Coastal lagoons	N (b)	N (b) N (b) N	l (b)	N (b)	N (b)	N (b)	N (t) N	(b)	N (b)		N (t) N	(b)		N (b)	N (b)	N (b)	N (b)
Submerged or partially	N (b)	N (b) N (b) N	l (b)	N (b)	N (b)	N (b)	N (t) N	(b)	N (b)		N (t) N	(b)		N (b)	N (b)	N (b)	N (b)

Screening Report (APP-044)).

Site		20															
Name of Europe	an Site:	Berwicl	kshire ar	d North	Northu	mberla	nd Coas	st SAC									
Distance to Eas TWO (km)	t Anglia	4126 (w	vindfarm	site) an	d 407 (o	ffshore	cable	corridor)									
submerged sea caves																	
,		veen the p (see parag		•	-	-				-			ls from t	his site	would re	sult in no	 ጋ
b) The dista	ance betw	veen the o	ffshore p	roject ar	ea and tl	ne desig	nated s	ite is bey	ond the	range of	any po	ential L	SE (see	section	5.2.1 of	the HRA	4

Name of European Site.	ackwater Es (windfarm				e corrido	r)						
Site Features	Likely	effect(s)	of East A	nglia TW0	C							
	Collisi	on morta	lity	Displace	ement/Dis	turbance	Barrier	Effect		Cumula	tive/In-cor	mbination
	С	0	D	С	0	D	С	0	D	С	0	D
Wintering and passage waterbird assemblage including as named feature brent goose, dunlin, ringed plover, black tailed godwit <i>Limosa limosa limosa</i> , grey plover	-	N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (f)	N (f)	N (f)
Nonbreeding hen harrier Circus cyaneus	3	N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (f)	N (f)	N (f)

Site Name of European Site: Distance to East Anglia TWO (km)			PA and R I 64 (offsl		e corrido	r)						
Site Features	Likely	effect(s)	of East A	nglia TW0	C							
	Collisio	on morta	lity	Displace	ement/Dis	turbance	Barrier	Effect		Cumula	tive/In-co	mbination
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding pochard		N (c)		N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (f)	N (f)	N (f)
Breeding ringed plover		N (d)		N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (f)	N (f)	N (f)
Breeding little tern		N (e)		N (e)	N (e)	N (e)	N (e)	N (e)	N (e)	N (e)	N (e)	N (e)

 a) Survey data show little or no evidence of Blackwater Estuary SPA features occurring in the East Anglia TWO site, and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site during migration (see section 5.1 of Appendix 12.2 (APP-470), none of these species were recorded in the East Anglia TWO windfarm site).

- b) Survey data show no evidence of Blackwater Estuary SPA feature (hen harrier) occurring in the East Anglia TWO site, and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), this species was not recorded in the East Anglia TWO windfarm site).
- c) Survey data show no evidence of Blackwater Estuary SPA feature (pochard) occurring in the East Anglia TWO site, and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), this species was not recorded in the East Anglia TWO windfarm site).
- d) Survey data show no evidence of Blackwater Estuary SPA feature (ringed plover) occurring in the East Anglia TWO site, and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), this species was not recorded in the East Anglia TWO windfarm site).
- e) e) Breeding little tern has a maximum foraging range of 11km from colonies, so would have no connectivity with the East Anglia TWO site. Migrating little terns are considered to be 'extremely coastal on passage with very few sightings in open ocean or inland' (Forrester et al. 2007), so are unlikely to pass through the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), this species was not recorded in the East Anglia TWO windfarm site).

Site Name of European Site: Distance to East Anglia TWO (km)			PA and R	amsar hore cable	e corridor)						
Site Features	Likely e	effect(s)	of East A	nglia TWC)							
	Collisio	on morta	lity	Displace	ment/Dist	urbance	Barrier E	ffect		Cumulat	ive/In-con	nbination
	С	0	D	С	0	D	С	0	D	С	0	D
 f) f) The predicted effect attril assessment for these feature 		-				-	•				ombinatio	n

Site	22														
Name of European Site:	Borkun	n-Riffgru	nd (Bork	um Reef	Ground)	SCI									
Distance to East Anglia TWO (km)	320														
Marine Mammals															
Site Features	Likely e	ffect(s) o	f East An	glia TWO)										
	Underw	ater nois	e	Vessel	Interactic	Ins	Indirect	effects c	on prey	Change quality	es to wate	er	In-com	oination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise Phocoena phocoena	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
Grey seal Halichoerus grypus	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)

Site		22	2																		
Name of Eur Site:	opean	В	orkum	-Riffgr	und (B	orkun	n Reef	Ground	I) SCI												
Distance to Anglia TWO		32	20																		
Harbour seal <i>vitulina</i>	Phoca	^a N	I (a)	N (a)	N (;	a)	N (a)	N (a)	N (a	a) N	l (a)	N (a)	N (a) N	(a)		N (a)	N ((a)	N (a)	N (a)
Fish											·										
Site Features		anent at loss		Temp physic disturt	cal		Smoth increa suspe sedim	nded	lue to		nobilisa ntamina nents			water ibratior			omagn (EMF)	etic	In-co	mbinat	ion
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Twaite shad <i>Alosa</i> fallax	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraph 219 and 220 for harbour seal, paragraphs 190 and 191 for grey seal and paragraphs 168 and 169 for harbour porpoise of the HRA Screening Report (APP-044)).

b) It was agreed as part of the East Anglia TWO Scoping and Evidence Plan Process (EPP) (see Appendix 10.1 (APP-458) that transboundary impacts on fish would be scoped out of the EIA. We have therefore screened them out from consideration in the HRA.

Site	23
Name of European Site:	Borkum-Riffgrund SPA

Distance to East Anglia TWO (km)	320											
Site Features	Likely effe	ct(s) of E	ast Anglia	TWO								
	Collision n	Collision mortality			ement/Dis	turbance	Barrier	Effect		Cumula	tive/In-co	nbination
	С				0	D	С	0	D	С	0	D
Nonbreeding seabird assemblage including as named features black- throated diver <i>Gavia arctica</i> , red- throated diver <i>Gavia stellata</i> , common gull <i>Larus canus</i> , lesser black-backed gull, great black-backed gull <i>Larus marinus</i> , little gull <i>Larus minutus</i> , kittiwake <i>Rissa tridactyla</i> , common tern <i>Sterna hirundo</i> , Arctic tern <i>Sterna paradisaea</i> , Sandwich tern, gannet <i>Morus bassanus</i> , guillemot <i>Uria aalge</i>		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)

a) Migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site during migration relative to the size of Biologically Defined Minimum Population Scale (BDMPS) regional populations. Not only are the sites 320km apart, but much of the seasonal movement of birds avoids crossing of the North Sea so that birds on the continental side of the North Sea are more likely to move along the continental coast rather than crossing to the UK (see Table 8.2 of the HRA Screening Report (APP-044)).

b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Borkum-Riffgrund SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

 Site
 24

 Name of European Site:
 Braemar Pockmarks SAC

Distance to (km)	East Aı	nglia TW	10	741														
Site	Likely e	ikely effect(s) of East Anglia TWO																
Features	Perma	anent los	S	Temporary physical disturbance			Smoth increa suspe sedim	nded	ue to		obilisation ninated ents	on of		water no ibration	oise	In-con	nbinatior	1
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Submarine structures made by leaking gases	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
,		e betwee eport (A		•	oject are	ea and th	ne desig	nated si	e is bey	ond the	range of	any pot	ential LS	SE (see s	section 5	5.2.1 of t	he HRA	

Site Name of European Site:	25 Brev	don Wate	er SPA ar	nd Ramsa	r								
				33 (offsh		corridor)						
Site Features				East Angl									
		Collisior	n mortality	,	Displac	ement/Dis	sturbance	Barrier	Effect		Cumula	ative/In-co	mbination
		С	0	D	С	0	D	С	0	D	С	0	D
Wintering and passage waterbird assemblage including as named features Bewick's swan <i>Cygnus</i> <i>columbianus bewickii</i> , ruff, golden plover <i>Pluvialis apricaria</i> , avocet, lapwing <i>Vanellus vanellus</i>			Y (a)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	Y (a)	N (b)
Breeding common tern Sterna hirur	ndo		N (c)		N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (d)	N (d)	N (d)

a) Band model estimates of collision mortality indicate that LSE cannot be ruled out at the Screening stage (see Appendix 12.2 Annex 4 (APP-470)).

b) Survey data show little or no evidence of SPA features occurring in East Anglia TWO and migrations of birds from this SPA are likely to result in negligible numbers passing through the site during migration (see section 5.1 of Appendix 12.2 (APP-470), none of these species were recorded in the East Anglia TWO windfarm site).

c) SPA is far beyond the maximum foraging range of common tern (30km) so has no breeding season connectivity. Numbers of SPA common tern migrating through the East Anglia TWO windfarm site are likely to be extremely small relative to BDMPS (see section 5.1 of Appendix 12.2 (APP-470), common terns recorded in very low numbers within the East Anglia TWO windfarm site).

d) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Breydon Water SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044).

Site		26										
Name of European Sit	te:	Broadla	and SPA ar	nd Ramsar								
Distance to East Angl (km)	ia TWO	34 (win	dfarm site)) and 21 (of	fshore cab	le corridoi	r)					
Site Features	Likely effe	ect(s) of Ea	st Anglia T\	NO offshore	e project are	ea						
	Collision r	nortality		Displacen	nent/Disturt	bance	Barrier Ef	fect		Cumulati	ve/In-comb	ination
	С	0	D	С	0	D	С	0	D	С	0	D
Wintering and passage waterbird assemblage including as named features shoveler, wigeon, gadwall, Bewick's swan, whooper swan, ruff	N (b)	Y (a)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (c)	Y (a)	N (c)
 a) Band model es b) Survey data sh negligible numl the East Anglia 	ow little or r pers passing	no evidence g through tl	e of SPA fe	atures occu	rring in Eas	t Anglia TW	VO and mig	rations of b	irds from th	nis SPA are	likely to res	sult in

c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	27												
Name of European Site:	Bruine Ba	nk (Brow	n Ridge)∣	pSPA									
Distance to East Anglia TWO (km)	82 (offsho	2 (offshore cable corridor)											
Site Features	Likely e	effect(s) of	East Ang	lia TWO									
	Collisio	Collision mortality			ement/Dis	turbance	Barrier	Effect		Cumula combin			
	С	0	D	С	0	D	С	0	D	С	0	D	
Nonbreeding common guillemots <i>Un aalge</i> and razorbills <i>Alca torda</i>	ria	N (a)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (c)	N (c)	N (c)	

- a) The designated features of Bruine Bank pSPA are likely to be common guillemot and razorbill, species for which low flight height results in low risk of collision with offshore wind turbines. Furthermore, birds wintering on Bruine Bank are likely to remain at the pSPA because it is a high-quality feeding habitat (i.e. the reason why this concentration of birds is being proposed for SPA status), and so these birds are unlikely to be at risk of collision at the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044))..
- b) Bruine Bank is high quality feeding habitat for nonbreeding piscivorous seabirds from breeding areas further north, so the birds in that pSPA are unlikely to pass through the East Anglia TWO site on migration as it lies west rather than north of the pSPA. Therefore, displacement, disturbance and barrier effect at the East Anglia TWO site will not be likely to affect birds on Bruine Bank pSPA (see Table 8.2 of the HRA Screening Report (APP-044)).
- c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Bruine Bank pSPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	28
Name of European Site:	Buchan Ness to Collieston Coast SPA
Distance to East Anglia TWO (km)	615
Site Features	Likely effect(s) of East Anglia TWO

Site	28													
Name of European Site:	Buchan N	ess to Col	lieston C	oast SPA										
Distance to East Anglia TWO (km)	615	5												
	Collisior	Collision mortality Displacement/Disturbance Barrier Effect Cumulative/In-combination												
	С	C O D C O D C O D C O												
Breeding seabird assemblage, including as named features kittiwake, shag <i>Phalacrocorax aristotelis</i> , fulmar, guillemot, herring gull <i>Larus argentatus</i>		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)		
 a) Buchan Ness to Collieston Coa Proportions of these population Screening Report (APP-044)). 		•			-	-	•			-		-		
 b) The predicted effect attributabl assessment for these features 		-				-					mbination			

Site 2	9												
Name of European Site: C	alf of Eday	/ SPA											
Distance to East Anglia TWO 8 (km)	5												
Site Features	Likely e	ffect(s) of	East Angli	a TWO									
	Collision	n mortality		Displace	ement/Dist	urbance	Barrier E	ffect		Cumulat	ive/In-com	nbination	
	С	0	D	С	0	D	С	0	D	С	0	D	

Site	29											
Name of European Site:	Calf of Eday	SPA										
Distance to East Anglia TWO (km)	825											
Breeding seabird assemblage inclu as named features cormorant, fulm <i>Fulmarus glacialis</i> , guillemot, kittiw and great black-backed gull	ar	N (a)		N (a)	N (b)	N (b)	N (b)					
 a) Calf of Eday SPA is beyone populations migrating throu 044)). 			-					-		• •		

b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Calf of Eday SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	30		-												
Name of European Site:	Cap S	izun SA	VC												
Distance to East Anglia TWO _(km)	639														
Site Features	Likely	effect(s) of Eas	t Anglia ⁻	TWO										
	Under	water n	oise	Vessel	Interact	ions	Indired prey	t effects	on	Chang quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	C	0	D	C	0	D	С	0	D
Grey seal	N(a) N(a)														
a) The distance between the potential for LSE (see pa	•		-		-						als from	this site	would re	sult in n	0

Site Name of European Site: Distance to East Anglia TWO (km)	31 Chaus 430	sey SA(;												
Site Features		Likely effect(s) of East Anglia TWO Underwater noise Vessel Interactions						t effects	son	Chang quality	es to wa	iter	In-com	bination	
	С	0	D	С	0	D	C	0	D	С	0	D	С	0	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
 a) The distance between the potential for LSE (see particular) 	•	•	•		•						als from	this site	would re	sult in n	0

Site Name of European Site: Distance to East Anglia TWO (km)	32 Chau 700	ssée de	Sein S	AC											
Site Features		ly effect(s) of East Anglia TWO erwater noise Vessel Interactions Indirect effects on changes to water In-combination prey quality													
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the potential for LSE (see pa	•	•	•		•						als from	n this site	would re	esult in n	0

Site	33											
Name of European Site:	Chesil Bea	ach and The	e Fleet Sl	PA & Rams	sar							
Distance to East Anglia TWO (km)	360 (windf	arm site) a	nd 336 (o	offshore ca	ble corrid	or)						
Site Features	Likel	y effect(s) o	f East An	glia TWO								
	Colli	sion mortalit	ÿ	Displac	ement/Dis	turbance	Barrier	Effect		Cumula	ative/In-co	mbinatior
	С	0	D	С	0	D	С	0	D	С	0	D
Nonbreeding brent goose		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)

a) Survey data show little or no evidence of Chesil Beach & The Fleet SPA feature (brent goose) occurring in the East Anglia TWO site, and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), none of these species/SPA features were recorded in the East Anglia TWO windfarm site.

b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Chesil Beach & The Fleet SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044).

Site 3	4											
Name of European Site: C	hichester a	and Langs	tone Harb	ours SP/	A & Rams	ar						
Distance to East Anglia TWO 24 (km)	45 (windfai	m site) an	d 225 (off	shore cal	ble corrid	or)						
Site Features	Likely	effect(s) of	East Ang	lia TWO								
	Collisio	on mortality	,	Displac	ement/Dis	turbance	Barrier	Effect		Cumula	ative/In-co	mbinatio
	С	0	D	С	0	D	С	0	D	С	0	D
Migratory waterbird assemblage including as named features pintail <i>Anas acuta</i> , shoveler, teal, wigeon, turnstone <i>Arenaria interpres</i> , brent goose, sanderling <i>Calidris alba</i> , dunlir ringed plover, bar-tailed godwit <i>Limos</i> <i>lapponica</i> , red-breasted merganser <i>Mergus serrator</i> , curlew <i>Numenius</i> <i>arquata</i> , grey plover, shelduck <i>Tadorr</i> <i>tadorna</i> , redshank	a	N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)
Breeding little tern, common tern, Sandwich tern		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)

 a) Survey data show little or no evidence of Chichester & Langstone Harbour SPA features occurring in the East Anglia TWO site, and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), none of these species/SPA features were recorded in the East Anglia TWO windfarm site).

Site	34											
Name of European Site:	Chichester	and Lang	stone Har	bours SP	A & Rams	ar						
Distance to East Anglia TWO (km)	245 (windfa	rm site) a	ind 225 (of	fshore ca	able corric	lor)						
Site Features	Likely	effect(s)	of East Ang	glia TWO								
	Collis	ion mortal	ity	Displa	cement/Di	sturbance	Barrier	Effect		Cumula	ative/In-co	mbination
	С	0	D	С	0	D	С	0	D	С	0	D
 b) Little tern, common tern and connectivity between the s Therefore, collision risk, d 	SPA and East	Anglia TV	VO site. Fu	rthermore	, these sp	ecies tend	to forage	in coasta	l waters ra	ther than	offshore.	s no

assessment for these features at Chichester & Langstone Harbour SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	35														
Name of European Site:	Colne I	Estuary S	SPA and R	lamsar											
Distance to East Anglia TWO (km)	77 (win	dfarm si	te) and 55	(offshor	e cable c	orridor)									
Site Features		Likely e	Likely effect(s) of East Anglia TWO												
		Collision mortality Displacement/Disturbance Barrier Effect Cumulative/Incombination													
		С	0	D	С	0	D	С	0	D	С	0	D		
Nonbreeding brent goose			N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)		
Nonbreeding redshank			N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)		
Nonbreeding hen harrier			N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)		

Site	35												
Name of European Site:	Colne E	Estuary SI	PA and R	amsar									
Distance to East Anglia TWO (km)	77 (win	dfarm site	e) and 55	(offshore	cable co	orridor)							
Breeding pochard			N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)
Breeding ringed plover			N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)
Breeding little tern			N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)

a) Survey data show no evidence of the feature occurring in the East Anglia TWO site, and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), none of these species/SPA features were recorded in the East Anglia TWO windfarm site).

b) Breeding little tern has a maximum foraging range of 11km from colonies, so would have no connectivity with the East Anglia TWO site. Migrating little terns are considered to be 'extremely coastal on passage with very few sightings in open ocean or inland' (Forrester et al. 2007), so are unlikely to pass through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044).

c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Colne Estuary SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044).

Site	36											
Name of European Site:	Copinsay	SPA										
Distance to East Anglia TWO (km)	789											
Site Features	Likely e	ffect(s) of	East Ang	ia TWO								
	Collision	n mortality	/	Displace	ement/Dis	turbance	Barrier I	Effect		Cumulat combina		
	С	0	D	С	0	D	С	0	D	С	0	D

Site		36											
Name	of European Site:	Copinsay	SPA										
Distan (km)	nce to East Anglia TWO	789											
includi	ing seabird assemblage ing as named features fulmar, not, kittiwake and great black- d gull		N (a)		N (a)	N (b)	N (b)	N (b)					
a)	Copinsay SPA is beyond ma populations migrating throug (APP-044).	-		•		•			•		, ,		
b)	The predicted effect attribute assessment for these feature		•				•	•		alter the	overall in-	combinati	on

Site	37											
Name of European Site:	Coquet Isla	nd SPA										
Distance to East Anglia TWO (km)	414											
Site Features	Likely e	ffect(s) of	East Angl	ia TWO								
	Collisior	n mortality		Displace	ement/Dis	turbance	Barrier E	Effect		Cumulat combina		
	С	0	D	С	0	D	С	0	D	С	0	D

Site	37										
Name of European Site:	Coquet Isla	and SPA									
Distance to East Anglia TWO (km)	414										
Breeding roseate tern Sterna doug Arctic tern, common tern, Sandwig tern		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)
 a) Coquet Island SPA is far to connectivity. Proportions of 8.2 of the HRA Screening 	of these popula	ations migrating	•	•	•	•		,		•	
b) The predicted effect attribution assessment for these feat		•			•	-			overall in	-combinat	ion

Site Name of European Site: Distance to East Anglia TWO (km)	38 Côte I 512	De Gran	it Rose	-Sept-Ile	es SAC										
Site Features		effect(s) water no		t Anglia ⁻ Vessel	TWO Interact	ions	Indirec prey	t effects	on	Chang quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the potential for LSE (see par	•	•	•		•						als from	this site	would re	sult in n	0

Site 3	Ð												
Name of European Site: C	romarty F	irth SPA 8	& Ramsar										
Distance to East Anglia TWO 7 (km)	16 (windfa	rm site) a	nd (offsh	ore cable	corridor)							
Site Features	Likely e	ffect(s) of	East Angl	lia TWO									
	Collision	sion mortality Displacement/Disturbance Barrier Effect Cumulative/In- combination											
	С	0	D	С	0	D	С	0	D	С	0	D	
Wintering and passage waterbird assemblage including as named features curlew, dunlin, grey-lag goose <i>Anser anser</i> , pintail, red-breasted merganser, whooper swan, bar-tailed godwit, oystercatcher <i>Haematopus</i> <i>ostralegus</i> , wigeon, scaup <i>Aythya</i> <i>marila</i> , knot and redshank		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (d)	N (d)	N (d)	
Breeding common tern		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (d)	N (d)	N (d)	
Breeding osprey Pandion haliaetus		N (c)		N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	

a) Survey data show little or no evidence of Cromarty Firth SPA features occurring in the East Anglia TWO site, and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), none of these species/SPA features were recorded in the East Anglia TWO windfarm site).

b) SPA is beyond maximum foraging range of common tern (30km), and so has no breeding season connectivity. Numbers of SPA common tern migrating through the East Anglia TWO site are likely to be extremely small relative to BDMPS (see Table 8.2 of the HRA Screening Report (APP-044).

Site	39
Name of European Site:	Cromarty Firth SPA & Ramsar
Distance to East Anglia TWO (km)	716 (windfarm site) and (offshore cable corridor)
,	erved in the East Anglia TWO site, and it is improbable than any ospreys from the SPA migrate through the East Anglia of Appendix 12.2 (APP-470), none of these species/SPA features were recorded in the East Anglia TWO windfarm
d) The predicted effect attributed	utable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination

d) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Cromarty Firth SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044).

Site	40												
Name of European Site:	Crouch an	d Roach E	stuaries	SPA & Ra	amsar								
Distance to East Anglia TWO (km)	96 (windfa	vindfarm site) and 78 (offshore cable corridor)											
Site Features	Likely	kely effect(s) of East Anglia TWO											
	Collisi	Collision mortality			Displacement/Disturbance			Effect		Cumula combina			
	С	0	D	С	0	D	С	0	D	С	0	D	
Nonbreeding brent goose		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)	
Nonbreeding hen harrier		N (b) N (c) N (c) N (c)										N (c)	

Site		40
Name	of European Site:	Crouch and Roach Estuaries SPA & Ramsar
Distan (km)	ce to East Anglia TWO	96 (windfarm site) and 78 (offshore cable corridor)
a)	migrations of birds from th	no evidence of Crouch & Roach Estuary SPA feature (brent goose) occurring in the East Anglia TWO site, and is SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see section 5.1 of Appendix hese species/SPA features were recorded in the East Anglia TWO windfarm site).
b)	•	ence of Crouch & Roach Estuary SPA feature (hen harrier) occurring in the East Anglia TWO site, and migrations of ely to result in negligible numbers passing through the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-

c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Crouch & Roach Estuary SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044).

470), none of these species/SPA features were recorded in the East Anglia TWO windfarm site).

Site 4													
Name of European Site: D	eben Estu	ary SPA a	& Ramsar										
Distance to East Anglia TWO 25 (km)	50 (windfa	farm site) and 20 (offshore cable corridor)											
Site Features	Likely e	effect(s) of East Anglia TWO											
	Collisior	Collision mortality			Displacement/Disturbance			Effect		Cumulative/In- combination			
	С	0	D	С	0	D	С	0	D	С	0	D	
Nonbreeding dark-bellied brent goose Branta bernicla bernicla		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)	
Nonbreeding avocet		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (c)	N (c)	N (c)	

Site	41
Name of European Site:	Deben Estuary SPA & Ramsar
Distance to East Anglia TWO (km)	250 (windfarm site) and 20 (offshore cable corridor)
a) Survey data show little or	no evidence of Deben Estuary SPA features (brent goose) occurring in the East Anglia TWO site, and migrations of

- a) Survey data show little or no evidence of Deben Estuary SPA features (brent goose) occurring in the East Anglia TWO site, and migrations of birds from the SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), this species was not recorded in the East Anglia TWO windfarm site).
- b) Survey data show no evidence of avocets occurring within the East Anglia TWO site, and numbers migrating through the site are likely to be negligible (see section 5.1 of Appendix 12.2 (APP-470), this species was not recorded in the East Anglia TWO windfarm site).
- c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Deben Estuary SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044).

Site	42													
Name of European Site:	Dengie SPA	A & Rams	ar											
Distance to East Anglia TWO (km)	87 (windfar	farm site) and 66 (offshore cable corridor)												
Site Features	Likely e	effect(s) of East Anglia TWO												
	Collision	Collision mortality			ement/Dis	turbance	Barrier	Effect		Cumulative/In- combination				
	С	0	D	С	0	D	С	0	D	С	0	D		
Nonbreeding brent goose		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)		
Nonbreeding knot		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)		
Nonbreeding grey plover		N (a) N (b) N (b)												

Nonbr	eeding hen harrier		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)
a)	Survey data show little or no evi and migrations of birds from this Appendix 12.2 (APP-470), none	SPA are I	ikely to r	esult in ne	gligible n	umbers pa	assing thre	ough the	East Angl	ia TWO si	ite (see se	-	
b)	The predicted effect attributable assessment for these features a		•				•				overall in-o	combinati	on

Site	43 Dogg	erbank	SCI												
Name of European Site: Distance to East Anglia TWO (km)	365	onbann													
Site Features		effect(s water n		t Anglia Vessel	TWO Interact	ions	Indired prey	t effects	on	Chang quality	es to wa	iter	In-combination		
	С	0	D	С	0	D	C	0	D	C	0	D	С	0	D
Harbour porpoise <i>Phocoena</i> phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

potential for LSE (see paragraph 219 and 220 for harbour seal and paragraphs 168 and 169 for harbour porpoise of the HRA Screening Report. (APP-044)).

Site	44
Name of European Site:	Doggersbank SAC

Distance to East Anglia TWO (km)	232														
Site Features	Likely	effect(s) of Eas	t Anglia	TWO										
	Underwater noise Vessel Interactions I				Indired prey	t effects	on	Chang quality	es to wa	ter	In-com	In-combination			
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise Phocoena phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraph 219 and 220 for harbour seal, paragraphs 190 and 191 for grey seal and paragraphs 168 and 169 for harbour porpoise of the HRA Screening Report (APP-044)).

Site	45														
Name of European Site:	Dorr	noch Firth	n and Loc	h Fleet S	PA & Ran	nsar									
Distance to East Anglia TWO (km)	722 ((windfarn	n site) an	d 714 (off	shore cal	ble corrid	or)								
Site Features		Likely ef	fect(s) of	East Angl	ia TWO										
		Collision	n mortality		Displace	ement/Dis	turbance	Barrier E	Effect		Cumulat combina				
		С	0	D	С	0	D	С	0	D	С	0	D		

| Wintering and passage waterbird
assemblage including as named
features curlew, dunlin, greylag goose,
wigeon, bar-tailed godwit, teal,
oystercatcher | N (a) | N (c) | N (c) | N (c) |
|--|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Breeding osprey | N (b) |

a) Survey data show little or no evidence of these features occurring in the East Anglia TWO site, and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), none of these species/SPA features were recorded in the East Anglia TWO windfarm site)..

- b) Osprey has not been observed in the East Anglia TWO site, and it is improbable than any ospreys from the SPA migrate through the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), none of these species/SPA features were recorded in the East Anglia TWO windfarm site).
- c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features (see Table 8.2 of the HRA Screening Report (APP-044).

Site	46														
Name of European Site:	Dorno	ch Firtl	h and M	lorrich N	lore SA	C									
Distance to East Anglia TWO (km)	766														
Site Features	Likely	effect(s) of Eas	t Anglia	TWO										
	Under	water no	oise	Vessel	Interact	ions	Indirect prey	t effects	on	Chang quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	C	0	D	C	0	D	С	0	D
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the potential for LSE (see Tab	•	•	-		-		he exter	it of any	effect or	n individu	als from	this site	would re	esult in n	0

Site Name of European Site:	47 Dråby	Vig SA	.C												
Distance to East Anglia TWO (km)	642														
Site Features	Likely	effect(s) of Eas	t Anglia	TWO										
	Under	water n	oise	Vessel	Interact	ions	Indired prey	ct effects	on	Chang quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the potential for LSE (see par	•	•	-		-				effect or	n individu	als from	this site	would re	sult in n	0

Site Name of European Site: Distance to East Anglia TWO (km)	48 Düner 486	landsc	haft Sü	d-Sylt S/	AC										
Site Features		effect(s) water no		t Anglia ⁻ Vessel	TWO Interact	ions	Indirec prey	t effects	on	Chang quality	es to wat	er	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 190 and 191 and Table 7.3 of the HRA Screening Report (APP-044).

Site		49)															
Name of European Sit	te:	Dı	unes De	e La Pla	ine Ma	ritime F	lamano	le SAC										
Distance to East Angl (km)	ia TWC	D 10	6 (winc	lfarm si	ite) and	118 (o	ffshore	cable o	corridor	.)								
Marine Mammals																		
Site Features	Likely e	effect(s)	of East	Anglia	TWO													
	Underv	vater no	oise	Vessel	Interac	tions	Indirec prey	t effects	s on	Chango quality	es to wa	ater	In-com	binatior	I			
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D			
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)			
Benthic Habitats				1		1		1	1	1			1	1	1			
Site Features	Perma	nent los	S	Tempo disturb		ysical		ering du sed susj ent			obilisatio ninate d ents	on of	Underv vibratic		ise and	In-com	binatior	1
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea water all the time		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)		N (b)	N (b)	N (b)	N (b)

Site		49)														
Name of European Sit	e:	Dı	unes D	e La Pla	ine Ma	ritime F	laman	de SAC									
Distance to East Angl (km)	ia TWC	D 10	06 (wind	dfarm s	ite) and	l 118 (o	offshore	cable	corrido	r)							
Mudflats and sandflats not covered by seawater at low tide	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)	N (b)	N (b)
a) The distance be paragraph 219		-		-	-		-	O and t	he site i	s beyon	d that of potent	al for di	rect or	indirec	teffects	(see	_

b) As it has been agreed through the scoping and Evidence Plan Process (EPP) (see Appendix 9.1 (APP-458) that transboundary effects are scoped out for EIA (given the distance to sites in other Members States jurisdictions) these have also been screened out from consideration for HRA purposes.

Site	50											
Name of European Site:	East Caith	ness Cliffs	s SPA									
Distance to East Anglia TWO (km)	741											
Site Features	Likely	effect(s) of	East Ang	lia TWO								
	Collisi	on mortality	/	Displac	ement/Dis	turbance	Barrier	Effect		Cumula combina		
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features cormorant, guillemot, herring gull, puffin <i>Fratercula arctica</i> , razorbill,		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)

Site	50											
Name of European Site:	East Caithn	ess Cliffs	SPA									
Distance to East Anglia TWO (km)	741											
shag, fulmar and great black-backe	d											
Breeding peregrine Falco peregrin	JS	N (b)		N (b)								

a) East Caithness Cliffs SPA is beyond maximum foraging range of designated seabird species so has no breeding season connectivity. Proportions
of these populations migrating through the East Anglia TWO site are small relative to BDMPS (see Table 8.2 of the HRA Screening Report (APP044)..

- b) Peregrines breeding in the UK normally remain close to their breeding areas throughout the year, and are therefore very unlikely to migrate offshore (see Table 8.2 of the HRA Screening Report (APP-044).
- c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at East Caithness Cliffs SPA (see Table 8.2 of the HRA Screening Report (APP-044).

Site Name of Europ Distance to Eas	ean Site: st Anglia TWO (km)	51 Essex Estuaries SAC 77 (windfarm site) 55 (c cable corridor)	offshore			
Benthic Feature	es					
Site Features	Likely effect(s) of East	st Anglia TWO				
	Permanent loss	Temporary physical disturbance	Smothering due to increased suspended sediment	Re- mobilisation of contaminated sediments	Underwater noise and vibration	In-combination

Site Name of Europ	ean Site):	l		stuaries													
Distance to Ea	st Angli	a TWO (NIII	77 (winc cable co	lfarm sit prridor)	te) 55 (c	offshore											
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Estuaries	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
Mudflats and sandflats not covered by seawater at low tide	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
	tance be of the wo						-		•		-	any pote	ential LS	E. Indire	ect far-fie	eld effec	ts are lir	nited

Site Name of European Site: Distance to East Anglia TWO (km)	51 Essex 77 (wir			C i (offsho	re cable	corrido	r)								
Marine Mammals															
Site Features	Likely e	effect(s)	of East	t Anglia T	TWO										
	Underv	vater no	oise	Vessel	Interacti	ons	Indirec prey	t effects	on	Change quality	es to wat	er	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D

Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the potential for LSE (see para	•	•	-		-						als from t	his site v	would re	sult in no	
Site	52														
Name of European Site:	Estuai SAC	re De L	a Cancl	he, Dune	es Picar	des Plac	quees Si	ur L'anci	enne Fa	llaise, Fo	oret D'ha	rdelot E	t Falaise	e D'equil	nen
Distance to East Anglia TWO (km)	155														
Site Features	Likely	effect(s)	of East	Anglia	ΓWO										
	Underv	vater no	bise	Vessel	Interacti	ons	Indirec prey	t effects	on	Change quality	es to wat	er	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the potential for LSE (see para	-	-	-		-			-			als from t	his site v	would re	sult in no	

Site Name of European Site: Distance to East Anglia TWO (km)	53 Estuaire de la Seine 309	SCI			
Site Features	Likely effect(s) of Eas Underwater noise	t Anglia TWO Vessel Interactions	Indirect effects on prey	Changes to water quality	In-combination

Site		53															
Name of European Site: Distance to East Anglia TWO (km)		Es	Estuaire de la Seine SCI														
		D 309															
		(D	С	0	D	С	0	D	С	0	D	С	0	D	
Harbour seal Phoca vitulina		N(a) N(a) N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)	
a) The distance potential for L		•	•	-		-			•			als from	this site	e would	result in r	0	
Site		54															
	D :4	Γ.	tuoiroo	tlittoral	nicarde	(baies de	Somme	et d'Au	hia) SA	C							
Name of European 3	Site:	ES	tuaires	et intior al	picalus	(Dales ut				•							
Name of European S Distance to East An (km)					and 199	`				0							
Distance to East An (km)						`				0							
Distance to East An (km) Marine Mammals	glia TW(9 (windf	arm site)	and 199	`											
Distance to East An (km) Marine Mammals	glia TWO	D 18	9 (windf of East A	arm site) nglia TW(and 199	(offshor	e cable c		· 		nges to	water q	uality	In-comb	ination		
Distance to East An (km) Marine Mammals	glia TWO	D 18 effect(s) c	9 (windf of East A	arm site) nglia TW(and 199)	(offshor	e cable c	orridor)	· 		nges to	water q		In-comb C	ination	D	
Distance to East An (km) Marine Mammals Site Features Grey seal	glia TWO	D 18 effect(s) c vater nois	9 (windf of East A	arm site) nglia TWC Vessel	and 199	(offshor	e cable c	corridor)	on prey	Cha	0)			D N (a)	
Distance to East An	glia TWO Likely o Underv C	D 18 effect(s) c vater nois O	9 (windf of East A se D	arm site) nglia TWC Vessel C	and 199	ons	e cable c	eorridor) et effects	on prey	Cha C N (a))	N) I (a)	С	0		
Distance to East An (km) Marine Mammals Site Features Grey seal Halichoerus grypus Harbour seal Phoca	glia TWO Likely o Underv C N (a)	D 18 effect(s) c vater nois O N (a)	9 (windf of East A se D N (a)	arm site) nglia TWC Vessel C N (a)	and 199 Interaction O N (a)	ons D N (a)	e cable c Indirec C N (a)	eorridor) et effects O N (a)	on prey D N (a)	Cha C N (a))	N) I (a)	C N (a)	O N (a)	N (a)	

Site				5	4																
Name of	Europe	ean Site	e:	E	stuaire	es et lit	toral pi	cards ((baies d	de Son	nme et	d'Auth	ie) SAC	;							
Distance (km)	to Eas	t Angli	a TWO	1	89 (wir	dfarm	site) aı	nd 199	(offshc	ore cab	le corr	idor)									
Site Features	Perm loss	anent ł	nabitat	physi	oorary ical rbance		increa	ended	due to		nobilisa ntamina nents			rwater ribratior			omagn (EMF)	etic	In-cor	nbinati	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
River lamprey	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
a) T	he dista	ance be	etween	the pot	ential in	npact r	ange of	f East A	nglia T	WO ar	d the e	xtent o	f any ef	fect on	individ	uals fro	m this s	site wou	uld resu	It in no	, I

potential for LSE (see paragraphs 190 and 191, paragraphs 219 and 220 and Table 7.3 of the HRA Screening Report (APP-044)).

b) It was agreed as part of the East Anglia TWO Scoping Report that transboundary impacts on fish would be scoped out of the EIA. We have therefore screened them out from consideration in the HRA and Evidence Plan Process (EPP) Appendix 10.1 (APP-462).

Site	55											
Name of European Site:	Exe Estua	iry SPA & F	Ramsar									
Distance to East Anglia TWO (km)	416 (wind	farm site) a	ind 390 (of	ffshore ca	able corri	dor)						
Site Features	Likely	effect(s) of	East Angli	ia TWO								
	Collis	ion mortality	,	Displace	ement/Dis	turbance	Barrier E	Effect		Cumulat	ive/In-con	nbination
	С	0	D	С	0	D	С	0	D	С	0	D
Migratory waterbird assemblage including as named features brent		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)

Site	55
Name of European Site:	Exe Estuary SPA & Ramsar
Distance to East Anglia TWO (km)	416 (windfarm site) and 390 (offshore cable corridor)
goose, dunlin, oystercatcher, blac tailed godwit, grey plover, Slavon grebe <i>Podiceps auritus</i> , avocet	
likely to result in negligibl	no evidence of Exe Estuary SPA features occurring in the East Anglia TWO site, and migrations of birds from this SPA are e numbers passing through the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), none of these re recorded in the East Anglia TWO windfarm site) (see Table 8.2 of the HRA Screening Report (APP-044)).
<i>,</i>	outable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination Itures at Exe Estuary SPA & Ramsar (see Table 8.2 of the HRA Screening Report (APP-044)).

Site 56 Name of European Site: Fa	ir Isle SP/	A										
Distance to East Anglia TWO 83 (km)	0											
Site Features		fect(s) of mortality	East Angli		ement/Dist	turbance	Barrier I	Effect		Cumula	tive/In-cor	nbination
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features Arctic skua <i>Stercorarius parasiticus</i> , fulmar, gannet, great skua <i>Stercorarius skua</i> , puffin, razorbill, Arctic tern, guillemot, kittiwake, shag		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)
Fair Isle wren		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)

a) Fair Isle SPA is beyond maximum foraging range of designated seabird species so has no breeding season connectivity. Proportions of these
populations migrating through the East Anglia TWO site are likely to be very small relative to BDMPS (see Table 8.2 of the HRA Screening Report
(APP-044)).

b) Fair Isle wren is a resident Shetland subspecies that is thought never to leave the island (see Table 8.2 of the HRA Screening Report (APP-044)).

c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Fair Isle SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	57											
Name of European Site:	Falaise di	u Bessin (Occidenta	I SPA								
Distance to East Anglia TWO (km)	365											
Site Features	Likely e	effect(s) of	East Ang	lia TWO								
	Collisio	n mortality	/	Displac	ement/Dis	sturbance	Barrier	Effect		Cumula	tive/In-co	mbination
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding kittiwake, herring gull, lesser black-backed gull, fulmar		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (g)	N (g)	N (g)
Nonbreeding red-throated diver		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (g)	N (g)	N (g)
Nonbreeding cormorant, shag, red- breasted merganser		N (c)		N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (g)	N (g)	N (g)
Nonbreeding guillemot, razorbill		N (d)		N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (g)	N (g)	N (g)
Nonbreeding peregrine, short-eared owl Asio flammeus		N (e)		N (e)	N (e)	N (e)	N (e)	N (e)	N (e)	N (g)	N (g)	N (g)
Breeding Dartford warbler Sylvia undata		N (f)		N (f)	N (f)	N (f)	N (f)	N (f)	N (f)	N (f)	N (f)	N (f)

a) The SPA is far beyond maximum foraging range of designated seabird species so has no breeding season connectivity. Proportions of these populations migrating through the East Anglia TWO site are likely to be extremely small relative to BDMPS, as these species are likely to migrate into the Atlantic rather than northwards into the North Sea in autumn, and are unlikely to pass through the North Sea in spring (see Table 8.2 of the HRA Screening Report (APP-044))..

b) Nonbreeding red-throated divers at this SPA are likely to include birds from Scandinavia and the UK, especially juveniles which winter further south than adults. Their migrations between breeding grounds and the SPA probably take most individuals along the continental coast of Europe rather than across the North Sea. Small numbers may cross the North Sea towards the UK or Icelandic breeding grounds. However, red-throated divers tend to fly low over the sea so will be at very low risk of collision. Red-throated divers strongly avoid disturbance and offshore wind farms and so may have to fly further by flying around the East Anglia TWO site rather than through the wind farm. However, in the context of a migration of over

Site	57											
Name of European Site:	Falaise du	Bessin O	ccidental	SPA								
Distance to East Anglia TWO (km)	365											
Site Features	Likely ef	fect(s) of	East Angli	a TWO								
	Collision	mortality		Displace	ement/Dist	urbance	Barrier E	Effect		Cumulat	ive/In-com	bination
	С	0	D	С	0	D	С	0	D	С	0	D
1000km, the extra distance flo	wn to pass a	an offshore	e wind farr	n represe	nts a negl	igible incre	ease in en	ergy expe	nditure fo	r the very	few indivi	duals

1000km, the extra distance flown to pass an offshore wind farm represents a negligible increase in energy expenditure for the very few individ that might be affected (see Table 8.2 of the HRA Screening Report (APP-044)).

- c) Cormorants, shags and red-breasted mergansers do not normally occur at the East Anglia TWO site based on bird survey data (see section 5.1 of Appendix 12.2 (APP-470). Furthermore, these species tend to fly low over the sea and so would be at negligible risk of collision, and do not show displacement or barrier effects. Indeed, cormorants seem to benefit from offshore wind farm structures permitting them to extend foraging range offshore, and the same may be true for shag and red-breasted merganser which may also benefit from foraging opportunities around turbine bases.
- d) Nonbreeding guillemots and razorbills fly low over the sea and so are at very low risk of collision. However, they are partially displaced from offshore wind farms and may fly around rather than through offshore wind farms. A very small proportion of the guillemots and razorbills from this SPA might migrate through the East Anglia TWO site towards breeding areas further north, but the area of foraging habitat lost to these birds if they avoid the East Anglia TWO site would be negligible in relation to the wider area of the North Sea and Channel over which they forage, and the increase in migration distance to fly around rather than through the wind farm would be negligible in relation to a migration distance of hundreds of kilometres (see Table 8.2 of the HRA Screening Report (APP-044)).
- e) Peregrines in western Europe do not normally migrate, so would be extremely unlikely to move between this SPA and the East Anglia TWO site. Short-eared owls are more migratory, and sometimes cross the North Sea, but since this SPA is 445km from the East Anglia TWO site, the chances of a short-eared owl from the SPA passing through the East Anglia TWO site are extremely small (see Table 8.2 of the HRA Screening Report (APP-044)).
- f) Dartford warbler is a resident species that is unlikely to move from this SPA (see Table 8.2 of the HRA Screening Report (APP-044)).
- g) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Falaise du Bessin Occidental SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	58																			
Name of European Site: Distance to East						ap Gris-N re cable o			u Cha	atelet,	Marais	de T	Tarding	ghen et	Dunes	de Wis	sant SA	NC		
Anglia TWO (km)	Ì				`			<u> </u>												
Marine Mammals																				
Site Features	Likely	effect(s) of East	Anglia	TWO															
	Under	water n	oise	Vess	el Intera	ctions	Indire prey	ect effe	ects o	'n	Chang quality		o wate	r	In-com	binatio	n			
	С	0	D	С	0	D	С	0	D		С	0	D		С	0	D			
Harbour porpoise Phocoena phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a))	N(a)	N(a)	N(a)			
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N (a)	N(a)	N(a)	N (a	N(a)	N(a	a)	N(a)		N(a))	N(a)	N(a)	N(a)			
Harbour seal <i>Phoca</i> vitulina	N(a)	N(a)	N(a)	N (a)	N(a)	N(a)) (a)	N(a)	N(a	a)	N(a)		N(a))	N(a)	N(a)	N(a)			
Benthic Habitats							_/					_						<u> </u>		
Site Features	Perma	anent los	65		nporary urbance	physical	incr	otherin eased iment			cor		bilisatio inate d nts			rwater ibratior		In-coi	mbinatio	n
	С	0	D	С	0	D	С	0)	D	С		0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea water all the time	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b		N (b)	N (b)			N (b)	N (b)		N (b)	N (b)	N (b)	N (b)

Site	58																	
Name of European Site: Distance to East Anglia TWO (km)			ran aux (n site) an						atelet, M	arais de	e Tarding	ghen et	Dunes c	le Wis	sant SA	AC		
Mudflats and sandflats not covered by seawater at low tide	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)		N (b)	N (b)	N (b)	N (b)
Reefs	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)		N (b)	N (b)	N (b)	N (b)

 a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 219 and 220 for harbour seal, paragraphs 190 and 191 for grey seal and paragraphs 168 and 169 for harbour porpoise of the HRA Screening Report (APP-044)).

b) As it has been agreed through the scoping and Evidence Plan Process (EPP) (see Appendix 9.1 (APP-458) process that transboundary effects are scoped out for EIA (given the distance to sites in other Members States jurisdictions) these have also been screened out from consideration for HRA purposes.

Site Name of European Site: Distance to East Anglia TWO (km)	59 Faray 826	and Ho	Im of Fa	aray SA	C										
Site Features		effect(s) water no		Anglia Vessel	TWO Interact	ions	Indirec prey	t effects	on	Chang quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 190 and 191 and Table 7.3 of the HRA Screening Report (APP-044)).

Site	60													
Name of European Site:	Farne Is	lands SP	A											
Distance to East Anglia TWO (km)	442													
Site Features	Likely ef	cely effect(s) of East Anglia TWO												
	Collision	mortality		Displac	ement/Dis	turbance	Barrier	Effect		Cumula	itive/In-coi	mbinatio		
	С	0	D	С	0	D	С	0	D	С	0	D		
Breeding Arctic tern, common tern, Sandwich tern		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)		

 a) Farne Islands SPA is beyond maximum foraging range of these designated seabird species so has no breeding season connectivity. Proportions of these populations migrating through the East Anglia TWO site are likely to be very small relative to BDMPS (see Table 8.2 of the HRA Screening Report (APP-044).

b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Farne Islands SPA (see Table 8.2 of the HRA Screening Report (APP-044).

Site	61			
Name of European Site:	Fetlar SPA			
Distance to East Anglia TWO (km)	932			
Site Features	Likely effect(s) of East Ang	lia TWO		
	Collision mortality	Displacement/Disturbance	Barrier Effect	Cumulative/In-combination

Site	61											
Name of European Site:	Fetlar SPA											
Distance to East Anglia TWO (km)	932											
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage includ as named features Arctic skua, fulma great skua, Arctic tern	-	N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)
Breeding dunlin, whimbrel <i>Numenius phaeopus</i> , red-necked phalarope <i>Phalaropus lobatus</i>	3	N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
 Fetlar SPA is beyond the map populations migrating through 	-		-		•					• •		
 b) Dunlin, whimbrel and red-net (APP-470). Red-necked phat Greenland and Canada, and whimbrel from Fetlar SPA met (APP-044). 	laropes from I so would no	Fetlar SP/ t pass nea	A have bee r to East A	en trackeo Inglia TW	d by geolo O (see Ta	cator and ble 8.2 of	migrate fi the HRA	om Shetla Screening	and to the Report (A	Pacific Oc APP-044).	cean via lo Dunlin an	celand, Id

c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Fetlar SPA (see Table 8.2 of the HRA Screening Report (APP-044).

Site	62											
Name of European Site:	Firth of Fo	rth SPA 8	Ramsar									
Distance to East Anglia TWO (km)	511 (windf	arm site)	and 501 (offshore	cable cori	ridor)						
Site Features	Likely ef	fect(s) of	East Angli	a TWO								
	Collision	mortality		Displace	ement/Dist	urbance	Barrier E	ffect		Cumulat	ive/In-com	nbination
	С	0	D	С	0	D	С	0	D	С	0	D
Wintering and passage waterbird assemblage including as named features curlew, dunlin, goldeneye, great crested grebe, knot, lapwing, mallard <i>Anas platyrhynchos</i> , pink- footed goose <i>Anser brachyrhynchus</i> , red-breasted merganser, ringed plover, Sandwich tern, Slavonian grebe, turnstone, wigeon, common scoter <i>Melanitta nigra</i> , golden plover, long- tailed duck <i>Clangula hyemalis</i> , redshank, shelduck, bar-tailed godwit, cormorant, eider <i>Somateria mollissima</i> , grey plover, oystercatcher, red-throated diver, scaup, velvet scoter <i>Melanitta</i> <i>fusca</i>		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)

a) Migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site during migration. Therefore, proportions of these populations migrating through the East Anglia TWO site are likely to be extremely small relative to BDMPS (see Table 8.2 of the HRA Screening Report (APP-044).

b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Firth of Forth SPA & Ramsar (see Table 8.2 of the HRA Screening Report (APP-044).

Site 63	3											
Name of European Site: Fi	rth of Tay	& Eden E	stuary SF	PA & Ran	nsar							
Distance to East Anglia TWO 55 (km)	51 (windfa	rm site) a	nd 542 (of	ffshore c	able corri	dor)						
Site Features	Likely e	fect(s) of	East Angli	ia TWO								
	Collision	n mortality		Displac	ement/Dis	turbance	Barrier	Effect		Cumula	ative/In-co	mbination
	С	0	D	С	0	D	С	0	D	С	0	D
Wintering and passage waterbird assemblage including as named features common scoter, cormorant, eider, goosander <i>Mergus merganser</i> , grey plover, long-tailed duck, red- breasted merganser, sanderling, velvet scoter, dunlin, greylag goose, redshank, oystercatcher, bar-tailed godwit, goldeneye, Icelandic black- tailed godwit <i>Limosa limosa islandica</i> , pink-footed goose		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (d)	N (d)	N (d)
Breeding marsh harrier		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Breeding little tern		N (c)		N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)

 a) Survey data show little or no evidence of Firth of Tay & Eden Estuary SPA features occurring in the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044).

- b) Marsh harrier is a migrant species. Satellite tracking suggests that marsh harriers from Scotland migrate overland to the south coast of England and over the Channel to France, rather than across the North Sea, and so are unlikely to pass through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044).
- c) Breeding little tern has a maximum foraging range of 11km from colonies, so would have no connectivity with the East Anglia TWO site. Migrating little terns are considered to be 'extremely coastal on passage with very few sightings in open ocean or inland' (Forrester et al. 2007), so are unlikely to pass through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044).
- d) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Firth of Tay & Eden Estuary SPA & Ramsar (see Table 8.2 of the HRA Screening Report (APP-044)..

Site Name of European Site: Distance to East Anglia TWO (km)	SA	Firth of Tay & Eden Estuary SAC 548													
Site Features	Likely effect(s) of East Anglia TWO														
	Under	water no	oise	Vesse	el interac	tions	Indire prey	ct effects	son	Chang quality	ges to w /	ater	In-com	bination	
	C O D					D	С	0	D	С	0	D	С	0	D
Harbour seal Phoca vitulina	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
a) The distance between t potential for LSE (see p	-	-	-		-				-	on indiv	iduals fr	om this s	site would	d result in	no

Site	65													
Name of European Site:	Flamb	oorough	and File	ey Coast S	SPA									
Distance to East Anglia TWO (km)	248													
Site Features	L	Likely effect(s) of East Anglia TWO												
	С	collision n	nortality		Displac	ement/Dis	turbance	Barrier	Effect		Cumula	ative/In-co	mbination	
	С	; (0	D	С	0	D	С	0	D	С	0	D	
Breeding kittiwake		•	Y (a)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (c)	Y (a)	N (c)	
Breeding gannet		•	Y (a)		N (d)	Y (d)	N (d)	N (e)	N (e)	N (e)	N (c)	Y (a)	N (c)	
Breeding common guillemot			N (f)		N (g)	Y (h)	N (g)	N (g)	N (i)	N (g)	N (c)	Y (h)	N (c)	
Breeding razorbill			N (f)		N (g)	Y (h)	N (g)	N (g)	N (i)	N (g)	N (c)	Y (h)	N (c)	
Breeding puffin			N (f)		N (g)	Y (h)	N (g)	N (g)	N (i)	N (g)	N (c)	Y (h)	N (c)	

a) Band model estimates of collision mortality indicate that LSE cannot be ruled out at the Screening stage (see Appendix 12.1 Annex 4 (APP-470)).

b) Kittiwakes are not considered to be at risk of disturbance and displacement or barrier effects at offshore wind farms therefore LSE can be ruled out.

c) The predicted effect attributable to the proposed East Anglia TWO project is so small that it would not significantly contribute to or alter the overall incombination assessment for these features at Flamborough and Filey Coast SPA (see Table 8.2 of the HRA Screening Report (APP-044).

d) Flamborough and Filey Coast SPA is 239km from East Anglia TWO. Thaxter et al. (2012) report a mean foraging range of breeding gannets as 92.5km, and a maximum recorded distance of 590km. East Anglia TWO is therefore considerably beyond the mean foraging range of breeding gannets, but within their maximum range (see paragraph 269 of the HRA Screening Report (APP-044). Breeding gannets from Flamborough & Filey Coast SPA may therefore be affected by displacement (see Table 8.2 of the HRA Screening Report (APP-044). Searle et al. (2014) found that even for offshore wind farms considerably closer to a gannet breeding colony than under consideration here, impacts of displacement were negligible for this species because of its very long foraging range and large area used for foraging. Similarly, impacts of displacement during migration are considered likely to be negligible. Nonetheless, Natural England consider that an LSE cannot be ruled out at the Screening stage.

Site		65
Name	of European Site:	Flamborough and Filey Coast SPA
Distan (km)	ce to East Anglia TWO	248
e)		at risk of barrier effects due to their wide ranging habits (see (d)), and migrating gannets cover very large distances, a to West Africa, so that slight local effects would be negligible in the context of their large migrations and area use, out.
f)	•	ills and puffins tend to fly low over the sea so have a very low risk of collision mortality, therefore LSE can be ruled out Screening Report (APP-044).
g)	Construction and decommis	ssioning impacts are temporary and localised therefore LSE can be ruled out.
h)	guillemots as 37.8km, and a 23.7km, and a maximum re- recorded distance of 200km Filey Coast SPA. It is theref the breeding season. During populations of these species	ast SPA is 216km from East Anglia TWO. Thaxter et al. (2012) report a mean foraging range of breeding common a maximum recorded distance of 135km. Thaxter et al. (2012) report a mean foraging range of breeding razorbills as corded distance of 95km. Thaxter et al. (2012) report a mean foraging range of breeding puffin as 4km, and a maximum b. East Anglia TWO is therefore considerably beyond the normal foraging range of these species from Flamborough and fore unlikely that any breeding adults from Flamborough and Filey Coast SPA will be present at East Anglia TWO during g the nonbreeding season, birds from Flamborough and Filey Coast SPA are likely to be mixed with the large BDMPS s so that apportioning of the impact of the low level of displacement mortality generates a negligible impact to ast SPA. Nonetheless, Natural England consider that an LSE cannot be ruled out at the Screening stage (see paragraph Report (APP-044).
i)	Coast SPA, there will be no Coast SPA are likely to be r	beyond the normal foraging range of breeding common guillemots, razorbills and puffins from Flamborough and Filey breeding season barrier impact for those populations. During the nonbreeding period birds from Flamborough and Filey nixed with the large BDMPS populations of these species so that apportioning of the impact of the low level of rge BDMPS population apportions a negligible impact to Flamborough and Filey Coast SPA (see paragraph 269 of the P-044)

Name of Eu Distance to (km)			0		orough ffshore													
Site	Likely	effect(s)	of East	Anglia T	WO													
Features	Perma	anent los	SS	Temp disturl	orary ph bance	iysical	Smoth increa suspe sedim	nded	ue to		obilisatio minated ents	on of		rwater n ibration	oise	In-cor	nbinatio	n
	C O D				0	D	С	0	D	С	0	D	С	0	D	С	0	D
Submerged or partially submerged sea caves	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)		N (a)	N (a)	N (a)	N (a)

Site 67												
Name of European Site: Fo	rth Island	s SPA										
Distance to East Anglia TWO 519 (km)	9											
Site Features	Likely ef	fect(s) of	East Angli	a TWO								
	Collision	mortality		Displac	ement/Dis	turbance	Barrier	Effect		Cumula	tive/In-co	mbination
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features gannet, kittiwake, lesser black-backed gull, roseate tern, Sandwich tern, guillemot, razorbill, fulmar, common tern, Arctic tern, cormorant, herring gull, puffin, shag		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)
a) Forth Islands SPA is beyond ma populations migrating through thb) The predicted effect attributable	e East An	glia TWO	site are sr	nall relati	ve to BDN	IPS (see T	able 8.2	of the HR	A Screenir	ng Report	(APP-044	·)).
assessment for these features a	t Forth Isla	ands SPA	(see Tabl	e 8.2 of th	ne HRA So	creening R	Report (AF	PP-044)).				
Site 6	8											
Name of European Site: F	oula SPA											
Distance to East Anglia TWO (km) 9	02											
Site Features	Likely ef	fect(s) of	East Angli	a TWO								
	Collision	mortality		Displac	ement/Dis	turbance	Barrier	Effect		Cumula	tive/In-co	mbination
	С	0	D	С	0	D	С	0	D	С	0	D

N (a) N (a)	a) N (a) N (a)	N (a)	N (a)	N (b)	N (b)	N (b
						ated seabird species so has no breeding season connectivity. Proportions of these are small relative to BDMPS (see Table 8.2 of the HRA Screening Report (APP-044)

b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Foula SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	69											
Name of European Site:	Foulness	SPA and F	Ramsar									
Distance to East Anglia TWO (km)	85 (windfa	rm site) a	nd 69 (off	shore cal	ble corrid	or)						
Site Features	Likely e	Likely effect(s) of East Anglia TWO										
	Collision	n mortality		Displace	ement/Dist	turbance	Barrier E	Effect		Cumulat	ive/In-cor	nbination
	С	0	D	С	0	D	С	0	D	С	0	D
Wintering and passage waterbird assemblage including as named features brent goose, knot, oystercatcher, bar-tailed godwit, grey plover, avocet, redshank		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (e)	N (e)	N (e)

Site	69											
Name of European Site:	Foulness S	PA and R	lamsar									
Distance to East Anglia TWO (km)	85 (windfai	m site) aı	nd 69 (off	shore cal	ole corrid	or)						
Nonbreeding hen harrier		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (e)	N (e)	N (e)
Breeding ringed plover, avocet		N (c)		N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)
Breeding little tern, common tern, Sandwich tern		N (d)		N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (d)

a) Survey data show little or no evidence of Foulness SPA features occurring in the East Anglia TWO site, and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site during migration (see section 5.1 of Appendix 12.2 (APP-470).

- b) Survey data show no evidence of hen harrier occurring in the East Anglia TWO site, and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site during migration, as the species is likely to migrate overland rather than over sea where the option is available (see section 5.1 of Appendix 12.2 (APP-470), none of these species/SPA features were recorded in the East Anglia TWO windfarm site) (see Table 8.2 of the HRA Screening Report (APP-044))..
- c) Ringed plover and avocet have not been observed during bird site-specific surveys. It is highly unlikely that these birds would migrate through the East Anglia TWO site as their migration is likely to take a coastal route and cross sea at narrow points such as The English Channel. If they did migrate through the East Anglia TWO site their flight height is likely not to be at collision risk height (see Table 8.2 of the HRA Screening Report (APP-044)).
- d) Little tern, common tern and Sandwich tern have maximum foraging ranges from colonies of 11km, 30km and 54km respectively, so there is no connectivity between the SPA and East Anglia TWO site. Furthermore, these species tend to forage in coastal waters rather than offshore. Therefore, collision risk, displacement and barrier effects can be excluded (see Table 8.2 of the HRA Screening Report (APP-044)).
- e) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Foulness SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	70													
Name of European Site:	Fowlsheu	gh SPA												
Distance to East Anglia TWO (km)	580													
Site Features	Likely effect(s) of East Anglia TWO													
	Collisio	Displacement/Disturbance Barrier Effect Cumulative/In-combination												
	С	0	D	С	0	D	С	0	D	С	0	D		
Breeding seabird assemblage including as named features fulmar, guillemot, kittiwake, razorbill, herring gull		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)		
 a) Fowlsheugh SPA is beyond maximum foraging range of designated seabird species so has no breeding season connectivity. Proportions of these populations migrating through the East Anglia TWO site are likely to be very small relative to BDMPS (see Table 8.2 of the HRA Screening Report (APP-044)). 														
b) The predicted effect attributable	e to East A	nglia TWC) is so sma	all that it w	ould not s	ignificantl	v contribu	te to or al	ter the ove	erall in-co	mbination			

assessment for these features at Fowlsheugh SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site 7	1											
Name of European Site: F	risian Fron	t SPA										
Distance to East Anglia TWO 1 (km)	3											
Site Features	Likely et	ffect(s) of	East Angli	a TWO								
	Collisior	n mortality		Displace	ement/Dist	urbance	Barrier E	ffect		Cumulat	ive/In-com	nbination
	С	0	D	С	0	D	С	0	D	С	0	D

Nonbreeding common guillemot, great	N (a)	N (b)	N (b)	N (b)						
skua, great black-backed gull, lesser										
black-backed gull										

a) Migrations of birds from this pSPA are likely to result in negligible numbers passing through the East Anglia TWO site during migration relative to the size of BDMPS regional populations (see Table 8.2 of the HRA Screening Report (APP-044)).

b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Frisian Front pSPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	72												
Name of European Site:	Gibraltar I	Point SPA	and Ram	sar									
Distance to East Anglia TWO (km)	149												
Site Features	Likely e	Likely effect(s) of East Anglia TWO											
	Collisio	Collision mortality D		Displace	ement/Dis	turbance	Barrier	Effect		Cumula	itive/In-co	mbination	
	С	0	D	С	0	D	С	0	D	С	0	D	
Nonbreeding sanderling, bar-tailed godwit, grey plover		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)	
Breeding little tern		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	

a) Survey data show no evidence of Gibraltar Point SPA features (sanderling, bar-tailed godwit, grey plover) occurring in the East Anglia TWO site, (see section 5.1 of Appendix 12.2 (APP-470), and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site during migration (see Table 8.2 of the HRA Screening Report (APP-044)).

b) Breeding little tern has a maximum foraging range of 11km (Thaxter et al. 2012) from colonies, so would have no connectivity with the East Anglia TWO site. Migrating little terns are considered to be 'extremely coastal on passage with very few sightings in open ocean or inland' (Forrester et al. 2007), so are unlikely to pass through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	72
Name of European Site:	Gibraltar Point SPA and Ramsar
Distance to East Anglia TWO (km)	149
, .	ble to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination s at Gibraltar Point SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044)).

Great Yarr	nouth and	d North De	enes SPA								
43 (windfa	rm site) a	nd 34 (off	shore ca	ble corric	lor)						
Likely effect(s) of East Anglia TWO											
Collisior	n mortality		Displace	ement/Dis	turbance	Barrier	Effect		Cumula	tive/In-co	mbination
С	0	D	С	0	D	С	0	D	С	0	D
	N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)
	43 (windfa Likely ef Collision	43 (windfarm site) a Likely effect(s) of Collision mortality C O N (a)	43 (windfarm site) and 34 (off Likely effect(s) of East Angli Collision mortality C O	43 (windfarm site) and 34 (offshore call Likely effect(s) of East Anglia TWO Collision mortality Displace C O D C N (a) N (a) N (a)	Likely effect(s) of East Anglia TWO Displacement/Dis Collision mortality Displacement/Dis C O D C O N (a) N (a) N (a) N (a)	43 (windfarm site) and 34 (offshore cable corridor) Likely effect(s) of East Anglia TWO Collision mortality Displacement/Disturbance C O D C O C O D C O D C O D C O	43 (windfarm site) and 34 (offshore cable corridor) Likely effect(s) of East Anglia TWO Collision mortality Displacement/Disturbance C O C O C O C O C O Displacement/Disturbance Barrier	43 (windfarm site) and 34 (offshore cable corridor) Likely effect(s) of East Anglia TWO Collision mortality Displacement/Disturbance Barrier Effect C 0 D C O D C O D C O D C O D	43 (windfarm site) and 34 (offshore cable corridor) Likely effect(s) of East Anglia TWO Collision mortality Displacement/Disturbance Barrier Effect C O D C O D C O D C O D	43 (windfarm site) and 34 (offshore cable corridor) Likely effect(s) of East Anglia TWO Collision mortality Displacement/Disturbance C 0 D C O Provide Corridor)	A Windfarter site) are

a) Great Yarmouth & North Denes SPA is beyond the maximum foraging range of little tern (11km) and foraging tends to be coastal so has no breeding season connectivity. Proportions of this population migrating through the East Anglia TWO site are likely to be small as the species is thought to remain close to shore during much of its migration through UK waters (see Table 8.2 of the HRA Screening Report (APP-044)).

b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Great Yarmouth & North Denes SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	74												
Name of European Site:	Greater W	ash SPA											
Distance to East Anglia TWO (km)	38 (windfa	arm site) a	ind 24 (of	fshore ca	ble corrio	dor)							
Site Features	Likely e	_ikely effect(s) of East Anglia TWO											
	Collisio	n mortality		Displace	ement/Dis	turbance	Barrier	Effect		Cumula	tive/In-co	mbination	
	С	0	D	С	0	D	С	0	D	С	0	D	
Breeding seabirds (little tern, common tern, Sandwich tern)		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	
Nonbreeding red-throated diver		N (b)		Y (c)	Y (i)	N (d)	N (b)	N (b)	N (b)	Y (c)	Y (i)	N (h)	
Nonbreeding little gull		Y (e)		N (f)	N (f)	N (f)	N (f)	N (f)	N (f)	N (h)	Y (e)	N (h)	
Nonbreeding common scoter		N (g)		N (g)	N (g)	N (g)	N (g)	N (g)	N (g)	N (h)	N (h)	N (h)	

a) Little tern, common tern and Sandwich tern have maximum foraging ranges from colonies of 11km, 30km and 54km respectively, which suggests potential connectivity between the SPA and the East Anglia TWO site. However, the tern colonies are at locations along the Norfolk coast which are beyond these foraging distances from the East Anglia TWO site. Therefore, connectivity between the SPA and East Anglia TWO site is ruled out on the basis of distance. Furthermore, these species tend to forage in coastal waters rather than offshore. Hence, collision risk, displacement and barrier effects can be excluded (see paragraph 273 of the HRA Screening Report (APP-044)).

- b) Red-throated divers fly close to the sea surface and are therefore at extremely low risk of collisions or barrier effects.
- c) LSE cannot be ruled out at screening for impacts of Displacement/Disturbance to nonbreeding red-throated divers as a result of construction work (specifically for export cable laying operations through part of the Greater Wash SPA) (see paragraph 274 of the HRA Screening Report (APP-044)).
- d) Displacement/Disturbance of red-throated diver during operation and decommissioning is considered negligible as the increase in vessel traffic within the SPA due to East Anglia TWO will be negligible compared to the current baseline (see paragraph 274 of the HRA Screening Report (APP-044)).
- e) There is potential for little gull connectivity between the SPA and the East Anglia TWO site, therefore LSE cannot be ruled out at screening for collision risk impacts to nonbreeding little gull.

Site		74
Name	of European Site:	Greater Wash SPA
Distan	ice to East Anglia TWO (km)	38 (windfarm site) and 24 (offshore cable corridor)
f)		offshore wind farms appears to be negligible**, indicating no LSE for this SPA feature as a consequence of s (see paragraph 264 of the Information to Support Appropriate Assessment Report (APP-043)).
g)	-	coters in the East Anglia TWO site since this species favours waters <20m in depth (see section 5.1 of Appendix 12.2 vas also only present at very low densities along the export cable route, therefore no LSE for this SPA feature is
h)	•	ble to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination s at Greater Wash SPA (see Table 8.2 of the HRA Screening Report (APP-044).
i)	0	I England it is considered that Operations and Maintenance vessels may disturb red-throated divers whilst transiting LSE cannot be screened out (see Appendix 12.1 (APP-469)).

Site Name of European Site: Distance to East Anglia TWO (km)	75 Gule F 659	Rev SCI													
Site Features	Likely effect(s) of East / Underwater noise		-	TWO Interact	ions	Indirec prey	t effects	on	Chang quality	es to wat	ter	In-com	bination		
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise <i>Phocoena</i> phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 168 and 169 of the HRA Screening Report (APP-044)).

Site	76														
Name of European Site:	Gullm	arsfjord	den SA	C											
Distance to East Anglia TWO (km)	877														
Site Features	Likely	effect(s) of Eas	t Anglia	TWO										
	Under	water no	oise	Vessel	Interact	ions	Indirec prey	t effects	on	Chang quality	es to wa	iter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

Site				77														
Name of Eu	ropean	Site:		Haisbo	orough,	Hammo	ond and	Wintert	on SAC									
Distance to (km)	East Ai	nglia TW	10	37 (wi	ndfarm	site) and	d 30 (off	shore c	able co	rridor)								
Site	Likely	effect(s)	of East /	Anglia T	WO													
Features	• • • • • • • • • • • • • • • • • • • •		n of	Tempo disturb	orary phy ance	/sical		ering du sed susp ent		Re- mo contarr sedime		n of	Underv and vil	water no	oise	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea water all the time	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)		Y (a)	Y (a)		Y (a)	Y (a)	Y (a)	Y (a)
Reefs	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)		Y (a)	Y (a)		Y (a)	Y (a)	Y (a)	Y (a)
,	-	e of theo direct fa			•		•		-	-		•	•	-			ses of H	RA

Site Name of European Site: Distance to East Anglia TWO (km)	78 Hamb 444	urgisch	ies Wat	tenmeer	SCI										
Site Features		effect(s) water no	·	t Anglia Vessel	TWO Interact	ions	Indirec prey	t effects	on	Chang quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 219 and 220 for harbour seal, paragraphs 190 and 191 for grey seal and paragraphs 168 and 169 for harbour porpoise of the HRA Screening Report (APP-044))..

Site	79											
Name of European Site:	Hamford V	Vater SPA	and Ram	Isar								
Distance to East Anglia ONE North (km)	38 (cable o	corridor)										
Site Features	Likely et	fect(s) of	East Angli	a ONE No	orth							
	Collisior				ement/Dist	urbance	Barrier E	ffect		Cumulat	ive/In-con	nbination
	С	0	D	С	0	D	С	0	D	С	0	D

Site	79											
Name of European Site:	Hamford W	/ater SPA	and Ram	sar								
Distance to East Anglia ONE North (km)	38 (cable c	orridor)										
Wintering and passage waterbird assemblage including as named features teal, brent goose, ringed plover, black-tailed godwit, grey plover avocet, shelduck, redshank	,	N (a)		N (a)	N (c)	N (c)	N (c)					
Breeding little tern		N (b)		N (b)	N (b							

a) Survey data show little or no evidence of Hamford Water SPA features occurring in the East Anglia ONE North site (see section 5.1 of Appendix 12.2 (APP-470), and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia ONE North site during migration (see Table 8.2 of the HRA Screening Report (APP-044)).

- b) Breeding little tern has a maximum foraging range of 11km from colonies, so would have no connectivity with the East Anglia ONE North site.
 Migrating little terns are considered to be 'extremely coastal on passage with very few sightings in open ocean or inland' (Forrester et al. 2007), so are unlikely to pass through the East Anglia ONE North site (see Table 8.2 of the HRA Screening Report (APP-044)).
- c) The predicted effect attributable to East Anglia ONE North is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Hamford Water SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	80														
Name of European Site:	Havet	omkring	g Nordre	Rønner	SAC										
Distance to East Anglia TWO (km)	835														
Site Features	Likely	effect(s)	of East A	Anglia TV	VO										
	Underv	water No	ise	Vessel	interacti	ons	Indirec	t effects	on prey	Chang quality	es to wa	ter	Cumul combir	ative/In- nation	
	С	0	D	С	0	D	С	0	D	С	0	D			
Grey seal	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
Harbour seal	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)

potential for LSE ((see paragraphs 218 and 219 for harbour seal and paragraphs 189 and 190 for grey seal, of the HRA Screening Report (APP-044))

Site Name of European Site: Distance to East Anglia TWO (km)	81 Helgol 428	and mit	Helgo	lander F	elssock	el SAC									
Site Features	Likely e Underv C			t Anglia ⁻ Vessel C	TWO Interact	ions D	Indirec prey C	t effects	on D	Chang quality C	es to wat	ter D	In-com C	bination O	D

Site	81													
Name of European Site:	Helgo	land mi	t Helgo	lander F	elssock	el SAC								
Distance to East Anglia TWO (km)	428													
Harbour porpoise <i>Phocoena</i> phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 219 and 220 for harbour seal, paragraphs 190 and 191 for grey seal and paragraphs 168 and 169 for harbour porpoise of the HRA Screening Report (APP-044)).

Site	32											
Name of European Site:	lermanes	s, Saxa V	ord and V	alla Field	SPA							
Distance to East Anglia TWO (km)	954											
Site Features	Likely ef	fect(s) of	East Angli	ia TWO								
	Collision	mortality		Displace	ement/Dis	turbance	Barrier I	Effect		Cumula	tive/In-cor	mbination
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features gannet, guillemot, red-throated diver, puffin, fulmar, kittiwake, great skua, shag		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)

- a) Hermaness, Saxa Vord & Valla Field SPA is beyond the maximum foraging range of designated seabird species so has no breeding season connectivity. Proportions of these populations migrating through the East Anglia TWO site are likely to be very small relative to BDMPS (see Table 8.2 of the HRA Screening Report (APP-044)).
- b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Hermaness, Saxa Vord & Valla Field SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	83			•											
Name of European Site:	Hesse	elø med	omligg	ende st	enrev S <i>i</i>	AC									
Distance to East Anglia TWO (km)	976														
Site Features	Likely	effect(s) of Eas	t Anglia	TWO										
	Under	water n	oise	Vessel	Interact	ions	Indired prey	t effects	on	Chang quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 219 and 220 for harbour seal and paragraphs 190 and 191 for grey seal of the HRA Screening Report (APP-044)).

Site Name of European Site:

Hir

84

Hirsholmene, havet vest herfor og Ellinge Å's udløb SAC

Distance to East Anglia TWO (km)	813														
Site Features	Likely	effect(s) of Eas	t Anglia	TWO										
	Under	water n	oise	Vessel	Interact	ions	Indired prey	ct effects	on	Chang quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the potential for LSE (see pa	•	•	•		•										

Site	85											
Name of European Site:	Hornsea I	Mere SPA										
Distance to East Anglia TWO (km)	235											
Site Features	Likely e	effect(s) of	East Angli	a TWO								
	Collisio	n mortality		Displace	ement/Dis	turbance	Barrier	Effect		Cumula	itive/In-co	mbination
	С	0	D	С	0	D	С	0	D	С	0	D
Nonbreeding gadwall, mute swan		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)
a) Survey data show no evidence Appendix 12.2 (APP-470), and						,	•	•		•		

b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Hornsea Mere SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	36											
Name of European Site:	Hoy SPA											
Distance to East Anglia TWO (km)	793											
Site Features	Likely et	ffect(s) of	East Angli	ia TWO								
	Collision	n mortality		Displace	ement/Dis	turbance	Barrier I	Effect		Cumula	tive/In-co	mbination
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features Arctic skua, great black-backed gull, guillemot, kittiwake, red-throated diver, fulmar, puffin, great skua		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)
Breeding peregrine		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)

a) Hoy SPA is beyond maximum foraging range of designated seabird species so has no breeding season connectivity. Proportions of these
populations migrating through the East Anglia TWO site are small relative to BDMPS (see Table 8.2 of the HRA Screening Report (APP-044)).

b) Peregrines breeding in the UK normally remain close to their breeding areas throughout the year, and are very unlikely to migrate offshore in the UK.

c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Hoy SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site Name of Eur Distance to Marine Mam	East A		IMO (I	cm)		umber		ry SAC site) ar	nd 164 (cable	corrid	or)									
Site Features	5			ffect(s) ater noi		Ve	essel Ir sturbar		ons and eal hau		irect e	ffects o	n prey	Cha qua	inges to lity	o water		In-co	mbinat	ion	
Grey seal Ha grypus	lichoer		; ((a)	O Y (a)	D Y (a)	C Y		O Y (a)	D Y (a)	C Y (a) (a)	D Y (a)	C Y (a))		D Y (a)	C Y (a)	0 Y(D Y (a)
Fish																					
Site Features	Perm	effect anent at loss	(s) of E	ast Ang Temp physic distur	orary cal	0	to ind	thering creased ended nent		-	nobilisa ntamin nents			rwater ibratio			romagn (EMF)		In-coi	nbinati	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sea Lamprey Petromyzon marinus	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)
River lamprey <i>Lampetra</i> fluvialitis	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b

Site		8		Fatura														
Name of European Site: Distance to East Anglia TWO ((m)				ry SAC site) a	, nd 164	(cable	corrid	or)									
Benthic habitats																		
Site Features	Perm	nanent	loss	phys	porary ical rbance		to ind	thering creased ended nent			nobilisa ntamina nents		0	rwater /ibratior		In-co	mbinati	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Estuaries	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)
Mudflats and sandflats not covered by seawater at low tide	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)
Sandbanks which are slightly covered by sea water all the time	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)
Coastal lagoons	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)

a) Potential effects from underwater noise; vessel interactions; changes to water quality; changes to prey resources; and disturbance at seal haul-out sites cannot be ruled out (see Table 7.3 of the HRA Screening Report (APP-044).

b) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see Table 6.2 of the HRA Screening Report (APP-044).

c) The distance between the offshore project area and the designated site is beyond the range of any potential LSE. Indirect far-field effects are limited to 1km of the works and for the duration of 1 tidal cycle (see paragraph 118 of APP-044).

Site	88											
Name of European Site:	Humber Es	stuary SP	A and Ra	msar								
Distance to East Anglia TWO (km)	178 (windf	arm site)	and 164 (offshore	cable cor	ridor)						
Site Features	Likely ef	fect(s) of	East Angli	a TWO								
	Collision	mortality		Displace	ement/Dis	turbance	Barrier	Effect		Cumula	tive/In-cor	nbination
	С	0	D	С	0	D	С	0	D	С	0	D
Wintering and passage waterbird assemblage including as named features teal, wigeon, mallard, turnstone, pochard, scaup, bittern, brent goose, goldeneye, sanderling, dunlin, knot, ringed plover, oystercatcher, bar-tailed godwit, black- tailed godwit, curlew, golden plover, grey plover, avocet, shelduck, redshank, lapwing, whimbrel, ruff, greenshank <i>Tringa nebularia</i>		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (g)	N (g)	N (g)
Nonbreeding hen harrier		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (g)	N (g)	N (g)
Breeding bittern		N (c)		N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (g)	N (g)	N (g)
Breeding marsh harrier		N (d)		N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (d)
Breeding avocet		N (e)		N (e)	N (e)	N (e)	N (e)	N (e)	N (e)	N (g)	N (g)	N (g)
Breeding little tern		N (f)		N (f)	N (f)	N (f)	N (f)	N (f)	N (f)	N (f)	N (f)	N (f)

Site		88
Name	of European Site:	Humber Estuary SPA and Ramsar
Distan	ce to East Anglia TWO (km)	178 (windfarm site) and 164 (offshore cable corridor)
a)	-	evidence of Humber Estuary SPA features occurring in the East Anglia TWO sites (see section 5.1 of Appendix 12.2 birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site during migration reening Report (APP-044)).
b)	SPA are likely to result in negl	e of Humber Estuary SPA feature hen harrier occurring in the East Anglia TWO sites, and migrations of birds from this ligible numbers passing through the East Anglia TWO site during migration as UK birds are likely to migrate overland e possible (see Table 8.2 of the HRA Screening Report (APP-044)).
c)		during bird surveys at East Anglia TWO (see section 5.1 of Appendix 12.2 (APP-470), and migrations of birds from negligible numbers passing through the East Anglia TWO site during migration (see Table 8.2 of the HRA Screening
d)	Marsh harrier is a migrant spe Channel to France, rather that	ccies. Satellite tracking suggests that marsh harriers migrate overland to the south coast of England and over the n across the North Sea.
e)	as their migration is likely to ta	d during bird site specific surveys. It is highly unlikely that these birds would migrate through the East Anglia TWO site ake a coastal route and cross sea at narrow points such as The English Channel. If they did migrate through the East ight is likely not to be at collision risk height (see Table 8.2 of the HRA Screening Report (APP-044)).
f)	are considered to be 'extreme	mum foraging range of 11km from colonies, so would have no connectivity with East Anglia TWO. Migrating little terns ly coastal on passage with very few sightings in open ocean or inland' (Forrester et al. 2007), so are unlikely to pass site (see Table 8.2 of the HRA Screening Report (APP-044)).
g)		le to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination at Humber Estuary SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	89														
Name of European Site:	Hund	und Pa	apsand	SCI											
Distance to East Anglia TWO (km)	339														
Site Features	Likely	effect(s) of Eas	t Anglia	TWO										
	Under	water n	oise	Vessel	Interact	ions	Indired prey	ct effects	on	Chang quality	es to wa	ater	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

Site	90															
Name of European Site:	Imperial D	ock Lock,	Leith SPA													
Distance to East Anglia TWO (km)	535															
Site Features	Likely	Likely effect(s) of East Anglia TWO														
	Collisi	on mortality	/	Displac	ement/Dis	sturbance	Barrier	Effect		Cumula	ative/In-co	mbination				
	С	0	D	С	0	D	С	0	D	С	0	D				
Breeding common tern		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)				
 a) SPA is far beyond maximu these populations migratir 		-	-		•			-		•	•					

Site	90	
b)	The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination	
	assessment for these features at Imperial Dock Lock SPA (see Table 8.2 of the HRA Screening Report (APP-044)).	

	Name of European Site: Inner Dowsing, Race Bank and North Rid Distance to East Anglia TWO 118 (windfarm site) and 109 (cable corride (km) Site Likely effect(s) of East Anglia TWO																	
Site Features	Permanent loss				orary ph	ysical	Smoth increa suspe sedim	nded	ue to		obilisation minated ents	on of		rwater n ibration	oise	In-cor	nbinatior	٦
Sandbanks which are slightly covered by sea water all the time	C N (a)	O N (a)	D N (a)	C N (a)	O N (a)	D N (a)	C N (a)	O N (a)	D N (a)	C N (a)	0	D N (a)	C N (a)	0	D N (a)	C N (a)	O N (a)	D N (a)
Reefs a) The				N (a) fshore pi he durat	-		-		•		-	N (a) any pot	N (a) ential LS	SE. Indir	N (a) ect far-fi	N (a) eld effec	N (a) ts are lir	N (a) nited

Site	2											
Name of European Site:	nner Moray	Firth SP	A & Rams	ar								
Distance to East Anglia TWO 7 (km)	′03 (windfa	rm site) a	nd 694 (ca	able corri	dor)							
Site Features	Likely e	ffect(s) of	East Angli	a TWO								
	Collisio	Collision mortality Displacement/Disturbance Barrier Effect Cumulative/In-co										
	С	0	D	С	0	D	С	0	D	С	0	D
Wintering and passage waterbird assemblage including as named features bar-tailed godwit, curlew, goldeneye, greylag goose, redshank, wigeon, goosander, teal, red-breasted merganser, cormorant, oystercatcher, scaup		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (d)	N (d)	N (d)
Breeding osprey		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Breeding common tern		N (c)		N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (d)	N (d)	N (d)

a) Survey data show little or no evidence of Inner Moray Firth SPA features occurring in the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470)), and migrations of birds from this SPA and Ramsar are likely to result in negligible numbers passing through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044)).

b) Osprey has not been observed in the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470)), and it is extremely unlikely that any ospreys from the Inner Moray Firth SPA migrate through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044)).

c) Inner Moray Firth SPA is far beyond maximum foraging range of common tern so has no breeding season connectivity. The proportion of the population migrating through the East Anglia TWO site is likely to be extremely small relative to BDMPS (see Table 8.2 of the HRA Screening Report (APP-044)).

d) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Inner Moray Firth SPA & Ramsar (see Table 8.2 of the HRA Screening Report (APP-044)).

Site Name of European Site: Distance to East Anglia TWO (km)	93 Isle of 527	May S/	AC												
Site Features	Likely	effect(s)	of Eas	t Anglia	TWO										
	Under	water no	oise	Vessel	Interact	ions	Indirec prey	t effects	on	Change quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the	potentia	l impact	range o	of East A	Inglia TV	VO and t	he exten	t of any	effect on	individu	als from	this site	would re	sult in n	0

potential for LSE (see paragraphs 190 and 191 and Table 8.2 of the HRA Screening Report (APP-044)).

Site Name of European Site: Distance to East Anglia TWO (km)	94 Klaverbank SCI 177				
Site Features	Likely effect(s) of East Anglia TV Underwater noise	VO Vessel Interactions	Indirect effects on prey	Changes to water quality	In-combination

Site Name of European Site:	94 Klaverbar	ık SCI													
Distance to East Anglia TWO (km)	177														
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise <i>Phocoena</i> phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 219 and 220 for harbour seal, paragraphs 190 and 191 for grey seal and paragraphs 168 and 169 for harbour porpoise of the HRA Screening Report (APP-044)).

Site	95															
Name of European Site:	Knude	grund S	AC													
Distance to East Anglia TWO (km)	746km	I														
Site Features	Likely	ikely effect(s) of East Anglia ONE North														
	Under	water No	ise	Vessel	interacti	ons	Indirect	effects	on prey	Chang quality	es to wat	ter	Cumula combir	ative/In- nation		
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	
Grey seal	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	
Harbour seal	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	

Site	95
Name of European Site:	Knudegrund SAC
Distance to East Anglia TWO (km)	746km
	en the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no se paragraphs 218 and 219 for harbour seal and paragraphs 189 and 190 for grey seal, of the HRA Screening Report (APP-

Site Name of European Site:	96 Koste	rfjorder	n-Väder	öfjorder	SAC										
Distance to East Anglia TWO (km)	889														
Site Features	Likely	Likely effect(s) of East Anglia TWO													
	Under	water no	oise	Vessel	Interact	ions	Indirec prey	t effects	on	Chang quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise <i>Phocoena</i> phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of the proposed project and the site is beyond that of potential for direct or indirect effects (see paragraphs 219 and 220 for harbour seal and paragraphs 168 and 169 for harbour porpoise of the HRA Screening Report (APP-044)).

East Anglia TWO Offshore Windfarm 5.3.2 Information to Support AA – Screening Matrices

Site	97															
Name of European Site:	Kung	sbacka	fjorden	SAC												
Distance to East Anglia TWO _(km)	877															
Site Features	Likely	Likely effect(s) of East Anglia TWO														
	Under	water n	oise	Vessel	Interact	ions	Indired prey	ct effects	on	Chang quality	es to wa	ter	In-com	bination		
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)	
a) The distance between the paragraphs 219 and 220	•	•	-	•	• •	-	nd the si	te is bey	ond that	of poten	tial for di	irect or ir	ndirect ef	fects (se)e	

Site Name of European Site: Distance to East Anglia TWO (km)	98 Küste 482	n- und l	Dünenla	andscha	ften Am	rums S <i>I</i>	AC								
Site Features		effect(s) water no	·	t Anglia ⁻ Vessel	TWO Interact	ions	Indirec prey	t effects	on	Change quality	es to wat	ter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

Site	98
Name of European Site:	Küsten- und Dünenlandschaften Amrums SAC
Distance to East Anglia TWO (km)	482
	potential impact range of the proposed project and the site is beyond that of potential for direct or indirect effects (see of the HRA Screening Report (APP-044))

Site	99												
Name of European Site:	Lindisfarn	ndisfarne SPA and Ramsar											
Distance to East Anglia TWO (km)	446 (windf	(windfarm site) and 437 (offshore cable corridor)											
Site Features	Likely et	ikely effect(s) of East Anglia TWO											
	Collision	n mortality		Displace	ement/Dist	urbance	Barrier E	Effect		Cumula	tive/In-con	nbination	
	С	0	D	С	0	D	С	0	D	С	0	D	
Wintering and passage waterbird assemblage including as named features wigeon, greylag goose, brent goose, sanderling, dunlin, ringed plover, goldeneye, whooper swan, black-tailed godwit, common scoter, red-breasted merganser, golden plover, grey plover, eider, shelduck, redshank		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)	
Breeding little tern, roseate tern		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	

Site	99
Name of European Site:	Lindisfarne SPA and Ramsar
Distance to East Anglia TWO (k	m) 446 (windfarm site) and 437 (offshore cable corridor)
	no evidence of SPA features occurring in East Anglia TWO (see section 5.1 of Appendix 12.2 (APP-470)) and migrations of tely to result in negligible numbers passing through the site during migration (see Table 8.2 of the HRA Screening Report
are considered to be 'extr through the East Anglia T	naximum foraging range of 11km from colonies, so would have no connectivity with East Anglia TWO. Migrating little terns emely coastal on passage with very few sightings in open ocean or inland' (Forrester et al. 2007), so are unlikely to pass WO site. Breeding roseate tern has a maximum foraging range of 30km from colonies, so would have no connectivity with ng roseate terns are unlikely to pass through the East Anglia TWO site as their migration tends to be coastal (see Table 8.2 port (APP-044).
, .	utable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination rures at Lindisfarne SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044).

Site Name of European Si Distance to East Ang TWO (km)	te:		Cauche ble cori		;													
Site Features	Perma	nent los	SS	Temporary physical disturbance			increa	ering du sed nded se		-	obilisatio ninate d ents		Under and vil	water no pration	oise	In-combination		
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Reefs	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
Perennial vegetation of stony banks	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)

Site Name of European Si Distance to East Ang TWO (km)		100 Littoral 236 (ca			;													
Vegetated sea cliffs of the Atlantic and Baltic coasts	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
Oligotrophic waters containing very few minerals of sandy plains (Littorelletalia uniflorae)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
Hard oligo- mesotrophic waters with benthic vegetation of Chara spp.	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)

a) As it has been agreed through the scoping and Evidence Plan Process (EPP) (see Appendix 9.1 (APP-458)) that transboundary effects are scoped out for EIA (given the distance to sites in other Members States jurisdictions) these have also been screened out from consideration for HRA purposes.

Site	101
Name of European Site:	Littoral Seino-Marin SPA
Distance to East Anglia TWO (km)	229
Site Features	Likely effect(s) of East Anglia TWO

Site 10	1											
Name of European Site: Lit	toral Sein	o-Marin S	PA									
Distance to East Anglia TWO 22 (km)	9											
	Collision	mortality		Displace	ement/Dist	urbance	Barrier E	Effect		Cumula	tive/In-cor	nbination
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabirds including fulmar, shag, gannet, herring gull, great black- backed gull, kittiwake		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (f)	N (f)	N (f)
Nonbreeding winter and passage seabird assemblage including as named features red-throated diver, black-throated diver, great crested grebe, fulmar, gannet, cormorant, shag, pomarine skua <i>Stercorarius pomarinus</i> , great skua, Mediterranean gull <i>Larus melanocephalus</i> , little gull, lesser black-backed gull, herring gull, great black-backed gull, kittiwake, Sandwich tern, common tern, guillemot, razorbill		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (f)	N (f)	N (f)
Nonbreeding little egret, spoonbill <i>Platalea leucorodia</i> , honey buzzard <i>Pernis apivorus</i> , hen harrier, merlin <i>Falco columbarius</i> , peregrine, avocet		N (c)		N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)
Breeding peregrine		N (d)		N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (d)
Nonbreeding woodlark Lullula arborea		N (e)		N (e)	N (e)	N (e)	N (e)	N (e)	N (e)	N (e)	N (e)	N (e)

		
Site		101
Name	of European Site:	Littoral Seino-Marin SPA
Distan (km)	ce to East Anglia TWO	229
a)	from the SPA do not reach breeding season connectiv	the theoretical maximum foraging range of breeding gannets from this SPA but tracking data show that breeding gannets n East Anglia TWO. The SPA is far beyond maximum foraging range of other designated seabird species so has no vity. Proportions of these populations migrating through East Anglia TWO are likely to be extremely small relative to the HRA Screening Report (APP-044)).
b)	Proportions of these popul HRA Screening Report (Al	lations migrating through the East Anglia TWO site are likely to be extremely small relative to BDMPS (see Table 8.2 of the PP-044)).
c)	the East Anglia TWO site,	s been recorded during bird surveys at the East Anglia TWO site. It is unlikely that birds from the SPA will migrate through as these species are generally scarce migrants in the UK, and their migrations tend to be coastal rather than over open HRA Screening Report (APP-044)).
d)	•••••	stern Europe tend to remain close to their breeding site throughout the year so it is extremely unlikely that any from the glia TWO site (see Table 8.2 of the HRA Screening Report (APP-044)).
e)	Woodlark is a very scarce of the HRA Screening Rep	migrant to the UK, so it is very unlikely that individuals from the SPA would reach the East Anglia TWO site (see Table 8.2 port (APP-044)).
f)	-	utable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination ures at Littoral Seino-Marin SPA (see Table 8.2 of the HRA Screening Report (APP-044)).
Site		102
	of European Site:	Loch of Strathbeg SPA & Ramsar
Distan (km)	ce to East Anglia TWO	642

Site 1	02													
Name of European Site:	och of Stra	thbeg SPA	& Ramsa	ar										
Distance to East Anglia TWO 6 (km)	42													
	Collisio	n mortality		Displace	ement/Dis	turbance	Barrier I	Effect		Cumula	tive/In-co	mbination		
	С	0	D	С	0	D	С	0	D	С	0	D		
Wintering and passage waterbird assemblage including as named features greylag goose, pink-footed goose, teal, Svalbard barnacle goose <i>Branta leucopsis</i> , whooper swan		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)		
Breeding Sandwich tern		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (c)	N (c)	N (c)		

a) Survey data show little or no evidence of Loch of Strathbeg SPA features occurring in the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044)).

b) Loch of Strathbeg SPA is far beyond maximum foraging range of Sandwich tern (54km, Thaxter et al. 2012) so has no breeding season connectivity.
 Proportion of the population migrating through the East Anglia TWO site is likely to be extremely small relative to BDMPS (see Table 8.2 of the HRA Screening Report (APP-044)).

c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Loch of Strathbeg SPA & Ramsar (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	103														
Name of European Site:	LØnst	rup RØ	dgrund	SAC											
Distance to East Anglia TWO (km)	738														
Site Features	Likely	effect(s) of Eas	t Anglia	TWO										
	Under	water n	oise	Vessel	Interact	ions	Indired prey	ct effects	on	Chang quality	es to wa	iter	In-com	bination	
	С	0	D	С	0	D	C	0	D	C	0	D	С	0	D
Harbour Porpoise Phocoena phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the potential for LSE (see particular)	•	•	•		•						als from	this site	would re	esult in n	i O

Site Name of European Site: Distance to East Anglia TWO (km)	104 Løgstør Bredning, V 679	ejlerne og Bulbjerg SAC	;		
Site Features	Likely effect(s) of East Underwater noise	t Anglia TWO Vessel Interactions	Indirect effects on prey	Changes to water quality	In-combination

	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal Phoca vitulina	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)								
a) The distance between the potential for LSE (see para		•	-		-			-	effect on	individu	als from	this site	would re	sult in no	C

Site Name of European Site:	105 Lovns	s Bredn	ing, Hja	rbæk Fj	ord og S	Skals, Si	mested	og Nørr	e Ådal,	Skravad	Bæk S/	AC			
Distance to East Anglia TWO (km)	676														
Site Features	Likely	effect(s) of Eas	t Anglia	TWO										
	Under	water n	oise	Vessel	Interact	ions	Indired prey	ct effects	on	Chang quality	es to wa	ater	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal <i>Phoca vitulina</i>	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

Site Name of European Site: Distance to East Anglia TWO (km)	106 Malmö 882	ófjord S	AC												
Site Features		effect(s) water no		t Anglia ⁻ Vessel	TWO Interacti	ions	Indirec prey	t effects	on	Chang quality	es to wat	ter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

Site Name of European Site:	106 Malmöfjord SAC
Distance to East Anglia TWO (km)	882
	potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no agraphs 219 and 220 of the HRA Screening Report (APP-044)).

Site Name of European Site: Distance to East Anglia TWO (km)	107 Marai 378	s du Co	otentin e	et du Be	ssin - Ba	aie des V	Veys SA	c								
Site Features	Likely	5														
	С														D	
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)	
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)	
a) The distance between the potential for LSE (see pa 044)).	•	•	•		•											

Site Name of Eu Distance to (km)			10				nds SCI I 37 (cal		idor)									
Site	Likely	effect(s)	of East	Anglia T	WO													
Features	Atures Permanent loss Temporary physical disturbance						Smoth increa suspe sedim	nded	ue to		obilisatio minated ents	on of		water n ibration	oise	In-cor	nbinatio	ı
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea water all the time	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)		N (a)	N (a)	N (a)	N (a)

to 1km of the works and for the duration of 1 tidal cycle (see paragraph 118 of APP-044)

Site	109													
Name of European Site:	Marwick H	ead SPA												
Distance to East Anglia TWO (km)	329													
Site Features	Likely ef	fect(s) of I	East Angli	a TWO										
	Collision	mortality		Displace	ement/Dist	urbance	Barrier E	ffect		Cumulat	ive/In-com	bination		
	С	0	D	С	0	D	С	0	D	С	0	D		

Site	109											
Name of European Site:	Marwick	Head SPA										
Distance to East Anglia TWO	(km) 829											
Breeding seabird assemblage i as named features guillemot ar kittiwake	•	N (a)		N (a)	N (b)	N (b)	N (b)					
 a) Marwick Head SPA is I populations migrating t 	•		-	-				-		•	•	
 b) The predicted effect at assessment for these f 		•				0	•		er the ove	erall in-con	nbination	

Site	110														
Name of European Site:	Måses	skär SA	C												
Distance to East Anglia TWO (km)	871														
Site Features	Likely	effect(s) of Eas	t Anglia	TWO										
	Under	water n	oise	Vessel	Interact	ions	Indired prey	ct effects	on	Chang quality	es to wa	iter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal <i>Phoca vitulina</i>	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

Site	111											
Name of European Site:	Medway	v Estuary	& Marshe	es SPA ar	id Ramsa	r						
Distance to East Anglia TWO (km)	118 (wir	ndfarm sit	e) and 10)1 (offsho	re cable o	orridor)						
Site Features	Likely eff	fect(s) of E	East Angli	a TWO								
	Collision	mortality		Displace	ment/Dist	urbance	Barrier E	ffect		Cumulat	ive/In-com	bination
	С	0	D	С	0	D	С	0	D	С	0	D
Wintering and passage waterbird assemblage including as named features pintail, shoveler, teal, wigeon, turnstone, brent goose, dunlin, knot, ringed plover Bewick's swan, oystercatcher, black-tailed godwit, curlew, grey plover, great crested grebe, avocet, shelduck, greenshank, redshank		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (d)	N (d)	N (d)
Breeding avocet		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Breeding little tern, common tern		N (c)		N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)

 a) Survey data show little or no evidence of Medway Estuary & Marshes SPA features occurring in the East Anglia TWO site site (see section 5.1 of Appendix 12.2 (APP-470), and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044)).

b) Avocet has not been observed during bird site-specific surveys site (see section 5.1 of Appendix 12.2 (APP-470). It is highly unlikely that these birds would migrate through the East Anglia TWO site as their migration is likely to take a coastal route and cross sea at narrow points such as The English Channel. If they did migrate through the East Anglia TWO site their flight height is likely not to be at collision risk height (see Table 8.2 of the HRA Screening Report (APP-044)).

c) Breeding little tern has a maximum foraging range of 11km from colonies (Thaxter et al. 2012), so would have no connectivity with East Anglia TWO. Migrating little terns are considered to be 'extremely coastal on passage with very few sightings in open ocean or inland' (Forrester et al. 2007), so

Site 111 Name of European Site: Medway Estuary & Marshes SPA and Ramsar are unlikely to pass through the East Anglia TWO site. Breeding common tern has a maximum foraging range of 30km from colonies (Thaxter et al. 2012), so would have no connectivity with East Anglia TWO. Migrating common terns are unlikely to pass through the East Anglia TWO site as their migration tends to be coastal where that is an option (see Table 8.2 of the HRA Screening Report (APP-044)).

d) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Medway Estuary & Marshes SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044)).

Site Name of I Distance Fish				(km)		mere to n (offsl			< Heath rridor)	s and	Marshe	es SAC	;								
Site	Likely	v effect(s) of Ea	ast Ang	lia ONE	North															
Features	Perm loss	anent h	nabitat	physi	orary cal bance		Smoth increa suspe sedim	ended	due to		nobilisa ntamina nents			rwater /ibratior			omagn (EMF)	etic	In-cor	nbinatio	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sea Lamprey	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
River lamprey	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
Twaite shad	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)

Site		11	2																
Name of	European Site	M	insmei	re to W	albers	wick H	eaths	and Ma	rshes	SAC									
Distance	to East Anglia TWO (kr	n) 1.	8km (o	ffshor	e cable	e corrio	dor)												
Benthic H	Habitats																		
Site Features	Likely effect(s) of East	Anglia C	ONE No	orth															
- calaice		Perma	anent lo)SS	physi	oorary ical rbance		Smot increa suspe sedim	ended	due to		nobilisat minate tents			rwater vibratior		In-coi	mbinati	on
		С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
	ks which are slightly by sea water all the time	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Estuaries		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
	and sandflats not by seawater at low tide	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Reefs		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see section 6.2.1, of the HRA Screening Report (APP-044)).

b) The distance between the offshore project area and the designated site is beyond the range of any potential LSE. Indirect far-field effects are limited to 1km of the works and for the duration of 1 tidal cycle (see paragraph 118 of APP-044).

Site	113															
Name of European Site:	Minsmer	e - Walbe	rswick SF	PA and Ra	msar											
Distance to East Anglia TWO (km)	34 (wind	farm site)	and 2 (ca	ble corrid	or)											
Site Features	Likely ef	fect(s) of E	East Anglia	a TWO												
	Collision	lision mortality Displacement/Disturbance Barrier Effect Cumulative/In-combination														
	С	O D C O D C O D C O														
Wintering shoveler, gadwall, white- fronted goose		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (g)	N (g)	N (g)				
Nonbreeding hen harrier		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (g)	N (g)	N (g)				
Breeding shoveler, teal, gadwall, bittern, avocet		N (c)		N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (g)	N (g)	N (g)				
Breeding nightjar Caprimulgus europaeus		N (d)		N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (g)	N (g)	N (g)				
Breeding marsh harrier		N (e)		N (e)	N (e)	N (e)	N (e)	N (e)	N (e)	N (e)	N (e)	N (e)				
Breeding little tern		N (f)		N (f)	N (f)	N (f)	N (f)	N (f)	N (f)	N (f)	N (f)	N (f)				

Site		113
Name	of European Site:	Minsmere - Walberswick SPA and Ramsar
Distan (km)	ce to East Anglia TWO	34 (windfarm site) and 2 (cable corridor)
a)	-	ence of Minsmere-Walberswick SPA features shoveler, gadwall or white-fronted goose occurring in the East Anglia TWO pendix 12.2 (APP-470), and migrations of birds from this SPA are likely to result in negligible numbers passing through the
b)	birds from this SPA are like	ence of hen harrier occurring in the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), and migrations of ely to result in negligible numbers passing through the East Anglia TWO site as UK birds are likely to migrate overland here possible (see Table 8.2 of the HRA Screening Report (APP-044)).
c)	site (see section 5.1 of App	ence of Minsmere-Walberswick SPA features shoveler, teal, gadwall, bittern or avocet occurring in the East Anglia TWO bendix 12.2 (APP-470), and migrations of birds from this SPA are likely to result in negligible numbers passing through the Table 8.2 of the HRA Screening Report (APP-044)).
d)	of birds from this SPA are I	ence of nightjar occurring in the East Anglia TWO OWF site (see section 5.1 of Appendix 12.2 (APP-470), and migrations likely to result in negligible numbers passing through the East Anglia TWO site as UK birds are likely to migrate overland here possible and make short sea crossings from southern England to France (see Table 8.2 of the HRA Screening Report
e)	•	species. Satellite tracking suggests that marsh harriers migrate overland to the south coast of England and over the than across the North Sea (see Table 8.2 of the HRA Screening Report (APP-044)).
f)	Migrating little terns are con	aximum foraging range of 11km from colonies (Thaxter et al. 2012), so would have no connectivity with East Anglia TWO. nsidered to be 'extremely coastal on passage with very few sightings in open ocean or inland' (Forrester et al. 2007), so h the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044)).
g)	•	table to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination ares at Minsmere-Walberswick SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044)).

Name of European Site:	Мо	ntros	e Ba	sin SPA 8	& Ramsar							
Distance to East Anglia TWO (km)	572											
Site Features	Like	ely eff	ect(s	s) of East	Anglia TW	0						
		lision rtality		Displace	ement/Dist	urbance	Barr	ier Effect		Cumulat	ive/In-comb	ination
	С	0	D	С	0	D	С	0	D	С	0	D
Wintering and passage waterbird assemblage including as named features dunlin, eider, knot, shelduck, wigeon, pink-footed goose, greylag goose, redshank, oystercatcher		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)

(APP-470), and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044)).

b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Montrose Basin SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044)).

Site 1	15											
Name of European Site:	loray and N	Nairn Coa	st SPA &	Ramsar								
Distance to East Anglia TWO 6 (km)	579											
Site Features	Likely et	fect(s) of	East Angli	a TWO								
	Collisior	n mortality		Displace	ement/Dist	turbance	Barrier E	Effect		Cumula	tive/In-cor	nbination
	С	0	D	С	0	D	С	0	D	С	0	D
Wintering and passage waterbird assemblage including as named features common scoter, long-tailed duck, oystercatcher, bar-tailed godwit, wigeon, pink-footed goose, red- breasted merganser, redshank, velvet scoter, greylag goose, dunlin		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)
Breeding osprey		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)

a) Survey data show little or no evidence of Moray & Nairn Coast SPA features occurring in the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044)).

b) Osprey has not been observed in the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), and it is improbable that any ospreys from the SPA migrate through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044)).

c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Moray & Nairn Coast SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	116												
Name of European Site:	Mousa SF	PA											
Distance to East Anglia TWO (km)	883												
Site Features	Likely	Likely effect(s) of East Anglia TWO											
	Collis	ion mortality	/	Displac	ement/Dis	sturbance	Barrier	Effect		Cumula	ative/In-co	mbination	
	С	0	D	С	0	D	С	0	D	С	0	D	
Breeding Arctic tern		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)	
Breeding European storm-petrel <i>Hydrobates pelagicus</i>		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	

 a) Mousa SPA is beyond maximum foraging range of Arctic tern (30km, Thaxter et al. 2012) so has no breeding season connectivity. The proportion of the population migrating through the East Anglia TWO site is likely to be extremely small relative to BDMPS(see Table 8.2 of the HRA Screening Report (APP-044)).

b) European storm-petrels were not observed in the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), and are rarely seen anywhere in the southern North Sea, so evidence suggests that this species migrates from its breeding site on Mousa into the North Atlantic and not normally through the North Sea (see Table 8.2 of the HRA Screening Report (APP-044)).

c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Mousa SPA(see Table 8.2 of the HRA Screening Report (APP-044)).

Site Name of European Site: Distance to East Anglia TWO (km)	117 Mous 878	a SAC													
Site Features	-	effect(s water n	/	t Anglia Vessel	TWO Interact	ions	Indirec prey	t effects	on	Chang quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the potential for LSE (see par	•	•	•		•			-	effect or	n individu	als from	this site	would re	esult in n	0

Site		11	8												
Name of European Si	ite	M	ühlenberg	ger Loch	SPA										
Distance to East Ang North (km)	lia ONE	52	26km												
Marine Mammals															
Site Features	Likely e	ffect(s) of	East Ang	lia ONE I	North										
	Underw	ater noise	•	Vessel	Interaction	ons	Indirect	effects o	n prey	Chang quality	es to wa	ater	In-com	bination	
	С	0	D	С	0	D	С	0	D	C	0	D	С	0	D
Harbour porpoise Phocoena phocoena	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
Harbour seal Phoca vitulina	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
Fish	•	÷		- -	·	·	÷	÷	÷				÷	·	

Site Name of E Distance to	o East				118 Mühle 526km	nberge	er Loch	SPA													
North (km) Site		y effect	(s) of E	ast Ang	glia ON	E North															
Features	-	anent at loss	<u> </u>	physi	oorary cal bance		increa	ended	due to	-	nobilisa ntamina nents			erwater vibratio			romagr (EMF)		In-co	mbinati	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Houting	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Twaite shad	N N N N N (b) (b) (b) (b) (b) N N N N N (b) (b) (b) (b) (b)					N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Lampern	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Great sea lamprey	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Salmon	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Benthic Ha	abitats	;					1			1				1		1	1	1	1	1	
Site	Likel	y effect	(s) of E	ast Ang	glia ON	E North															
Features				Per	manen	t loss	phy	nporary sical urbance		incr sus	othering eased pended ment	g due to	of c	mobilis ontamir ments			erwater vibratio		In-co	ombinat	ion

Site Name of European Site Distance to East Anglia ONE North (km)		118 Mühlen 526km	Ibergei	r Loch	SPA													
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Estuaries	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
 a) The distance between the potential for LSE (see particular). 	•			-		-					•							

b) It was agreed as part of the East Anglia ONE North Scoping and Evidence Plan Process (EPP) (see Appendix 9.1 (APP-458) and Appendix 10.1 (APP-462) that transboundary impacts on fish and benthic habitats would be scoped out of the EIA. We have therefore screened them out from consideration in the HRA

Site Name of European Site: Distance to East Anglia TWO (km)	119 Natioi 329	nalpark	Nieders	sächsisc	:hed Wa	ttenmee	er SAC								
Site Features		effect(s water n	<i>.</i>	t Anglia Vessel	TWO Interact	ions	Indirec prey	t effects	on	Chang quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise <i>Phocoena</i> phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)
 a) The distance between the potential for LSE (see para porpoise, of the HRA Screet) 	graphs 2	219 and	220 for	harbour	-			•						

Site Name of European Site: Distance to East Anglia TWO (km)	120 Nibe E 682	Brednin	g, Halk	ær Ådal	og Sønd	derup Å	dal SAC								
Site Features		effect(s water no		t Anglia Vessel	TWO Interact	ions	Indirec prey	t effects	on	Chang quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	C	0	D	С	0	D	С	0	D
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
 a) The distance between the potential for LSE (see par 	•	•	-		-			•	effect or	n individu	als from	this site	would re	sult in n	0

Site Name of European Site: Distance to East Anglia TWO (km)	121 Nidingen SAC 883				
Site Features	Likely effect(s) of Eas Underwater noise	t Anglia TWO Vessel Interactions	Indirect effects on prey	Changes to water quality	In-combination

	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal Phoca vitulina	N(a)		N(a)	N(a)	N(a)	N(a)									
a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 219 and 220 of the HRA Screening Report (APP-044)).															

Site Name of E Distance to (km)				N	22 oordze 63	ekustz	one SA	AC														
Marine Mammals																						
Site Features Likely effect(s) of East Anglia TWO																						
			Inderwa	ater noi	se		sturban	ssel Interactions and turbance at seal haul						n prey Changes to quality			o water In-c			ombination		
		C	;	0	D	С		0	D	С		0	D	С	0		D	С	0		D	
Harbour porpoise N (a)		N (a)	N (a) N	(a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)			
Grey seal		N	l (a)	N (a)	N (a) N	(a)	N (a)	N (a)	N (a) 🛛	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)	
Harbour se	al	N	l (a)	N (a)	N (a)) N	(a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)	
Fish																						
Site	Likely	effect((s) of Ea	ast Ang	lia TW0	C																
Features	loss pł			physic	emporary hysical sturbance			Smothering due to increased suspended sediment			Re- mobilisation of contaminated sediments		Underwater noise and vibration			Electromagnetic fields (EMF)			In-combination			
C O D C			С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D		

bean Site: st Anglia b) N(b)		No 16		ekustz	one SA	AC													
st Anglia		16	53																
) N(b)																			
	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b
) N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b
) N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)
ts																			
Site Features		Permanent loss			Temporary physical disturbance			Smothering due to increased suspended sediment			Re- mobilisation of contaminate d sediments			Underwater noise and vibration			In-combination		
		С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea water all the time		N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)
Mudflats and sandflats not covered by seawater at low tide			N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)
t C V	h are slig water all t ndflats no vater at lo	N(b) N(b)	N(b) N(b) N(b) N(b) N(b) N(b) N(b) Perma C C N(c) water at low N(c)	N(b) N(b) N(b) N(b) N(b) N(b) N(b) N(b) N(b) Permanent lo C O N(c) N(c) N(c) N(c) N(c)	N(b) N(b) N(b) N(b) N(b) Image: Second state stress of the second st	N(b) N(b) N(b) N(b) N(b) N(b) Image: Second state Image: Second state </td <td></td> <td></td> <td></td> <td></td> <td>N(b)N(b)N(b)N(b)N(b)N(b)N(b)N(b)N(b)N(b)N(b)ISPermanent ISSTemporary physical disturbanceSmothering due to increased suspended sedimentCODCODCODchare slightly water all theN(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)National colspan="4">N(c)</td> <td></td> <td></td> <td></td> <td></td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>N(b) N(b) N(c) <!--</td--><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></td>					N(b)N(b)N(b)N(b)N(b)N(b)N(b)N(b)N(b)N(b)N(b)ISPermanent ISSTemporary physical disturbanceSmothering due to increased suspended sedimentCODCODCODchare slightly water all theN(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)N(c)National colspan="4">N(c)					$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	N(b) N(c) N(c) N(c) N(c) N(c) N(c) N(c) N(c) N(c) N(c) </td <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

b) It was agreed as part of the East Anglia TWO Scoping and Evidence Plan Process (EPP) (see Appendix 10.1 (APP-462) that transboundary impacts on fish would be scoped out of the EIA. We have therefore screened them out from consideration in the HRA

Site Name of European Site: Distance to East Anglia TWO (km)	122 Noordzeekustzone SAC 163
,	ugh the scoping and Evidence Plan Process (EPP) (see Appendix 9.1 (APP-458) that transboundary effects are scoped ince to sites in other Members States jurisdictions) these have also been screened out from consideration for HRA

Site Name of European Site: Distance to East Anglia TWO (km)	123 Nordr 850	e älvs e	estuariu	m SAC											
Site Features		effect(s water no	,		Anglia TWO Vessel Interactions			t effects	on	Chang	es to wa	ter	In-combination		
	С	0	D	С	0	D	prey C	0	D	C	0	D	С	0	D
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the potential for LSE (see par	•	•	-		-			-			als from	this site	would re	esult in n	0

Site Name of European Site: Distance to East Anglia TWO (km)	124 Nordv 975	västra S	ikånes l	havsomr	[.] åde SA	С									
Site Features	Likely	effect(s) of Eas	t Anglia	TWO										
	Under	water n	oise	Vessel	Interact	ions	Indired prey	t effects	on	Chang quality	es to wa	iter	In-com	bination	
	С	0	D	С	0	D	C	0	D	C	0	D	С	0	D
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the potential for LSE (see par (APP-044)).	•	•	•		•										

Site	125														
Name of European Site:	North Ca	ithness C	liffs SPA												
Distance to East Anglia TWO (km)	769														
Site Features	Likely ef	ikely effect(s) of East Anglia TWO													
	Collision	n mortality		Displac	ement/Dis	turbance	Barrier	Effect		Cumula	ative/In-co	mbination			
	С	0	D	С	0	D	С	0	D	С	0	D			
Breeding seabird assemblage including as named features fulmar, guillemot, kittiwake, razorbill, puffin		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)			
Breeding peregrine		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)			

b) Peregrines breeding in the UK normally remain close to their breeding areas throughout the year, and are very unlikely to migrate offshore from the UK (see Table 8.2 of the HRA Screening Report (APP-044)).

c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at North Caithness Cliffs SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	126			
Name of European Site:	North Norfolk Coast SPA and	Ramsar		
Distance to East Anglia TWO (km)	99 (windfarm site) and 87 (ca	ble corridor)		
Site Features	Likely effect(s) of East Angli	a TWO		
	Collision mortality	Displacement/Disturbance	Barrier Effect	Cumulative/In-combination

Report (APP-044)).

Site	126											
Name of European Site:	North Norf	olk Coast	SPA and	Ramsar								
Distance to East Anglia TWO (km)	99 (windfa	rm site) a	nd 87 (cal	ble corrid	lor)							
	С	0	D	С	0	D	С	0	D	С	0	D
Wintering and passage waterbird assemblage including as named features wigeon, pink-footed goose, brent goose, knot, avocet		Y (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (f)	Y (a)	N (f)
Breeding bittern		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (f)	N (f)	N (f)
Breeding marsh harrier		N (c)		N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (f)	N (f)	N (f)
Breeding avocet		N (d)		N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (f)	N (f)	N (f)
Breeding little tern, common tern, Sandwich tern		N (e)		N (e)	N (e)	N (e)	N (e)	N (e)	N (e)	N (f)	N (f)	N (f)

a) Survey data show little or no evidence of North Norfolk Coast SPA features wigeon, pink-footed goose, brent goose, knot, avocet occurring in the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site during migration (see Table 8.2 of the HRA Screening Report (APP-044)).

b) Survey data show no evidence of North Norfolk Coast SPA feature bittern occurring in the East Anglia TWO site, and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044)).

- c) Marsh harrier is a migrant species. Satellite tracking suggests that marsh harriers migrate overland to the south coast of England and over the Channel to France, rather than across the North Sea (see Table 8.2 of the HRA Screening Report (APP-044)).
- d) Survey data show no evidence of North Norfolk Coast SPA feature avocet occurring in the East Anglia TWO site, and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044)).
- e) Little tern, common tern and Sandwich tern have maximum foraging ranges from colonies of 11km, 30km and 54km respectively (Thaxter et al. 2012), so there is no connectivity between the SPA and East Anglia TWO site. Furthermore, these species tend to forage in coastal waters rather than offshore. Therefore, collision risk, displacement and barrier effects can be excluded (see Table 8.2 of the HRA Screening Report (APP-044)).

Site				126														
Name of Eu	ropean	Site:		North	Norfolk	Coast	SPA and	l Ramsa	ır									
Distance to	East A	nglia TW	VO (km)	99 (w i	ndfarm	site) an	d 87 (ca	ble corr	idor)									
,	•		attributa e feature		-					-	•						ation	
Site				127														
Name of Eu	ropean	Site:		North	Norfolk	Sandba	nks and	Saturn	Reef S/	AC								
Distance to (km)	East Ar	nglia TW	VO	75 (wi	ndfarm	site) and	d 73 (cal	ble corr	idor)									
Site	Likely	effect(s)	of East	Anglia T\	NO													
Features	Perma	nent los:	S	Tempo disturb	erary phy ance	vsical		ering du sed susp ent		-	obilisatic ninated ents	n of	Underv and vit	water no pration	ise	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea water all the time	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
Reefs	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
, .	ond the PP-044)	•	potentia	l impact	. Indirect	t far-field	effects	are limit	ed to 1k	m of the	works a	nd for th	e duratio	on of 1 ti	dal cycle	e (see pa	aragraph	118

Site	128														
Name of European Site:	Northumb	ria Coast	SPA and	Ramsar											
Distance to East Anglia TWO (km)	350 (windf) (windfarm site) and 339 (cable corridor)													
Site Features	Likely et	(windfarm site) and 339 (cable corridor) kely effect(s) of East Anglia TWO													
	Collisior	n mortality		Displace	ement/Dist	urbance	Barrier E	Effect		Cumulat	ive/In-con	nbination			
	С	0	D	С	0	D	С	0	D	С	0	D			
Nonbreeding turnstone, purple sandpiper <i>Calidris maritima</i>		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)			
Breeding little tern		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)			

 a) Survey data show little or no evidence of SPA features occurring in East Anglia TWO (see section 5.1 of Appendix 12.2 (APP-470) and migrations of birds from this SPA are likely to result in negligible numbers passing through the site during migration (see Table 8.2 of the HRA Screening Report (APP-044).

b) Breeding little tern has a maximum foraging range of 11km from colonies (Thaxter et al. 2012), so would have no connectivity with East Anglia TWO.
 Migrating little terns are considered to be 'extremely coastal on passage with very few sightings in open ocean or inland' (Forrester et al. 2007), so are unlikely to pass through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044).

c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Northumbria Coast SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044).

Site	29														
Name of European Site:	loss SPA														
Distance to East Anglia TWO (km)	89														
Site Features	Likely ef	Likely effect(s) of East Anglia TWO													
	Collision	Likely effect(s) of East Anglia TWO Collision mortality Displacement/Disturbance Barrier Effect Cumulative/In-combination													
	С	0	D	С	0	D	С	0	D	С	0	D			
Breeding seabird assemblage including as named features gannet, fulmar, guillemot, kittiwake, puffin, great skua		N (a)		N (a)	N (a)	N (b)	N (b)	N (b)							
 a) SPA is far beyond maximum for migrating through East Anglia T 		-		•			-		• •		these pop	oulations			
 b) The predicted effect attributable assessment for these features a 		•				•	•	te to or al	ter the ove	erall in-cor	mbination				

Site	130														
Name of European Site:	NTP S	-H Wat	tenmee	r und an	grenzer	nde Kust	engebie	ete SAC							
Distance to East Anglia TWO (km)	448														
Site Features				t Anglia			,			1					
	Under	water no	oise	Vessel	Interact	ions	Indirec prey	t effects	on	Change quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	Ċ	0	D	C	0	D	С	0	D
Harbour porpoise Phocoena phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
	N1(-)	N(a) N(a) <th< td=""><td>N(a)</td></th<>													N(a)
a) The distance between the paragraphs 219 and 220	e potentia for harbo	l impact	range	of the pro	pposed p	project ar				•				•	
a) The distance between the paragraphs 219 and 220 Screening Report (APP-0	e potentia for harbo	l impact	range	of the pro	pposed p	project ar				•				•	
a) The distance between the paragraphs 219 and 220 Screening Report (APP-0 Site	e potentia for harbo 44)). 131	l impact	range (paragra	of the pro	pposed p	project ar				•				•	
a) The distance between the paragraphs 219 and 220 Screening Report (APP-0	e potentia for harbo 44)). 131	l impact ur seal,	range (paragra	of the pro	pposed p	project ar				•				•	
a) The distance between the paragraphs 219 and 220 Screening Report (APP-0 Site Name of European Site: Distance to East Anglia TWO	e potentia for harbo 44)). 131 Ooste 104	l impact ur seal, rscheld	a range o paragra	of the pro	pposed p and 191	project ar				•				•	
paragraphs 219 and 220 Screening Report (APP-0 Site Name of European Site: Distance to East Anglia TWO (km)	e potentia for harbo (44)). 131 Ooste 104 Likely	l impact ur seal, rscheld	e range o paragra	of the prophysical strains of the prophysical st	pposed p and 191	project ar	v seal an		aphs 16	8 and 16		bour po	rpoise, of	•	A
a) The distance between the paragraphs 219 and 220 Screening Report (APP-0 Site Name of European Site: Distance to East Anglia TWO (km)	e potentia for harbo (44)). 131 Ooste 104 Likely	l impact ur seal, rscheld effect(s	e range o paragra	of the prophysical strains of the prophysical st	pposed p and 191	project ar	r seal an	d paragi	aphs 16	8 and 16	9 for har	bour po	rpoise, of	the HR	A
a) The distance between the paragraphs 219 and 220 Screening Report (APP-0 Site Name of European Site: Distance to East Anglia TWO (km)	e potentia for harbo (44)). 131 Ooste 104 Likely Under	l impact ur seal, rscheld effect(s water no	e range o paragra le SAC) of Eas	t Anglia	pposed p and 191	project ar for grey	Indirec	d paragi	on	8 and 16	9 for har	bour pol	rpoise, of	the HR	A

Site Name of European Site: Distance to East Anglia TWO (km)	131 Ooste 104	rscheld	le SAC											
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)
a) The distance between the negligible and would result paragraphs 168 and 169 for	in no po	otential	for LSE	(see par	agraphs	219 and	d 220 for	harbour						

Site Name of I Distance (km)			wo			Shingle S site) and			or)									
Site	Likely e	effect(s)	of East A	nglia TV	VO													
Features	Perma	anent los	S	Temp disturk	orary ph bance	ysical	Smoth increa suspe sedim	nded	ue to		obilisatio ninated ents	on of		water no	oise	In-con	nbinatior	١
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Coastal lagoons	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)		N (a)	N (a)	N (a)	N (a)

a) The primary feature of the SAC is a series of percolation lagoons which are separated from the marine environment by the Orford shingle beach. These features are described as non-marine as they occur landward of highest astronomical tide. Therefore, due to a physical barrier there is no pathway between the source of any effects in the marine environment and the receptor (see Table 5.2 of HRA Screening Report (APP-470).

Site	133											
Name of European Site:	Östliche D	eutsche l	Bucht SF	PA								
Distance to East Anglia TWO (km)	434											
Site Features	Likely e	ffect(s) of	East Ang	lia TWO								
	Collision	n mortality		Displace	ement/Dis	turbance	Barrier	Effect		Cumula	tive/In-co	mbination
	С	0	D	С	0	D	С	0	D	С	0	D
Ornithology				1	-	-	•	-	1	-	-	
Nonbreeding seabirds (razorbill, fulmar, black-throated diver, red- throated diver, herring gull, common gull, lesser black-backed gull, great black-backed gull, little gull, black- neaded gull <i>Chroicocephalus</i> <i>ridibundus</i> , common scoter, great crested grebe, kittiwake, common tern, Arctic tern, sandwich tern, gannet, guillemot)		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)
 a) Migrations of birds from this S BDMPS regional populations b) The predicted effect attributat assessment for these feature 	(see Table ble to East .	5.2 of HR Anglia TW	A Screer O is so s	ning Repo mall that	rt (APP-4 it would ne	70)). ot significa	antly cont	ribute to c	or alter the	overall ir		
Site Features	Likely e	ffect(s) of	East Ang	lia TWO								
	Underw	ater noise	Ves	ssel Intera	actions	Indirect of prey	effects or	C	hanges to quality		In-co	ombination

Site	133														
Name of European Site:	Östliche	Deutsc	he Buc	ht SPA											
Distance to East Anglia TWO (km)	434														
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Marine Mammals	I														
Harbour porpoise <i>Phocoena</i> phocoena	N(c)	N(c)	N(c)				N(c)	N(c)	N(c)	N(c)		N(c)	N(c)	N(c)	N(c)
Grey seal Halichoerus grypus	N(c)	N(c)	N(c)				N(c)	N(c)	N(c)	N(c)		N(c)	N(c)	N(c)	N(c)
Harbour seal Phoca vitulina	N(c)	N(c)	N(c)				N(c)	N(c)	N(c)	N(c)		N(c)	N(c)	N(c)	N(c)
 c) The distance between the potential for LSE. (see par porpoise, of the HRA Screen 	agraphs 219) and 22	0 for ha	-				•							

Site Name of European Site: Distance to East Anglia TWO (km)	134 Ouess 630	ant-Mo	lene SA	VC											
Site Features		effect(s) water no		t Anglia Vessel	TWO Interact	ions	Indirec prey	t effects	on	Chang quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	C	0	D	C	0	D	С	0	D
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of East Anglia TWO and the extent of any impact on individuals from this site result are negligible and would result in no potential for LSE (see paragraphs 190 and 191 and Table 8.2 of the HRA Screening Report (APP-044)).

Site	135													
Name of European Site:	Outer T	names Estu	ary SPA ar	nd pSPA e	extension									
Distance to East Anglia TWO (km)	Within o	Vithin cable corridor Likely effect(s) of East Anglia TWO												
Site Features	Like	ely effect(s) c	f East Angl	lia TWO										
	Col	ision mortali	у	Displac	ement/Dis	turbance	Barrier I	Effect		Cumulat	tive/In-cor	nbination		
	С	0	D	С	0	D	С	0	D	С	0	D		
Nonbreeding red-throated divers		Y (a)		Y (b)	Y (c)	Y (b)	Y (b)	Y (a)	Y (b)	Y (a)	Y (a)	N (e)		
Breeding little tern and common te	m	N (d)		N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (d)		

a) Given the overlap of the East Anglia TWO cable corridor with this SPA, collision risk cannot be ruled out at this stage and further assessment is required (see Table 8.2 of the HRA Screening Report (APP-044).

b) Given the overlap of the East Anglia TWO cable corridor with this SPA, further detailed assessment is appropriate. Disturbance to red-throated diver is possible, especially during export cable installation. Great Yarmouth may be used as a port for construction vessels for the East Anglia TWO site; this port is located very close to the northern extent of the SPA however is outside the main concentrations of red-throated divers. This, together with the extent of existing vessel movements in the area means the addition of construction traffic as a result of the Project will make little difference to the existing baseline and therefore the potential for LSE is considered to be negligible (see Table 8.2 of the HRA Screening Report (APP-044).

c) Following advice from Natural England it is considered that Operations and Maintenance vessels may disturb red-throated divers whilst transiting through the SPA therefore an LSE cannot be screened out (see Appendix 12.1 (APP-469)).

- d) SPA is beyond maximum foraging range of designated breeding seabird species (terns) and tern foraging tends to be coastal so has no breeding season connectivity. Proportions of these populations migrating through East Anglia TWO are likely to be small as these species are thought to remain close to shore during much of their migration through UK waters (see Table 8.2 of the HRA Screening Report (APP-044).
- e) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Outer Thames Estuary SPA (see Table 8.2 of the HRA Screening Report (APP-044).

136																			
Papa St	our SPA																		
922																			
Likely	effect(s) of	f East An	glia TWO																
Collis	ion mortalit	у	Displac	ement/Dis	sturbance	Barrier	Effect		Cumula	ative/In-co	mbination								
С	0	D	С	0	D	С	0	D	С	0	D								
	N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)								
	N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)								
	Papa Sto 922 Likely Collis	Papa Stour SPA 922 Likely effect(s) of Collision mortality C O N (a)	Stour SPA 922 Likely effect(s) of East An Collision mortality Collision Mortality N (a)	Stour SPA Stour SPA <td colspan="4" sp<="" stour="" td=""><td>Stour SPA Stour SPA <td colspan="4" sp<="" stour="" td=""><td>SPA SPA <</td><td>Stour SPA Jakely effect(s) of East Angla TWO Collision mortality Displacement/Distrbance Collision mortality Collision mortality Displacement/Distrbance State of the state o</td><td>Participation SPA Set Set Set Set Set Set Set Set Set Set</td><td>Participation SPA Set State Set Set Set Set Set Set Set Set Set S</td><td>Participation SPA Set State Set Set Set Set Set Set Set Set Set S</td><td>Participation SPA Set Set Set Set Set Set Set Set Set Set</td></td></td></td>	<td>Stour SPA Stour SPA <td colspan="4" sp<="" stour="" td=""><td>SPA SPA <</td><td>Stour SPA Jakely effect(s) of East Angla TWO Collision mortality Displacement/Distrbance Collision mortality Collision mortality Displacement/Distrbance State of the state o</td><td>Participation SPA Set Set Set Set Set Set Set Set Set Set</td><td>Participation SPA Set State Set Set Set Set Set Set Set Set Set S</td><td>Participation SPA Set State Set Set Set Set Set Set Set Set Set S</td><td>Participation SPA Set Set Set Set Set Set Set Set Set Set</td></td></td>				Stour SPA Stour SPA <td colspan="4" sp<="" stour="" td=""><td>SPA SPA <</td><td>Stour SPA Jakely effect(s) of East Angla TWO Collision mortality Displacement/Distrbance Collision mortality Collision mortality Displacement/Distrbance State of the state o</td><td>Participation SPA Set Set Set Set Set Set Set Set Set Set</td><td>Participation SPA Set State Set Set Set Set Set Set Set Set Set S</td><td>Participation SPA Set State Set Set Set Set Set Set Set Set Set S</td><td>Participation SPA Set Set Set Set Set Set Set Set Set Set</td></td>	<td>SPA SPA <</td> <td>Stour SPA Jakely effect(s) of East Angla TWO Collision mortality Displacement/Distrbance Collision mortality Collision mortality Displacement/Distrbance State of the state o</td> <td>Participation SPA Set Set Set Set Set Set Set Set Set Set</td> <td>Participation SPA Set State Set Set Set Set Set Set Set Set Set S</td> <td>Participation SPA Set State Set Set Set Set Set Set Set Set Set S</td> <td>Participation SPA Set Set Set Set Set Set Set Set Set Set</td>				SPA <	Stour SPA Jakely effect(s) of East Angla TWO Collision mortality Displacement/Distrbance Collision mortality Collision mortality Displacement/Distrbance State of the state o	Participation SPA Set	Participation SPA Set State Set Set Set Set Set Set Set Set Set S	Participation SPA Set State Set Set Set Set Set Set Set Set Set S	Participation SPA Set

a) Papa Stour SPA is beyond maximum foraging range of Arctic tern so has no breeding season connectivity. The proportion of the population migrating through the East Anglia TWO site is very small relative to BDMPS (see Table 8.2 of the HRA Screening Report (APP-044).

b) Ringed plovers breeding in Scotland 'tend to winter locally or move only short distances' (Forrester et al. 2007) so birds from Papa Stour are extremely unlikely to reach the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044).

c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Papa Stour SPA (see Table 8.2 of the HRA Screening Report (APP-044).

Site						137															
Name of E	Europe	an Site	÷			Panach	ne De L	.a Giro	nde Et	Platea	u Roch	ieux D	e Cordo	ouan (S	Systèm	e Pert	uis Girc	onde) S	AC		
Distance	to East	Anglia	a TWO	(km)		753 (ca	ble co	ridor)													
Marine Ma	ammals	S																			
Site Featu	ires		-		East Ar	<u> </u>										- 4				•	
		C	lerwate	r noise	D	C Ves	sel Inte O		D	C	ect effe	ects on	prey D	Chai	nges to O	water	quality D	C	mbinat O	ion	D
Harbour po Phocoena phocoena		-		(a)	N (a)	N (a		(a)	N (a)	N (a)	-	(a)	N (a)	N (a			N (a)	N (a)	N	(a)	N (a)
Grey seal Halichoeru grypus	us	N (a	i) N	(a)	N (a)	N (a) N	(a)	N (a)	N (a)) N	(a)	N (a)	N (a)		N (a)	N (a)	N	(a)	N (a)
Fish																					
Site	Likely	effect(s) of E	ast Ang	glia TW0	C															
Features	Perma loss	anent ł	nabitat	physi	oorary ical rbance		Smot increa suspe sedim	ased ended	due to	-	nobilisa ntamina nents			rwater /ibratio			tromagn s (EMF)	etic	In-co	mbina	tion
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Atlantic sturgeon	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
River lamprey	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Allis shad	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)

Site						137																
Name of	Europe	an Site				Panacl	he De	La G	ironde	Et Pl	lateau	u Roc	heux	De Co	douan	(Systè	ne Per	tuis Gir	onde)	SAC		
Distance	to East	t Anglia	TWO	(km)		753 (ca	able c	orrido	or)													
Twaite shad	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)) (b		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Lampern	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)) (b		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Great sea lamprey	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)) (b		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	
Salmon	N (b)	N (b)	N (b)	N (b)	N (b)	N) (b		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)			
Benthic H	labitat	S																				
Site Features	Likely	effect(s) of Ea	ast Angl	lia TW	0																
realures			Perr loss	nanent	pl	empora hysical isturbar	-	due incr sus	othering to eased pendec iment		of conta	lisation Iminat liment	n r N	Underw noise ai /ibratioi	nd	In-c	ombina	tion				
			С	0	D	С	(C	D	С	0		D	С	0	D	С	0	D	С	0	D
Sandbank slightly co water all t	overed b	N (b)	N (b)		N (b)	N (b)	N (b)	N (b		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)			
Estuaries		N (b)	N (b)		N (b)	N (b)	N (b)	N (b		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)			

Site			13	7														
Name of European Site			Pa	nache	De La (Girond	e Et Pla	teau R	ocheux	De Co	rdouan	(Systè	me Per	tuis Gi	ronde)	SAC		
Distance to East Anglia	TWO (I	km)	75	3 (cabl	e corrio	lor)												
Mudflats and sandflats not covered by seawater at low tide	N (b)																	
Reefs	N (b)																	

 a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 189 and 190 for grey seal and paragraphs 167 and 168 for harbour porpoise, of the HRA Screening Report (APP-044)).

b) It was agreed as part of the East Anglia TWO Scoping and Evidence Plan Process (EPP) (see Appendix 9.1 (APP-458) and Appendix 10.1 (APP-462) that transboundary impacts on benthic habitats fish would be scoped out of the EIA. We have therefore screened them out from consideration in the HRA

Site	138											
Name of European Site:	Papa Wes	tray (Nort	h Hill and	Holm) SF	PA							
Distance to East Anglia TWO (km)	842											
Site Features	Likely e	fect(s) of	East Angli	a TWO								
	Collisior	n mortality		Displace	ement/Dis	turbance	Barrier I	Effect		Cumulat	tive/In-cor	nbination
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding Arctic tern		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)
Breeding Arctic skua		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)

Site		138
Name	of European Site:	Papa Westray (North Hill and Holm) SPA
Distan	ce to East Anglia TWO (km)	842
a)		the maximum foraging range of Arctic tern or Arctic skua so has no breeding season connectivity. Proportions of these the East Anglia TWO site are likely to be extremely small relative to BDMPS (see Table 8.2 of the HRA Screening
b)	•	ble to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination s at Papa Westray SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site Name of European Site: Distance to East Anglia TWO (km)	139 Pater 867	Noster-	skärgå	rden SA	С										
Site Features	Likely	effect(s)) of Eas	t Anglia	TWO										
	Under	water no	oise	Vessel	Interact	ions	Indired prey	t effects	on	Change quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	C	0	D	C	0	D	С	0	D
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of East Anglia TWO and the site is beyond that of potential for direct or indirect effects (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	140
Name of European Site:	Pentland Firth Islands SPA
Distance to East Anglia TWO (km)	777

Site Feature	s	Likely ef	fect(s) of I	East Angli	a TWO										
		Collision	mortality		Displace	ment/Dist	urbance	Barrier E	Effect		Cumulat	ive/In-con	nbination		
		C O D C O D C O D C O													
Breeding Arc	ctic tern		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)		
,	tland Firth Islands SPA is be							0			• •		- Donort		

a) Pentland Firth Islands SPA is beyond maximum foraging range of Arctic tern so has no breeding season connectivity. The proportion of the population migrating through the East Anglia TWO site is likely to be extremely small relative to BDMPS (see Table 8.2 of the HRA Screening Report (APP-044)).

b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Pentland Firth Islands SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site				14	1																
Name of I	Europea	an Site		Pe	rtuis (Charer	ntais S	AC													
Distance	to East	Anglia	I TWO (k	(m) 68	2																
Marine M			, i i i i i i i i i i i i i i i i i i i	,																	
Site Featu	ires			ect(s) of	East A																
		l	Jnderwa	ter noise		V	essel lı	nteractio	ons	Ind	irect ef	fects on	prey	Cha qua	-	s to wate	r	In-co	mbina	tion	
		(0	0	D	С	;	0	D	С		0	D	С		0	D	С	0		D
Harbour p Phocoena	•		N (a)	N (a)	N (a) N	(a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a	a)		N (a)	N (a)	Ν	· /	N (a)
Grey seal Halichoer			N (a)	N (a)	N (a) N	(a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a	a)		N (a)	N (a)	N		N (a)
Fish																					
Site	Likely	effect(s) of East	Anglia T	WO																
Features	Perma loss	inent h	abitat	Tempo physic disturb	al		to in	thering creasec ended nent		-	minate	ation of ed		water ibration			tromagr s (EMF)		In-co	mbinat	ion
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Atlantic sturgeon	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
River lamprey	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Allis shad	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)

Site				14	1																
Name of	Europea	an Site		Pe	ertuis (Charen	tais S <i>I</i>	AC													
Distance	to East	Anglia	TWO (k	m) 68	2																
Twaite shad	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Lamper n	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Great sea lamprey	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Salmon	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Benthic H	labitats	;		1		1	1	1	1	1	1	1	1	1		1	1	1	1		<u> </u>
Site	Likely	effect(s)	of East	Anglia T	WO																
Features				Perma		ISS	physi	oorary cal bance		Smoth increa suspe sedim	ended	lue to	-	nobilisat minate nents			rwater ibratior		In-co	mbinati	on
				С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sandbank covered b time		•		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)

Site	14	1																
Name of European Site	Pe	ertuis (Charer	itais S <i>i</i>	AC													
Distance to East Anglia TWO (k	. m) 6 8	2			-				1	1					1		1	T
Estuaries	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Mudflats and sandflats not covered by seawater at low tide	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Reefs	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Large shallow inlets and bays	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Submerged or partially submerged sea caves	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Salicornia and other annuals colonizing mud and sand	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Annual vegetation of drift lines	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)

Site		141
Name	of European Site	Pertuis Charentais SAC
Distan	ce to East Anglia TWO (km)	682
a)	•	ential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no aphs 189 and 190 for grey seal and paragraphs 167 and 168 for harbour porpoise, of the HRA Screening Report (APP-
b)		ast Anglia TWO Scoping and Evidence Plan Process (EPP) (see Appendix 9.1 (APP-458) and Appendix 10.1 (APP- cts on benthic habitats fish would be scoped out of the EIA. We have therefore screened them out from consideration in

Site Name of I Distance				(km)					uaries verland												
Fish																					
Site	Likely effect(s) of East Anglia TWO																				
Features	Perm loss	anent ł	nabitat	Temp physic disturl	-		Smoti increa suspe sedim	ended	due to		nobilisat ntamina ients			rwater ibratior			romagn (EMF)		In-cor	nbinatio	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Allis shad	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
Benthic H	labitat	s																			
	Likely	/ effect(s) of Ea	ast Angl	lia TWC)															

Site		1	42																
Name of E	European Site	P	lymou	th Sou	nd and	l Estua	ries S/	AC											
Distance	to East Anglia TWO (kr	n) 4	77 (sh	ortest	distand	ce over	rland)												
Site Features		Perm	anent le	DSS	physi	oorary cal bance		increa	ended	due to		nobilisa ntamina nents			rwater ibratior		In-co	mbinati	on
		С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
	andbanks which are slightly overed by sea water all the time		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Estuaries		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Large sha	llow inlets and bays	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Reefs			N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Atlantic sa	alt meadows	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see section 6.2.1, of the HRA Screening Report (APP-044)).

b) The distance between the offshore project area and the designated site is beyond the range of any potential LSE. Indirect far-field effects are limited to 1km of the works and for the duration of 1 tidal cycle (see paragraph 118 of APP-044).

Site	143											
Name of European Site:	Portsmou	th Harbour	SPA									
Distance to East Anglia TWO (km)	261											
Site Features	Likely	effect(s) of	East Angl	ia TWO								
	Collisi	on mortality	/	Displac	ement/Dis	sturbance	Barrier	Effect		Cumula	ative/In-co	mbinatior
	С	0	D	С	0	D	С	0	D	С	0	D
Nonbreeding brent goose, dunlin, black-tailed godwit, red-breasted merganser		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)
a) Survey data show little or n (APP-470)), and migrations of the HRA Screening Rep	of birds from	n this SPA a				-		-				

b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Portsmouth Harbour SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	144				
Name of European Site:	Presqu'ile De Crozor	n SAC			
Distance to East Anglia TWO (km)	630				
Site Features	Likely effect(s) of Eas	t Anglia TWO			
	Underwater noise	Vessel Interactions	Indirect effects on prey	Changes to water quality	In-combination

	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal Halichoerus grypus	N(a)		N(a)	N(a)	N(a)	N(a)									

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 190 and 191 and Table 8.2 of the HRA Screening Report (APP-044)).

Site	45											
Name of European Site:	Ramsar-Ge	ebiet S-H	Wattenme	eer und a	ngrenzen	de Küster	ngebiete	SPA				
Distance to East Anglia TWO (km)	148											
Site Features	Likely ef	fect(s) of I	East Angli	a TWO								
	Collision	mortality		Displace	ment/Dist	urbance	Barrier E	ffect		Cumulat	ive/In-con	nbination
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabirds including common gull, lesser black-backed gull, great black-backed gull, Mediterranean gull, black-headed gull, little tern, common tern, Arctic tern, Sandwich tern, black tern, gull-billed tern <i>Gelochelidon</i> <i>nilotica</i>		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (e)	N (e)	N (e)
Nonbreeding seabirds including razorbill, black-throated diver, red- throated diver, common gull, lesser		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (e)	N (e)	N (e)

Site	45											
Name of European Site:	Ramsar-Go	ebiet S-H	Wattenm	eer und a	ngrenzen	de Küstei	ngebiete	SPA				
Distance to East Anglia TWO (km)	48											
Site Features	Likely ef	fect(s) of I	East Angli	a TWO								
	Collision	mortality		Displace	ement/Dist	turbance	Barrier E	Effect		Cumulat	ive/In-con	nbination
	С	0	D	С	0	D	С	0	D	С	0	D
black-backed gull, great black-backed gull, Mediterranean gull, black-headed gull, little gull, kittiwake, little tern, common tern, Arctic tern, Sandwich tern, cormorant, guillemot												
Waterbirds including pintail, shoveler, teal, wigeon, mallard, garganey <i>Anas</i> <i>querquedula</i> , grey heron <i>Ardea</i> <i>cinerea</i> , turnstone, bittern, brent goose, barnacle goose, sanderling, dunlin, curlew sandpiper, ringed plover, Kentish plover <i>Charadrius</i> <i>alexandrinus</i> , Bewick's swan, whooper swan, snipe <i>Gallinago gallinago</i> , oystercatcher, black-winged stilt <i>Himantopus himantopus</i> , bar-tailed godwit, black-tailed godwit, common scoter, red-breasted merganser, curlew, whimbrel, ruff, spoonbill, golden plover, grey plover, red-necked grebe <i>Podiceps grisegena</i> , black-necked grebe <i>Podiceps nigricollis</i> , avocet, eider, shelduck, greenshank, redshank,		N (c)		N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (e)	N (e)	N (e)

Site	145														
Name of European Site:	Ramsar-0	Bebiet S-H	Wattenm	eer und a	ngrenzen	de Küste	ngebiete	SPA							
Distance to East Anglia TWO (km)	448														
Site Features	Likely e	ikely effect(s) of East Anglia TWO													
	Collisio	n mortality		Displace	ement/Dist	urbance	Barrier	Effect		Cumula	tive/In-coi	mbination			
	С	0	D	С	0	D	С	0	D	С	0	D			
lapwing															
Terrestrial birds (various species)		N (d)		N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (d)	N (d)			

a) The East Anglia TWO site is beyond maximum foraging range of designated breeding seabird species from this SPA, so has no breeding season connectivity. Proportions of these populations migrating through the East Anglia TWO site are likely to be extremely small relative to BDMPS (see Table 8.2 of the HRA Screening Report (APP-044)).

- b) Migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site relative to the size of BDMPS regional populations, not only because of the distance, but also because seabirds and waterbirds from this SPA are likely to migrate predominantly along the continental coast of the North Sea towards northern breeding grounds rather than across the southern North Sea (see Table 8.2 of the HRA Screening Report (APP-044)).
- c) Survey data show little or no evidence of these waterbird features occurring in the East Anglia TWO OWF site (see section 5.1 of Appendix 12.2 (APP-470)), and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site, as most of these birds are likely to remain on the continental side of the North Sea (see Table 8.2 of the HRA Screening Report (APP-044)).
- d) Terrestrial birds from this SPA are very unlikely to migrate to the UK; those that do migrate are more likely to follow the west European flyway along the continental coast (see Table 8.2 of the HRA Screening Report (APP-044)).
- e) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at this SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site			146															
Name of European S	Site:		Récifs	et mara	ais arriè	ere-littor	aux du	Cap Lév	vi à la P	ointe d	e Saire	SAC						
Distance to East Ang (km)	glia TW	0	355															
Site Features			Likely e	effect(s)	of East	Anglia T	ΓWO											
			Underw	ater no	ise	Vessel	Interact	ions	Indire prey	ect effect	ts on	Cha qua	•	o water		In-com	bination	
			С	0	D	С	0	D	С	0	D	С		0	D	С	0	D
Grey seal Halichoerus	s grypus	;	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	Ν	l(a)	N(a)	N(a)	N(a)
Harbour seal Phoca v	itulina		N(a) N(a)															N(a)
paragraphs 2 Site	19 and 2		harbou	r seal a	nd para	graphs	190 and	191 for	grey se	al, of the	e HRA S	Screenin	ig Repo	ort (APF	-044)).		
Name of European S	ite:		Recifs	Gris-N	ez Blan	c-Nez S	AC											
Distance to East Ang (km)	glia TW(C	123 (wi	indfarm	n site) a	nd 131 (offshor	e cable	corrido	or)								
Marine Mammals																		
Site Features	Likely	effect(s	s) of Ea	st Angli	a TWO													
	Under	water r	noise	Vess	el Intera	actions	Indired prey	ct effect	s on	Chang quality	es to wa	ater	In-con	nbinatio	'n			
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D			
Harbour porpoise Phocoena phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)			

Site			147															
Name of European Si	te:		Recifs (Gris-Ne	z Blanc	-Nez S	AC											
Distance to East Ang (km)	lia TW(C	123 (wir	ndfarm	site) an	d 131 (offshor	e cable	corrido	or)								
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)			
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)			
Benthic Habitats																		
Site Features Permar		inent lo	DSS	Tempo disturb	orary ph bance	ysical	increa	nering di sed nded se			obilisatio ninate d ents			water n bration	oise	In-com	nbinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea water all the time	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)		N (b)	N (b)	N (b)	N (b)
Reefs	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)		N (b)	N (b)	N (b)	N (b)

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 219 and 220 for harbour seal, paragraphs 190 and 191 for grey seal and paragraphs 168 and 169 for harbour porpoise, of the HRA Screening Report (APP-044)).

b) As it has been agreed through the scoping and Evidence Plan Process (EPP) (see Appendix 9.1 (APP-458) that transboundary effects are scoped out for EIA (given the distance to sites in other Members States jurisdictions) these have also been screened out from consideration for HRA purposes

Site			148															
Name of European S	ite:		Ridens	et dune	es hydra	aulique	s du de	troit du	Pas-de	-Calais	SAC							
Distance to East Ang (km)	lia TW	0	132															
Marine Mammals																		
Site Features	Likely	effect(s	s) of Eas	t Anglia	TWO													
	Under	water r	noise	Vesse	I Intera	ctions	Indired prey	t effect	s on	Chang quality	jes to w	ater	In-com	nbinatio	n			
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D			
Harbour porpoise Phocoena phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)			
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)			
Harbour seal <i>Phoca</i> <i>vitulina</i>	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)			
Benthic Habitats																		
Site Features	Perma	anent lo	SS		disturbance ir		increa	ering du sed nded se		-	obilisati ninate c ents			water no	oise	In-con	nbinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea water all the time	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)		N (b)	N (b)	N (b)	N (b)
Reefs	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)		N (b)	N (b)	N (b)	N (b)

Site		148
Name	of European Site:	Ridens et dunes hydrauliques du detroit du Pas-de-Calais SAC
Distaı (km)	nce to East Anglia TWO	132
a)		potential impact range of East Anglia TWO and the site is beyond that of potential for direct or indirect effects (see or harbour seal, paragraphs 190 and 191 for grey seal and paragraphs 168 and 169 for harbour porpoise, of the HRA 4)).
b)		ugh the scoping and Evidence Plan Process (EPP) (see Appendix 9.1 (APP-458)) process that transboundary effects are he distance to sites in other Members States jurisdictions) these have also been screened out from consideration for HRA

Site Name of Distance				(km)		· Avon shorte:		ince ov	verland)											
Fish																					
Site	Likely	v effect(s) of Ea	ast Ang	lia TWC)															
Features	Perm loss	ermanent habitat Te		physi	oorary cal bance		Smoti increa suspe sedim	ended	due to		nobilisa ntamina nents			erwater /ibratio			romagn (EMF)		In-co	mbinati	ion
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sea lamprey	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
Salmon	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)

Site	149
Name of European Site	River Avon SAC
Distance to East Anglia TWO (km)	300 (shortest distance overland)
, .	ntial impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no 5.2.1, of the HRA Screening Report (APP-044)).

Site			1	50																	
Name of Europ	ean Sit	e:	R	iver D	erwen	t SAC															
Distance to Ea (km)	st Angl	ia TWC) 2	61																	
Site features	Likely	effect(s) of Ea	ast Ang	glia TW	10															
	Perma loss	anent ł	nabitat	phys	porary ical rbance		increa	ended	due to		iobilisa itamina ents			rwater ibratior		Electro fields	omagne (EMF)	etic	In-cor	nbinati	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
River lamprey	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
a) River lan in theory between Report (<i>i</i>	be pres	sent in posed	the vici	nity of	the pro	oposed	East A	Anglia 7	rWO pi	roject, l	out give	en their	life his	story in	teracti	ion wou	ld be li	mited.	The dis	tance	ould

Site	151											
Name of European Site:	Ronas Hi	II - North	Roe and T	Fingon SP	PA							
Distance to East Anglia TWO (km)	938											
Site Features	Likely e	ffect(s) of	East Angl	ia TWO								
	Collisio	n mortality		Displace	ment/Distu	urbance	Barrier I	Effect		Cumula combina		
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding great skua		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (d)	N (d)	N (d)
Breeding red-throated diver		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (d)	N (d)	N (d)
Breeding merlin		N (c)		N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (d)	N (d)	N (d)

a) Ronas Hill, North Roe & Tingon SPA is beyond maximum foraging range of great skua so has no breeding season connectivity. The proportion of the population migrating through the East Anglia TWO site is likely to be extremely small relative to BDMPS (see Table 8.2 of the HRA Screening Report (APP-044)).

b) Ronas Hill, North Roe & Tingon SPA is beyond maximum foraging range of red-throated diver so has no breeding season connectivity. The proportion of the population migrating through the East Anglia TWO site is likely to be extremely small relative to BDMPS (see Table 8.2 of the HRA Screening Report (APP-044)).

c) Merlins from this population are likely to migrate to wintering areas that are predominantly within the UK. A few, mostly young birds, may winter on the European continent so could possibly pass through the East Anglia TWO site. However, no merlins have been seen during site specific surveys, and the chances of any from this SPA passing through the site are likely to be extremely low (see Table 8.2 of the HRA Screening Report (APP-044)).

d) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Ronas Hill, North Roe & Tingon SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

	52 ousay SP	A										
Distance to East Anglia TWO 8 (km)	26											
Site Features	Likely e	ffect(s) of	East Angl	ia TWO								
	Collisio	n mortality		Displac	ement/Dis	sturbance	Barrier	Effect		Cumula	ative/In-co	mbination
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features guillemot, Arctic skua, Arctic tern, kittiwake, fulmar		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)

b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Rousay SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	153				
Name of European Site:	Sälöfjorden SAC				
Distance to East Anglia TWO (km)	858				
Site Features	Likely effect(s) of Eas	t Anglia TWO			
	Underwater noise	Vessel Interactions	Indirect effects on prey	Changes to water quality	In-combination

Site	153														
Name of European Site:	Sälöfj	orden S	SAC												
Distance to East Anglia TWO (km)	858														
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the paragraphs 219 and 220 a	•	•	-		-			s beyond	that of	potential	for direc	t or indir	ect effec	ts (see	

Site Name of European Site: Distance to East Anglia TWO (km)	154 Sanda 745	iy SAC													
Site Features		effect(s) water no		t Anglia Vessel	TWO Interact	ions	Indirec prey	t effects	on	Change	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	C	0	D	C	0	D	С	0	D
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the	potentia	l impact	range	of East A	nglia TV	VO and t	he exten	t of any	effect or	n individu	als from	this site	would re	sult in n	0

potential for LSE (see paragraphs 219 and 220 and Table 8.2 of the HRA Screening Report (APP-044)).

Site	155														
Name of European Site:	Sandt	banker	ud for T	hyboror	n SAC										
Distance to East Anglia TWO (km)	582														
Site Features	Likely	effect(s) of Eas	t Anglia	TWO										
	Under	Likely effect(s) of East A Underwater noise			Interact	ions	Indirec prey	t effects	on	Chang quality	es to wa	iter	In-com	bination	
	С	0	D	С	0	D	C	0	D	C	0	D	С	0	D
Harbour Porpoise Phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
phocoena															0

Site	156															
Name of European Site:	Sandbanker ud for Thorsminde SAC															
Distance to East Anglia TWO (km)	582															
Site Features	Likely effect(s) of East Anglia TWO															
	Under	water n	oise	Vessel	Interact	ions	Indired prey	t effects	on	Chang quality	Changes to water quality			In-combination		
	С	0	D	С	0	D	C	0	D	C	0	D	С	0	D	
Harbour Porpoise Phocoena phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)	
a) The distance between the potential for LSE (see par	•	•	-		-			•			als from	this site	would re	esult in n	0	

Site Name of European Site: Distance to East Anglia TWO (km)	157 Sandlings SPA Within onshore cable corridor									
Site Features	Likely effe Habitat Lo		ast Angli	ia TWO Displacement	t/Disturbance	Э	In combination			
	С	0	D	C	0	D	С	0	D	
Breeding nightjar Caprimulgus europaeus	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	
Breeding woodlark Lullula arborea	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	
a) Potential for direct and in Report (APP-470).	direct effects	: (LSE) du	uring all p	phases of devel	opment and	therefore so	reened in (se	e Table 4.2 of th	e HRA Screening	

Site Name of European Site: Distance to East Anglia TWO (km)		/ ZPS 1 ndfarm		nd 107 (c	offshore	cable c	orridor)								
Site Features		effect(s water no		t Anglia ⁻ Vessel	TWO Interact	ions	Indirec prey	t effects	on	Chang quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Grey seal Halichoerus grypus	Y(b)	Y(b)	Y(b)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

 a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 219 and 220 for harbour seal and paragraphs 190 and 191 for harbour porpoise, of the HRA Screening Report (APP-044)).

b) The East Anglia TWO windfarm site is within the foraging range of grey seal and therefore the potential for LSE from underwater noise impacts cannot be ruled out.

Site	159
Name of European Site:	SBZ 2 / ZPS SAC
Distance to East Anglia TWO	84 (windfarm site) and 100 (offshore cable corridor)
(km) Site Features	Likely effect(s) of East Anglia TWO

Site Name of European Site: Distance to East Anglia TWO (km)		/ ZPS S		nd 100 (o	offshore	cable c	orridor)								
	Under	water no	oise	Vessel	Interact	ions	Indired prey	t effects	on	Chang quality	es to wa	iter	In-com	bination	
	С	0	D	С	0	D	C	0	D	С	0	D	С	0	D
Grey seal Halichoerus grypus	Y(b)	Y(b)	Y(b)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the	notontia	Limpact	trance	of East A	nalia TM	t bre OV	ho ovtor	nt of any	offect or	n individu	als from	this site	would re	eult in n	

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 190 and 191 and Table 8.2 of the HRA Screening Report (APP-044)).

b) The East Anglia TWO windfarm site is within the foraging range of grey seal and therefore the potential for LSE from underwater noise impacts cannot be ruled out.

Site Name of European Site: Distance to East Anglia TWO (km)		/ ZPS 3 ndfarm		nd 108 (c	offshore	cable c	orridor)								
Site Features	Likely	effect(s)) of East	t Anglia	TWO										
	Under	water no	oise	Vessel	Interact	ions	Indirec	t effects	on	Chang	es to wa	ter	In-com	bination	
							prey			quality					
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal Halichoerus grypus	Y(b)	Y(b)	Y(b)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the	notentia	imnact	range	of Fast A	nalia TW	/O and t	he exter	t of any	effect or	individu	als from	this site	would re	sult in n	0

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 190 and 191 and Table 8.2 of the HRA Screening Report (APP-044)).

b) The East Anglia TWO windfarm site is within the foraging range of grey seal and therefore the potential for LSE from underwater noise impacts cannot be ruled out.

Site

161

Name of Eu Distance to (km)			VO	667	er Pock													
Site	Likely	effect(s)	of East	Anglia T\	NO													
Features	Perma	anent los	SS	Temp disturb	orary ph bance	ysical	Smoth increa suspe sedim	ended	ue to		obilisati minated ents			water n ibration	oise	In-cor	nbinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Submarine structures made by leaking gases	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)		N (a)	N (a)	N (a)	N (a)

Site Name of European	Site	16: Sc		lolsteinis	sches Ell	bastuar i	und angre	enzende l	Flachen S	AC					
Distance to East Ar	glia TWO (I	(m) 47	כ												
Marine Mammals															
Site Features	Likely eff	ect(s) of I	East Angl	ia TWO											
	Underwa	ter noise		Vessel	Interactio	ons	Indirect	effects on	prey	Change quality	es to wate	ər	In-com	bination	
	С	0	D	С	0	D	С	0	D	C	0	D	С	0	D
Harbour seal Phoca vitulina	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)

Site					162																
Name of E	uropea	an Site			Schle	swigHc	olstein	isches	Elbast	uar un	d angr	enzende	e Flac	hen SA	C						
Distance t	o East	Anglia		(km)	470																
Fish																					
Site	Likel	y effect	(s) of E	ast An	glia TW	0															
Features		nanent at loss		phys	porary ical rbance		incre	ased ended	due to	of co	nobilisa ntamin nents			erwater vibratio			romagr (EMF)		In-co	mbinati	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Houting	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Twaite shad	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Lampern	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Great sea lamprey	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Salmon	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Benthic Ha	abitats	;																			-
Site Features	Likel	y effect	(s) of E	ast An	glia TW	0										1					
				Pe	rmaner	it loss	phy	nporary sical urbanc			othering eased	g due to	of co	mobilis ontamir ments			erwater vibratio		In-co	mbinat	ion

	uropean Site o East Anglia TWO (k	(162 Schlesv 470	wigHol	steinis	ches E	lbastu	ar und	angrei	nzende	Flach	en SAC	;						
								susp sedin	ended nent										
		С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Estuaries		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
	nd sandflats not seawater at low tide	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Large shall	ow inlets and bays	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
	Calicornia and other annuals olonizing mud and sand			N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
	t meadows (Glauco- talia maritimae)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 218 and 219, of the HRA Screening Report (APP-044)).

b) It was agreed as part of the East Anglia TWO Scoping and Evidence Plan Process (EPP) (see Appendix 9.1 (APP-458) and Appendix 10.1 (APP-462) that transboundary impacts on benthic habitats fish would be scoped out of the EIA. We have therefore screened them out from consideration in the HRA

Site 10	53											
Name of European Site: Set	evogelsc	hutzgebie	t Helgola	nd SPA								
Distance to East Anglia TWO 42 (km)	28											
Site Features	Likely ef	fect(s) of	East Angli	a TWO								
	Collision	mortality		Displace	ement/Dis	turbance	Barrier I	Effect		Cumula	tive/In-cor	mbination
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features razorbill, fulmar, herring gull, lesser black-backed gull, kittiwake, gannet, guillemot		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)
Nonbreeding seabird assemblage including razorbill, black-throated diver, red-throated diver, common gull, lesser black-backed gull, little gull, kittiwake, common scoter, red-necked grebe, eider, common tern, Arctic tern, Sandwich tern, gannet, guillemot		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (c)	N (c)	N (c)

a) Tracking data from gannets breeding on Helgoland show these birds do not travel in the direction of or as far as the East Anglia TWO site despite this site being within theoretical maximum foraging range of gannet. East Anglia TWO is beyond the maximum foraging range of other seabird species at Seevogelschutzgebeit Helgoland SPA. Proportions of these populations migrating through East Anglia TWO are likely to be very small relative to BDMPS regional populations (see Table 8.2 of the HRA Screening Report (APP-044)).

b) Migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site during migration relative to the size of BDMPS regional populations, not only because the sites are 428km apart, but also because nonbreeding seabirds from this SPA are likely to migrate predominantly along the continental coast of the North Sea towards northern breeding grounds rather than across the southern North Sea.

Site	163
Name of European Site:	Seevogelschutzgebiet Helgoland SPA
Distance to East Anglia TWO (km)	428
, .	able to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination res at Seevogelschutzgebeit Helgoland SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site					164																
Name of I	Europe	an Site	e		Seve	rn Estı	uary SA	NC													
Distance	to Eas	t Angli	a TWO	(km)	312 (shorte	st dista	ince o	verland)											
Fish																					
Site	Likely	effect(s) of Ea	ast Ang	lia TWC	2															
Features	Perma loss	anent h	nabitat	physi	oorary cal bance		increa	ended	due to		nobilisa ntamina nents			erwater vibratio			romagr (EMF)		In-co	mbinati	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sea Lamprey	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
River lamprey	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
Twaite shad	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
Benthic H	labitat	S		1	1	1	1	1			1	1					1				

Site		1	64																
Name of E	European Site	S	Severn	Estuar	y SAC														
Distance	to East Anglia TWO (ki	m) 3	12 (sh	ortest	distand	ce ovei	rland)												
Site Features	Likely effect(s) of East	Anglia	TWO																
reatures		Perm	anent l	DSS	physi	oorary cal bance		increa	ended	due to		nobilisa ntamina nents			rwater ibratior		In-co	mbinati	on
		С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Estuaries		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
	udflats and sandflats not N vered by seawater at low tide (k			N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Atlantic sa	alt meadows	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see section 6.2.1, of the HRA Screening Report (APP-044)).

b) The distance between the offshore project area and the designated site is beyond the range of any potential LSE. Indirect far-field effects are limited to 1km of the works and for the duration of 1 tidal cycle (see paragraph 118 of APP-044).

Site	165														
Name of European Site:	Skage	ens Gre	n og Sk	agerrak	SAC										
Distance to East Anglia TWO (km)	770	ly effect(s) of East Anglia TWO													
Site Features	Likely	effect(s) of Eas	t Anglia	TWO										
	Underwater noise			Vessel				Indirect effects on prey			es to wa	iter	In-combination		
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise Phocoena phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the paragraphs 168 and 169,	•	•	-		-		he site is	s beyond	that of	potential	for direc	t or indir	ect effec	cts (see	L

Site	166												
Name of European Site:	Solent & S	outhamp	ton Water	SPA & R	amsar (o	ffshore ca	ble corri	dor)					
Distance to East Anglia TWO (km)	267												
Site Features	Likely et	ikely effect(s) of East Anglia TWO											
	Collision			Displacement/Disturbance			Barrier I	Effect		Cumulative/In-combination			
	С			С	0	D	С	0	D	С	0	D	
Nonbreeding teal, brent goose, ringed plover, black-tailed godwit		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (d)	N (d)	N (d)	
Breeding Mediterranean gull		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	

Site		166											
Name	of European Site:	Solent & S	outhamp	ton Water	SPA & R	amsar (of	ffshore ca	able corri	dor)				
Distan	ce to East Anglia TWO (km)	267											
	ng little tern, common tern, e tern, Sandwich tern		N (c)		N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)
a)	Survey data show little or no e 5.1 of Appendix 12.2 (APP-47 site (see Table 8.2 of the HRA	0), and migr	ations of b	pirds from									
b)	No Mediterranean gulls were from the SPA are unlikely to n Mediterranean gulls as 20km, HRA Screening Report (APP-	nigrate throu so birds fror	gh the Ea	st Anglia T	WO site.	Thaxter e	t al. (2012	2) report th	ie maximu	um foragin	g range o	f breeding	•
c)	Little tern, common tern, rose (Thaxter et al. 2012), so there tend to forage in coastal wate HRA Screening Report (APP-	is no conne rs rather tha	ctivity betw	ween the S	SPA and the	ne East A	nglia TWC	D site whic	h are 244	1km apart.	Furtherm	ore, these	specie
d)	The predicted effect attributate assessment for these features		-				-	•					

Name of European Site:	Soteskär SAC
Distance to East Anglia TWO (km)	885
Site Features	Likely effect(s) of East Anglia TWO

Site	167														
Name of European Site:	Sotes	kär SAC	>												
Distance to East Anglia TWO (km)	885														
	Under	water no	oise	Vessel Interactions			Indirec prey	t effects	on	Chang quality	es to wat	ter	In-combination		
	С	0	D	С	0	D	С	0	D	D C O D C O					
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the potential for LSE (see par	•	•	•		•				effect or	individu	als from	this site	would re	esult in n	0

Site 168 Southern North Sea SAC Name of European Site: 0 (cable corridor and windfarm site) **Distance to East Anglia TWO** (km) Site Features Likely effect(s) of East Anglia TWO Underwater noise Indirect effects on Changes to water **Vessel Interactions** In-combination prey quality С 0 D С 0 D С 0 D С 0 D С 0 D Harbour porpoise Phocoena Y(a) phocoena a) The offshore project area is within the SAC and therefore LSE cannot be ruled out at the screening stage. It is assumed that all harbour porpoise in

this area are associated with this SAC (see paragraphs 168 and 169, of the HRA Screening Report (APP-044)).

Site 10	9											
Name of European Site: Si	Abb's He	ad to Fast	Castle S	PA								
Distance to East Anglia TWO 48 (km)	7											
Site Features	Likely ef	fect(s) of I	East Angli	a TWO								
Collision mortality Displacement/Disturbance Barrier Effect Cumulative/In-combination												
C O D C O D C O D C O D												D
Breeding seabird assemblage including as named features herring gull, kittiwake, razorbill, guillemot, shag		N (a)		N (a)	N (b)	N (b)	N (b)					
 a) St Abbs Head to Fast Castle SPA is beyond maximum foraging range of designated seabird species so has no breeding season connectivity. Proportions of these populations migrating through the East Anglia TWO site are likely to be very small relative to BDMPS (see Table 8.2 of the HRA Screening Report (APP-044)). 												
b) The predicted effect attributable assessment for these features a		•				•	•				nbination	

Site Name of European Site: Distance to East Anglia TWO (km)	170 Staverton Park and the Thi 6 (onshore cable corridor)		
Site Features	Likely effect(s) of East Angli Habitat Loss C	a TWO	D
Old acidophilous oak woods with <i>Euercus robur</i> on sandy	N(a)	N(a)	N(a)

plains				
a)	No overlap therefore no di	rect effect and beyond the rar	nge of potential significant indirect effect	(see Table 3.2 of the HRA Screening Report (APP-
	470).			

Site	171															
Name of European Site:	Stein	grund S	AC													
Distance to East Anglia TWO (km)	438															
Site Features	Likely	effect(s) of Eas	t Anglia	TWO											
	Under	Underwater noise			Vessel Interactions			Indirect effects on prey			Changes to water quality			In-combination		
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	
Harbour porpoise Phocoena phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)	
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)	
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)	

paragraphs 219 and 220 for harbour seal, paragraphs 190 and 191 for grey seal and paragraphs 168 and 169 for harbour porpoise, of the HRA Screening Report (APP-044)).

Site	172														
Name of European Site:	Store	Rev SC	:												
Distance to East Anglia TWO (km)	743														
Site Features	Likely	effect(s) of East Anglia TWO													
	Under	Underwater noise						Indirect effects on prey			es to wa	iter	In-combination		
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise <i>Phocoena</i> phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the paragraphs 168 and 169,	-	-	-		-		he site i	s beyond	that of	potential	for direc	t or indir	ect effec	ts(see	1

Site	173	73												
Name of European Site:	Stour & Orw	vell Estua	ries SPA a	and Rams	sar									
Distance to East Anglia TWO (km)	57 (windfarr	n site) an	d 31 (cabl	e corrido	r)									
Site Features	Likely e	kely effect(s) of East Anglia TWO												
	Collision	n mortality		Displace	ement/Dist	turbance	Barrier E	Effect		Cumulative/In-combination				
	С	0	D	С	0	D	С	0	D	С	0	D		
Wintering and passage waterbird assemblage including as named features pintail, wigeon, gadwall, turnstone, brent goose, goldeneye,		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)		

Site 1	73											
Name of European Site: S	tour & Orw	ell Estuar	ies SPA a	and Rams	sar							
Distance to East Anglia TWO 5 (km)												
dunlin, knot, ringed plover, black-tailed godwit, curlew, cormorant, grey plover, great crested grebe, shelduck, redshank, lapwing												
Breeding avocet		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (c)	N (c)	N (c)

a) Survey data show little or no evidence of Stour & Orwell Estuaries SPA features occurring in the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site.

- b) Survey data show no evidence of Stour & Orwell Estuaries SPA feature avocet occurring in the East Anglia TWO OWF site(see section 5.1 of Appendix 12.2 (APP-470), and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044)).
- c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Stour & Orwell Estuaries SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	174														
Name of European Site:	Strand	denge p	oå Læsø	ø og hav	et syd h	erfor SA	.C								
Distance to East Anglia TWO (km)	843														
Site Features	Likely	effect(s) of Eas	t Anglia	TWO										
	Under	water no	oise	Vessel	Interact	ions	Indirec prey	t effects	on	Chang quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the paragraphs 219 and 220	•	•	•		•									ts (see	

Site	75											
Name of European Site:	Sumburgh	Head SP	A									
Distance to East Anglia TWO (km) 8	62											
Site Features	Likely ef	fect(s) of I	East Angli	a TWO								
	Collision	mortality		Displace	ement/Dist	turbance	Barrier E	Effect		Cumulat	ive/In-con	nbination
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features kittiwake, fulmar, guillemot, Arctic tern		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)

175

Site

- a) Sumburgh Head SPA is beyond maximum foraging range of designated seabird species so has no breeding season connectivity. Proportions of these populations migrating through the East Anglia TWO site are likely to be very small relative to BDMPS (see Table 8.2 of the HRA Screening Report (APP-044)).
- b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Sumburgh Head SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	176														
Name of European Site:	Sydlig	ge Nord	sø SAC	;											
Distance to East Anglia TWO (km)	456														
Site Features	Likely	effect(s) of Eas	t Anglia	TWO										
	Under	water n	oise	Vesse	Interact	ions	Indired prey	ct effects	on	Chang quality	es to wa	iter	In-com	bination	
	С	0	D	С	0	D	C	0	D	C	0	D	С	0	D
Harbour porpoise <i>Phocoena</i> phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

paragraphs 219 and 2120 for harbour seal, paragraphs 190 and 191 for grey seal and paragraphs 168 and 169 for harbour porpoise, of the HRA Screening Report (APP-044)).

Site				177														
Name of	European Site:			Sylte	r Auf	Benriff SC												
	to East Anglia TWO	(km)		400														
Ornitholo	ogy																	
Site Featu	ires		Likely	effect	(s) of	East Ang	glia TWC)										
			Collisi	on mo	rtality	y	Displa	cement/D	Disturl	ance	B	arrier Eff	ect		Cumu	lative/li	n-comb	ination
			С	0		D	С	0	[)	С		0	D	С	0		D
including I throated d black-back backed gu kittiwake,	ing seabird assemblag black-throated diver, re liver, common gull, les ked gull, great black- ull, little gull, gannet, common tern, Arctic te tern, guillemot		N (a)			N (a)	N (a)	1	1 (a)	N	(a)	N (a)	N (a)	N (b)	N (I	0)	N (b)	
Marine m	ammals																	
Site Featu	ires		-			t Anglia T												
		Und	lerwate	r noise	;	Vessel	Interacti	ons	Indi	ect eff	ects	on prey	Chang quality	ges to wat	er	In-cor	nbinati	วท
		С	0	D		С	0	D	С	0		D	C	0	D	С	0	D
Harbour p	orpoise <i>Phocoena</i>	N (c	:) N (c) N	(c)	N (c)	N (c)	N (c)	N (c) N	(c)	N (c)	N (c)		N (c)	N (c)	N (c)	N (c)
Grey seal	Halichoerus grypus	N (c	;) N (c) N	(c)	N (c)	N (c)	N (c)	N (c) N	(c)	N (c)	N (c)		N (c)	N (c)	N (c)	N (c)
Harbour s	eal Phoca vitulina	N (c	;) N (c) N	(C)	N (c)	N (c)	N (c)	N (c) N	(c)	N (c)	N (c)		N (c)	N (c)	N (c)	N (c)
Fish						·												
Site	Likely effect(s) of Ea	st Angl	ia TWC															
Features	Permanent habitat loss	Tempo physic disturt	al			othering or reased	due to	Re- mol contami sedimer	nated		-	derwater d vibratio		Electrom fields (EN	0	In	i-combi	nation

Site Name of	Europe	ean Sit	e:				r Auße	nriff S(CI												
Distance	to Eas	t Angl	ia TWO	(km)		400															
							suspe sedim	ended nent													
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
River	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)
lamprey																					
Twaite shad	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)

a) Migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site relative to the size of BDMPS regional populations, not only because the sites are 400km apart, but also because nonbreeding seabirds from this SPA are likely to migrate predominantly along the continental coast of the North Sea towards northern breeding grounds rather than across the southern North Sea (see Table 8.2 of the HRA Screening Report (APP-044)).

b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Sylter Außenriff SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

c) It was agreed as part of the East Anglia TWO Scoping and Evidence Plan Process (EPP) (see Appendix 10.1 (APP-462) that transboundary impacts on fish would be scoped out of the EIA. We have therefore screened them out from consideration in the HRA.

Site	178											
Name of European Site:	Teesmout	n and Clev	eland Coa	ast SPA a	nd Ramsa	ır						
Distance to East Anglia TWO (km)	332											
Site Features	Likely	effect(s) of	East Angl	ia TWO								
	Collisio	on mortality	,	Displace	ement/Dis	turbance	Barrier I	Effect		Cumula	tive/In-co	mbination
	С	0	D	С	0	D	С	0	D	С	0	D
Nonbreeding knot, redshank		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (d)	N (d)	N (d)
Nonbreeding Sandwich tern		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (d)	N (d)	N (d)
Breeding little tern		N (c)		N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)

 a) Survey data show little or no evidence of Teesmouth & Cleveland Coast SPA features knot or redshank occurring in the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site.

- b) Nonbreeding Sandwich terns at Teesmouth & Cleveland Coast SPA may migrate between the SPA and wintering areas off west Africa. This could take them near to East Anglia TWO. However, very few terns of any species were seen in the East Anglia TWO site during bird surveys, and the Sandwich tern tends to migrate close to the coast where that is possible, so there are unlikely to be significant numbers reaching the East Anglia TWO site. The few that do will have a very low collision risk due to their generally low flight height and displacement/barrier effects will be negligible in the context of a migration of thousands of kilometres (see Table 8.2 of the HRA Screening Report (APP-044).
- c) Breeding little tern has a maximum foraging range of 11km from colonies (Thaxter et al. 2012), so would have no connectivity with East Anglia TWO. Migrating little terns are considered to be 'extremely coastal on passage with very few sightings in open ocean or inland' (Forrester et al. 2007), so are unlikely to pass through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044).
- d) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Teesmouth & Cleveland Coast SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044).

Site	179											
Name of European Site:	Thames E	stuary an	d Marshe	s SPA an	d Ramsa	r						
Distance to East Anglia TWO (km)	116 (windf	arm site)	and 99 (o	ffshore o	able corr	idor)						
Site Features	Likely e	ffect(s) of	East Angli	ia TWO								
	Collision	n mortality	,	Displac	ement/Dis	turbance	Barrier	Effect		Cumula	ative/In-co	mbination
	С	0	D	С	0	D	С	0	D	С	0	D
Wintering and passage waterbird assemblage including as named features dunlin, knot, ringed plover, black-tailed godwit, grey plover, avocet redshank	,	N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)
Nonbreeding hen harrier		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (c)	N (c)	N (c)

 a) Survey data show little or no evidence of Thames Estuary & Marshes SPA features occurring in the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044).

b) Survey data show no evidence of hen harrier occurring in the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site, as the species is likely to migrate overland rather than over sea where the option is available (see Table 8.2 of the HRA Screening Report (APP-044).

c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Thames Estuary & Marshes SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044).

Site 18	0											
Name of European Site: Th	anet Coas	st and Sa	ndwich Ba	ay SPA ar	nd Ramsa	r						
Distance to East Anglia TWO 87 (km)	(windfarn	n site and	l 88 (offsh	ore cable	corridor))						
Site Features	Likely ef	fect(s) of	East Angli	a TWO								
	Collision	mortality		Displace	ement/Dist	urbance	Barrier E	Effect		Cumulat	ive/In-cor	mbination
	С	0	D	С	0	D	С	0	D	С	0	D
Nonbreeding turnstone, golden plover		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)
Breeding little tern		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)

a) Survey data show little or no evidence of Thanet Coast & Sandwich Bay SPA features turnstone or golden plover occurring in the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site.

b) Breeding little tern has a maximum foraging range of 11km from colonies (Thaxter et al. 2012), so would have no connectivity with the East Anglia TWO site. Migrating little terns are considered to be 'extremely coastal on passage with very few sightings in open ocean or inland' (Forrester et al. 2007), so are unlikely to pass through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044).

c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Thanet Coast & Sandwich Bay SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044).

Site				181														
Name of Eu	iropean	Site:		Thane	t Coast	SAC												
Distance to (km)	East Ar	nglia TW	10	86														
Site	Likely	effect(s)	of East /	Anglia T\	NO													
Features	Perma	anent los	S	Temp disturi	orary ph bance	iysical	Smoth increa suspe sedim	nded	ue to	-	obilisatio minated ents	on of		rwater n ibration	oise	In-cor	nbinatio	ſ
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea water all the time	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
Mudflats and sandflats not covered by seawater at low tide	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
Reefs	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)		N (a)	N (a)	N (a)	N (a)

Site	182												
Name of European Site:	The S	Swale SPA 8	& Ram	sar									
Distance to East Anglia TWO (km)	109 (9 (windfarm site) and 98 (cable corridor)											
Site Features	Like	ly effect(s) c	f East	Anglia TWO									
	Colli	sion mortali	ty	Displacement/E	Disturbanc	e	Barrier	Effect		Cumu combi	lative/In- nation	-	
	С	0	D	С	0	D	С	0	D	С	0	D	
Wintering and passage waterbird assemblage including as named features brent goose, dunlin, redshank		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)	

 a) Survey data show little or no evidence of The Swale SPA and Ramsar features occurring in the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), and migrations of birds from this site are likely to result in negligible numbers passing through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044).

b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at The Swale SPA and Ramsar (see Table 8.2 of the HRA Screening Report (APP-044).

Site Name of Europea Distance to East		VO (km)		e Wash	and North rm site) a														
Marine Mammals																			
Site Features	Likely ef	fect(s) of E	East Ang	glia TWC)														
	Underwa	ater noise			I Interactio pance at s es		Indired	ct effe	ects on	prey	Changes	s to wate	er quali	ty In	-com	binatio	n		
	С	0	D	С	0	D	С		0	D	С	0	D	C	;	0	D		
Harbour seal <i>Phoca vitulina</i>	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)		Y (a)	Y (a)	Y (a)		Y (a)	Y	(a)	Y (a)	Y (a)		
Grey seal <i>Halichoerus grypu</i> s	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)	Y (a)		Y (a)	Y (a)	Y (a)		Y (a)	Y	(a)	Y (a)	Y (a)		
Benthic Habitats																			
Site Features	Permane	ent loss		Tempo disturb	orary phys bance	ical		sed s	due to uspenc		Re- mot contamii sedimen	nated	of	nois	erwa e ano ation		In-c	ombina	ation
	С	0	D	С	0	D	С	0	D		С	0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea water all the time	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)		N (b)	N (b)		N (b)	N (b)	N (b)	N (b)
Mudflats and sandflats not covered by seawater at low tide	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)		N (b)	N (b)		N (b)	N (b)	N (b)	N (b)
Large shallow inlets and bays	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)		N (b)	N (b)		N (b)	N (b)	N (b)	N (b)

Site	183
Name of European Site:	The Wash and North Norfolk Coast SAC
Distance to East Anglia TWO (km)	99 (windfarm site) and 90 (cable corridor)
for foraging grey and harbour sea Anglia TWO area are associated	noise; vessel interactions; changes to water quality; changes to prey resources; and disturbance at seal haul-out sites I cannot be ruled out. Nearest SAC for harbour seal to East Anglia TWO. Assumed that all harbour seal in the East with this SAC. Potential for vessel interactions and disturbance at seal haul-out sites depending on vessel route and t see Table 7.2 of the HRA Screening Report (APP-044).

b) The distance between East Anglia TWO and the designated site is beyond the range of any potential LSE. Indirect far-field effects are limited to 1km of the works and for the duration of 1 tidal cycle (see paragraph 118 of APP-044)

Site	184											
Name of European Site:	The Wash	SPA and	Ramsar									
Distance to East Anglia TWO (km)	128 (windf	arm site)	and 106 (cable cor	ridor)							
Site Features	Likely et	ffect(s) of	East Angli	a TWO								
	Collisior	n mortality		Displace	ement/Dis	turbance	Barrier I	Effect		Cumula	tive/In-cor	nbination
	С	0	D	С	0	D	С	0	D	С	0	D
Wintering and passage waterbird assemblage including as named features pintail, wigeon, gadwall, pink- footed goose, turnstone, brent goose, goldeneye, sanderling, dunlin, knot, Bewick's swan, oystercatcher, bar- tailed godwit, black-tailed godwit, common scoter, curlew, grey plover, shelduck, redshank		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)
Breeding little tern, common tern		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)

Site	184
Name of European Site:	The Wash SPA and Ramsar
Distance to East Anglia TWO (km)	128 (windfarm site) and 106 (cable corridor)
	evidence of The Wash SPA features occurring in the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP- from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see Table 8.2 of the 044)).

- b) Little tern and common tern have maximum foraging ranges from colonies of 11km and 30km respectively (Thaxter et al. 2012), so there is no connectivity between the SPA and East Anglia TWO site which are 106km apart. Furthermore, these species tend to forage in coastal waters rather than offshore. Therefore, collision risk, displacement and barrier effects can be excluded (see Table 8.2 of the HRA Screening Report (APP-044)).
- c) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at The Wash SPA and Ramsar(see Table 8.2 of the HRA Screening Report (APP-044)).

Site	185														
Name of European Site:	Thybo	oron Ste	envolde	SCI											
Distance to East Anglia TWO (km)	595														
Site Features				t Anglia	TWO					-					
	Under	water n	oise	Vessel	Interact	ions	Indired prey	ct effects	on	Chang quality	es to wa	ater	In-com	bination	
	С	0	D	С	0	D	Ċ	0	D	C	0	D	С	0	D
Harbour Porpoise Phocoena phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the potential for LSE (see par	•	•	•		•			•			als from	n this site	would re	esult in n	0

Site Name of European Site: Distance to East Anglia TWO (km)	186 Trego 498	r Goëlo	SAC												
Site Features		effect(s) water no		t Anglia ⊺ Vessel	TWO Interact	ions	Indirec prey	t effects	on	Change quality	es to wat	ter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 190 and 191 and Table 8.2 of the HRA Screening Report (APP-044)).

Site	87											
Name of European Site:	roup, Per	nan and	Lion`s He	ads SPA								
Distance to East Anglia TWO (km)	57											
Site Features	Likely ef	fect(s) of I	East Angli	a TWO								
	Collision	mortality		Displace	ement/Dist	turbance	Barrier E	Effect		Cumulat	ive/In-con	nbination
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features razorbill, fulmar, guillemot, kittiwake, herring gull		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)

Site	187
Name of European Site:	Troup, Pennan and Lion`s Heads SPA
Distance to East Anglia TWO (km)	657
	ds SPA is beyond maximum foraging range of designated seabird species so has no breeding season connectivity. ons migrating through the East Anglia TWO site are likely to be very small relative to BDMPS (see Table 8.2 of the HRA).
<i>,</i> .	ble to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination s at Troup, Pennan & Lion's Heads SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site Name of E	uropea	an Site			188 Untere	elbe SC	21														
Distance t				(km)	470																
Fish																					
Site	Likel	y effect	(s) of E	ast Ang	lia TW	C															
Features	Perm loss	anent	habitat	physi	oorary cal bance		incre	ased ended	due to		nobilisa ntamina nents			erwater vibratio			romagr (EMF)		In-co	mbinati	ion
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Houting	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
Twaite shad	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)

Site					188																
Name of E	uropea	an Site			Unter	elbe S	CI														
Distance to	o East	Anglia	TWO	(km)	470																
Lampern	N	Ν	N	N	Ν	Ν	N	Ν	N	N	Ν	N	Ν	Ν	N	N	N	N	N	N	N
	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)
Great sea	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
lamprey	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)
Salmon	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)

a) It was agreed as part of the East Anglia TWO Scoping and Evidence Plan Process (EPP) (see Appendix 9.1 (APP-458) and Appendix 10.1 (APP-462) that transboundary impacts on benthic habitats fish would be scoped out of the EIA. We have therefore screened them out from consideration in the HRA

Site	189														
Name of European Site:	Untere	ems uno	d Außei	nems SC											
Distance to East Anglia TWO (km)	343														
Site Features	Likely	ikely effect(s) of East Anglia TWO													
	Under	water no	oise	Vessel	Interacti	ions	Indirec prey	t effects	on	Change quality	es to wa	ter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 190 and 191 and Table 8.2 of the HRA Screening Report (APP-044)).

Site Name of European Site:	190 Vadel	navet m	ed Ribe	e Å, Tvec	l Å og V	arde Å \	vest for	Varde S	AC						
Distance to East Anglia TWO (km)	507														
Site Features	Likely	effect(s) of Eas	t Anglia	TWO										
	Under	derwater noise Vessel Interactions Indirect effects on prey Changes to water quality In-combination													
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise Phocoena phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Grey seal Halichoerus grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

Screening Report (APP-044)).

Site	191														
Name of European Site:	Venø,	Venø S	und SA	AC											
Distance to East Anglia TWO (km)	626														
Site Features	Likely	effect(s)) of Eas	t Anglia	TWO										
	Under	water no	oise	Vessel	Interact	ions	Indirec prey	t effects	on	Chang quality	es to wa	iter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the paragraphs 219 and 220	•	•	-		-			s beyond	that of	potential	for direc	t or indir	ect effec	ts(see	
Site	192														
Name of European Site:	Vlaams	e Bank	en SAC												
Distance to East Anglia TWO (km)	59 (win	dfarm s	ite) and	d 72 (off:	shore ca	ible cori	ridor)								
Marine Mammals															
Site Features Likely effect	s) of East	Anglia	TWO												

Site Features	Likely	effect(s) of Eas	st Anglia	TWO										
	Under	water i	noise		Interactions ance at sea		Indirec	t effects or	n prey	Chang	es to wate	er quality	In-combina	ation	
				outs	ance at sea	mau									
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D

Site					192																
Name of	Europe	ean Si	te:		Vlaam	se Bank	en SAC	;													
Harbour p Phocoena phocoena	a	e N (a)	1) (N a)	N (a)	N (a)	N (a)	N	l (a)	N (a)	N (a)	N ((a)	N (a)		N	(a)	N (a)		N (a)	N (a)
Grey seal Halichoer grypus		Y (b)) ((b)	Y (b)	N (a)	N (a)	N	l (a)	N (a)	N (a)	N ((a)	N (a)		N	(a)	N (a)		N (a)	N (a)
Harbour s Phoca vite		Y (b)) ((b)	Y (b)	N (a)	N (a)	N	l (a)	N (a)	N (a)	N ((a)	N (a)		N	(a)	N (a)		N (a)	N (a)
Fish								I											I	I	
Site	Likely	/ effect	(s) of	East A	nglia 1	WO															
Features		anent at loss		phy	nporary sical urbanc		Smoth increa suspe sedim	nded	due to	-	nobilisa ntamina nents			rwater n ibration	oise		romagne (EMF)	etic	In-c	ombina	tion
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sea Lamprey	N(c)	N(c)	N(c)	N(c) N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)
Twaite Shad	N(c)	N(c)	N(c)	N(c) N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)
Benthic h	nabitat	s					<u> </u>									<u> </u>	<u> </u>				
Site Featu	nthic habitats			Perma	nent lo	SS	Temp physic distur	cal		Smothe increas sedime	ed sus		d con	mobilisa taminate iments		-	nderwate nd vibrat)	In-com	bination

Site		192																	
Name of European Site:		Vlaam	se Bank	en SA	۲C														
	С	0	D	С	0		D	С	0	D	С	0	D	С	0	D	С	0	D
Reefs	N(d)	N(d)	N(d)	N(d)	N(d)	N(c	d)	N(d)	N(d)										
Sandbanks which are slightly covered by sea water all the time	N(d)	N(d)	N(d)	N(d)	N(d)	N(c	d)	N(d)	N(d)										

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 219 and 220 for harbour seal, paragraphs 190 and 191 for grey seal and paragraphs 168 and 169 for harbour porpoise, of the HRA Screening Report (APP-044)).

b) The East Anglia TWO windfarm site is within the foraging range of grey and harbour seal and therefore the potential for LSE from underwater noise impacts cannot be ruled out (see paragraphs 219 and 220 and Table 7.3 of the HRA Screening Report (APP-044)).

- c) It was agreed as part of the East Anglia TWO Scoping Report that transboundary impacts on fish would be scoped out of the EIA. We have therefore screened them out from consideration in the HRA
- d) As it has been agreed through the scoping and Evidence Plan Process (EPP) Appendix 10.1 (APP-462) that transboundary effects are scoped out for EIA (given the distance to sites in other Members States jurisdictions) these have also been screened out from consideration for HRA purposes.

Site			193												
Name of European	Site:		Vlakte v	an de Ra	an SCI/S	AC									
Distance to East An	st Anglia TWO (km) 82 (windfarm site) and 99 (cable corridor)														
Marine Mammals															
Site Features	Likely e	effect(s) c	of East An	glia TWC)										
	Underw	ater nois	e	Vessel	Interactio	ns	Indirect	effects of	n prey	Change	s to wate	r quality	In-comb	oination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D

Site					193																
Name of	Europ	ean Si	te:		Vlakt	e van o	de Raa	n SCI/S	AC												
Distance	to Eas	st Ang	lia TWC) (km)	82 (w	indfar	m site)	and 99	(cable	corrio	lor)										
Harbour p Phocoena phocoena	Э	e	N (a)	N (a)	N (a) N	(a)	N (a)	N (a)	N	(a)	N (a)	N (a)	N (a)		N (a)	N (a) N	(a)	N (a)
Grey seal <i>Halichoer</i>			Y (b)	Y (b)	Y (b) N	(a)	N (a)	N (a)	N	(a)	N (a)	N (a)	N (a)		N (a)	N (a) N	(a)	N (a)
Harbour s <i>vitulina</i>			N (a)	N (a)	N (a) N	(a)	N (a)	N (a)	N	(a)	N (a)	N (a)	N (a)		N (a)	N (a) N	(a)	N (a)
Fish							· ·							- i							
Site	Likely	/ effec	t(s) of E	ast Ang	lia TW0	C															
Features	Perm loss	anent	habitat	Temp physic distur	-		incre	ended	due to		nobilis ntamir nents			rwater ⁄ibratio			romagn s (EMF)	etic	In-co	mbinati	ion
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sea Lamprey	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)
River lamprey	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)
Twaite Shad	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)

a) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 219 and 220 for harbour seal, paragraphs 190 and 191 for grey seal and paragraphs 168 and 169 for harbour porpoise, of the HRA Screening Report (APP-044)).

Site	193												
Name of European S	Site: Vlakte v	an de Ra	aan SCI/S	SAC									
Distance to East An b) The East Ang cannot be rul	glia TWO windfarm site is w					and there	fore the p	otential fo	or LSE fro	om under	water noi	se impac	ts
	as part of the East Anglia sh would be scoped out of										2) that tra	nsbound	ary
Site Name of European S Distance to East An (km)				offshore	cable co	rridor)							
Ornithology													
Site Features	Likely effect(s) of East An	iglia TW0	С										
		Collisio	n mortalit	ty	Displac	ement/Dis	turbance	Barrier	Effect		Cumula combin	ative/In- ation	
		С	0	D	С	0	D	С	0	D	С	0	D
cormorant, shelduck, goldeneye, sanderling crested grebe, greyla avocet, gadwall, Slav red-breasted mergans diver, bar-tailed godw	nstone, scaup, redshank,		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N(a)	N (b)	N (b)	N (b)
Marine Mammals							I	1					
Site Features	Likely effect(s) of East An	iglia TW	C										

Site				19	94																
Name of I	Europe	an Sit	е	V	oordelf	a SPA	and S/	AC													
Distance	to Eas	t Angl	ia TWC) 84	4 (wind	farm s	ite) an	d 101 (offshor	e cable	e corri	dor)									
(km)																					
				ater noi				teractic				ects on	<u> </u>				quality		mbinat		
		0		0	D	C		0	D	C))	D	C	0		D	C	0		D
Harbour p Phocoena phocoena	1	9 P	l (c)	N (c)	N (c)) N	(C)	N (c)	N (c)	N (C)	N (c)	N (c)	N (c	;)		N (c)	N (c)	N ((C) [N (c)
Grey seal Halichoer	us gryp		′ (e)	Y (e)	Y (e)) N	(c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c	:)		N (c)	N (c)	N ((c) I	N (c)
Harbour s vitulina			l (c)	N (c)	N (c)) N	(c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c	;)		N (c)	N (c)	N ((c) I	N (c)
Fish					•	•					•			•				•	•		
Site	Likely	effect	(s) of E	ast Ang	lia TW	0							-								
Features	Perma habita			Temp physio distur	cal		Smot increa suspa sedim	ended	due to	-	iobilisa minate ents			water r ibration			romagn (EMF)	etic	In-cor	mbinati	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sea lamprey	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)
River lamprey	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)
Allis shad	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)
Twaite shad	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)	N(d)
Benthic H	labitat	5																			

	European Site to East Anglia TWO	V		ta SPA Ifarm s			offshor	e cable	e corrid	or)									
Site Features	Likely effect(s) of Ea		ilia TW		Temp physio distur			Smoth increa suspe sedim	nded	lue to	-	obilisat minate o ents			rwater r ibration		In-cor	nbinatio	on
		С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
	s which are slightly y sea water all the	N(e)	N(e)	N(e)	N(e)	N(e)	N(e)	N(e)	N(e)	N(e)	N(e)	N(e)	N(e)	N(e)	N(e)	N(e)	N(e)	N(e)	N(e)

a) Survey data show little or no evidence of Voordelta SPA features occurring in the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044)).

b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Voordelta SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

- c) The distance between the potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no potential for LSE (see paragraphs 219 and 220 for harbour seal, paragraphs 190 and 191 for grey seal and paragraphs 168 and 169 for harbour porpoise, of the HRA Screening Report (APP-044)).
- d) It was agreed as part of the East Anglia TWO Scoping and Evidence Plan Process (EPP) (see Appendix 10.1 (APP-462) that transboundary impacts on fish would be scoped out of the EIA. We have therefore screened them out from consideration in the HRA.
- e) As it has been agreed through the scoping and Evidence Plan Process (EPP) (see Appendix 10.1 (APP-462) that transboundary effects are scoped out for EIA (given the distance to sites in other Members States jurisdictions) these have also been screened out from consideration for HRA purposes.

Site	194
Name of European Site	Voordelta SPA and SAC
Distance to East Anglia TWO	84 (windfarm site) and 101 (offshore cable corridor)
(km)	
f) The East Anglia TWO win	dfarm site is within the foraging range of grey seal and therefore the potential for LSE from underwater noise impacts
cannot be ruled out (see	Table 7.3 of the HRA Screening Report (APP-044)).
, , , , , , , , , , , , , , , , , , ,	

Site	195														
Name of European Site:	Vrång	öskärg	ården S	AC											
Distance to East Anglia TWO (km)	862														
Site Features	Likely	effect(s) of Eas	t Anglia	TWO										
	Under	water n	oise	Vessel	Interact	ions	Indired prey	t effects	on	Chang quality	es to wa	iter	In-com	bination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal Phoca vitulina	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
a) The distance between the paragraphs 219 and 220	e potentia	l impac	t range	of East A	nglia TV	VO and t	he site i	. ,	. ,		for direc				

Site	196
Name of European Site:	Waddenzee (Wadden Sea) SPA
Distance to East Anglia TWO (km)	186
Site Features	Likely effect(s) of East Anglia TWO

Site 19	6											
Name of European Site: Wa	addenzee	(Wadden	Sea) SPA	L .								
Distance to East Anglia TWO 18 (km)	6											
	Collision	mortality		Displace	ement/Dis	turbance	Barrier I	Effect		Cumula	tive/In-cor	nbination
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features lesser black-backed gull, little tern, common tern, Arctic tern, Sandwich tern		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (d)	N (d)	N (d)
Breeding waterbirds including Kentish plover, ringed plover, marsh harrier, spoonbill, avocet		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (d)	N (d)	N (d)
Wintering and passage waterbirds including pintail, shoveler, teal, wigeon, mallard, gadwall, greylag goose, bean goose <i>Anser fabalis</i> , turnstone, scaup, brent goose, barnacle goose, goldeneye, sanderling, dunlin, knot, curlew sandpiper, ringed plover, black tern <i>Chlidonias niger</i> , hen harrier, Bewick's swan, oystercatcher, bar- tailed godwit, black-tailed godwit, red- breasted merganser, goosander, curlew, cormorant, spoonbill, golden plover, grey plover, great crested grebe, avocet, eider, shelduck, greenshank, redshank, lapwing		N (c)		N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (d)	N (d)	N (d)

Site		196
Name	of European Site:	Waddenzee (Wadden Sea) SPA
Distan (km)	ice to East Anglia TWO	186
a)	breeding season connectivity BDMPS, not only because of coast rather than crossing th	far beyond the mean maximum foraging range of designated breeding seabird species from this SPA, so has no y. Proportions of these populations migrating through the East Anglia TWO site are likely to be extremely small relative to f the distance, but also because birds from this SPA are likely to use the west European flyway along the continental the southern North Sea. Lesser black-backed gull tracking has shown breeding birds do not cross the North Sea therefore or this species (see Table 8.2 of the HRA Screening Report (APP-044)).
b)	Appendix 12.2 (APP-470), a	evidence of Waddenzee SPA breeding waterbird features occurring in the East Anglia TWO site see section 5.1 of nd migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site creening Report (APP-044)).
c)	Appendix 12.2 (APP-470), a	evidence of Waddenzee SPA nonbreeding waterbird features occurring in the East Anglia TWO site see section 5.1 of nd migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site creening Report (APP-044)).
d)	-	able to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination es at Waddenzee SPA (see Table 8.2 of the HRA Screening Report (APP-044)).

Site Name of European Si	101		197 Waddenz	00 SAC														
Distance to East Ang			186															
(km)		0																
Marine Mammals																		
Site Features	Likely	effect(s) of East	Anglia T\	NO													
	Under	water n	ioise	Vessel Interactions						Changes to water quality			In-combination					
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D			
Harbour porpoise Phocoena phocoena	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)	-		
Grey seal <i>Halichoerus</i> grypus	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)			
Harbour seal <i>Phoca</i> <i>vitulina</i>	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)			
Benthic Habitats																		
Site Features	Perma	anent lo	SS		orary pl bance	nysical	Smoth increa suspe sedim	ended	lue to	-	obilisat ninate o ents		0	rwater r ibration	ioise	In-com	nbinatio	l
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea vater all the time	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)		N (b)	N (b)	N (b)	N (b)
Estuaries	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)		N (b)	N (b)	N (b)	N (b)
Audflats and sandflats not covered by seawater at low tide	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)		N (b)	N (b)	N (b)	N (b)

Site	197							
Name of European Site:	Waddenzee SAC							
Distance to East Anglia TWO (km)	186							
potential for LSE (see pa	e potential impact range of East Anglia TWO and the extent of any effect on individuals from this site would result in no ragraphs 219 and 220 for harbour seal, paragraphs 190 and 191 for grey seal and paragraphs 168 and 169 for harbour eening Report (APP-044)).							
,	rough the scoping and Evidence Plan Process (EPP) (see Appendix 9.1 (APP-458)) that transboundary effects are scoped out te to sites in other Members States jurisdictions) these have also been screened out from consideration for HRA purposes.							

Site 1	98													
Name of European Site: V	Vest West	ray SPA												
Distance to East Anglia TWO (km) 8	37													
Site Features	Likely effect(s) of East Anglia TWO													
	Collision	mortality		Displace	ement/Dis	turbance	Barrier I	Effect		Cumulative/In-combination				
	С	0	D	С	0	D	С	0	D	С	0	D		
Breeding seabird assemblage including as named features kittiwake, Arctic tern, fulmar, razorbill, Arctic skua, guillemot		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)		

a) West Westray SPA is beyond maximum foraging range of designated seabird species so has no breeding season connectivity. Proportions of these
populations migrating through the East Anglia TWO site are likely to be very small relative to BDMPS (see Table 8.2 of the HRA Screening Report
(APP-044).

b) The predicted effect attributable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at West Westray SPA (see Table 8.2 of the HRA Screening Report (APP-044).

Site			199																		
Name of I Site:	Europ	ean	West	Vesterschelde & Saeftinghe SAC																	
	ce to East 106 (windfarm site) and 128 (offshore cable corridor) TWO (km)																				
Site	Likel	effect	(s) of E	ast Ang	lia TW	C															
Features	Perm loss	anent	habitat	physi	oorary cal bance		Smothering due increased suspended sediment		due to	Re- mobilisation of contaminated sediments			Underwater noise and vibration			Electromagnetic fields (EMF)			In-combination		
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
River lamprey	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
Twaite Shad	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
a) Ti							1			1							om this				

potential for LSE.

Site	200														
Name of European Site:	Winte	/interton – Horsey Dunes SAC													
Distance to East Anglia TWO (km)	60 (ca	ble cori	ridor)												
Site Features	Likely	effect(s)) of Eas	t Anglia	TWO										
	Under	water no	oise	Vessel Interactions			Indirec prey	t effects	on	Chang quality	es to wa	ter	In-com		
	С	0	D	С	0	D	C	0	D	С	0	D	С	0	D
Grey seal Halichoerus grypus	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
a) There is no potential for any direct disturbance as a result of activities within the East Anglia TWO windfarm site due to the distance between the site and the closest point onshore (31km). There is also no potential for any direct disturbance as a result of activities within the East Anglia TWO											he site				

offshore cable corridor due to the distance between the nearest major haul-out site at Winterton-Horsey and the cable landfall at Sizewell, which is located over 60km along the coast (Table 7.3 of the HRA Screening Report (APP-044)).

Site	201															
Name of European Site:	Yell S	/ell Sound Coast SAC														
Distance to East Anglia TWO (km)	938															
Site Features	Likely	effect(s) of Eas	t Anglia	TWO											
	Under	water no	oise	Vessel	Interact	ions	Indirec prey	t effects	on	Change quality	Changes to water quality			In-combination		
	С	0	D	С	0	D	C	0	D	C	0	D	С	0	D	
			_													
Harbour Seal <i>Phoca vitulina</i>	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)	

Site Name of European Site:	202 Ythan Estu	ary Sand	s of Eorvi	and Ma	ikla Lach	SDV							
Distance to East Anglia TWO (km)	615	ary, Sanu	5 01 1 01 01			SFA							
Site Features	Likely	effect(s) of	East Angli	ia TWO			1			1			
	Collisio	Collision mortality			ement/Dis	turbance	Barrier	Effect		Cumula	Cumulative/In-combination		
	С	0	D	С	0	D	С	0	D	С	0	D	
Wintering and passage waterbird assemblage including as named features lapwing, eider, pink-footed goose, redshank		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (c)	N (c)	N (c)	
Breeding little tern, common tern, Sandwich tern		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	

 a) Survey data show little or no evidence of Ythan Estuary, Sands of Forvie & Meikle Loch SPA features occurring in the East Anglia TWO site (see section 5.1 of Appendix 12.2 (APP-470), and migrations of birds from this SPA are likely to result in negligible numbers passing through the East Anglia TWO site (see Table 8.2 of the HRA Screening Report (APP-044)).

b) Little tern, common tern and Sandwich tern have maximum foraging ranges from colonies of 11km, 30km and 54km respectively, so there is no connectivity between the SPA and East Anglia TWO site which are 608km apart. Furthermore, these species tend to forage in coastal waters rather than offshore. Therefore, collision risk, displacement and barrier effects can be excluded (see Table 8.2 of the HRA Screening Report (APP-044)).

Site	202
Name of European Site:	Ythan Estuary, Sands of Forvie and Meikle Loch SPA
Distance to East Anglia TWO (km)	615
· · · ·	itable to East Anglia TWO is so small that it would not significantly contribute to or alter the overall in-combination ures at Ythan Estuary, Sands of Forvie & Meikle Loch SPA (see Table 8.2 of the HRA Screening Report (APP-044)).