

The Sizewell C Project

8.14 Water Framework Directive Compliance Assessment Report Appendix 3A Extended Water Body Summary Reports

Revision: 1.0

Applicable Regulation: Regulation 5(2)(q)

PINS Reference Number: EN010012

May 2020

Planning Act 2008 Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009

APPENDIX 3A:

EXTENDED WATER BODY SUMMARY REPORTS

NOT PROTECTIVELY MARKED

Contents

A1 Alde - Ore (d/s confluence) (GB105035045950)

A2 Alde & Ore (GB520503503800)

A3 Blyth (S) (GB510503503700)

A4 Bucklesham Mill River GB105035040280

A5 Coddenham Watercourse GB105035046100

A6 Deben (GB520503503900)

A7 Felixstowe Peninsula Crag & Chalk GB40501G401800

A8 Hundred River GB105035046260

A9 Leiston Beck (GB105035046271)

A10 Minsmere Old River (GB105035046270)

A11 River Alde (GB105035046060)

A12 River Deben (Brandeston Bridge - Melton) (GB105035046310)

A13 River Fromus (GB105035045980)

A14 River Lark GB105035040360

A15 River Ore (GB105035045970)

A16 Suffolk (GB650503520002)

A17 Waveney & East Suffolk Chalk and Crag (GB40501G400600)

A18 Wenhaston Watercourse (GB105035046010)

A1 Alde - Ore (d/s confluence) (GB105035045950)

20 December 2018 11:31:10

Alde - Ore (d/s confluence)

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

WATERBODY ID	GB105035045950	CYCLE / LATEST VE	ERSION	Cycle 2	2	Geographical Bound	daries
TYPE	River	DESIGNATION	Not E	Designated A/HM	WB	EA AREA	Essex Norfolk and Suffolk
LENGTH (km)		EASTING		637624		RBD	Anglian
AREA (km2)		NORTHING		258185		MAN CATCHMENT	Suffolk East
, ,]		238183		OP CATCHMENT	Suffolk Coastal
Alkalinity		CATCHMENT AREA	A (Ha)				
Bathing Water	Nitrates Safegu	ard Shellfish W	/ater	Freshwater	Habi	tats and Drinkin	ng Water Conservation of

Bathing Water	Nitrates	Safeguard	Shellfish Water	Freshwater	Habitats and	Drinking Water	Conservation of
Directive	Directive	Zone	Directive	Fish Directive	Species Directive	Protected Area	Wild Birds Directive
NO	YES	NO	NO	NO	NO	NO	NO

-Classifications -

Yea	Overall	Ecological	Chemical	MMA	Invertebrates	Fish	Macrophytes and Phytobenthos Combine	Phosphate d	Ammonia	Dissolved Oxyger	п рН	Hydrological Regime
2013	Moderate	Moderate	Good		High	Moderate		Moderate	High	Good	High	DNSG
2014	Poor	Poor	Good		High	Poor	Good	Moderate	High	Good	High	DNSG
2015	Moderate	Moderate	Good		High	Moderate	Good	Moderate	High	Poor	High	DNSG
2016	Moderate	Moderate	Good		High	Moderate	Good	Moderate	High	Moderate	High	DNSG

Note: DNSG = 'Does Not Support Good', DNRA = 'Does Not Require Assessment'

20 December 2018 11:31:11

Alde - Ore (d/s confluence)

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

	Jectives	ananc	aictea c	dicom	CS							
Туре	Overall	Ecological	Chemical	MMA	Invertebrates	Fish	Macrophytes and Phytobenthos Combine	Phosphate ed	Ammonia	Dissolved Oxygen	рН	Hydrological Regime
- Obje	ctive											
	Moderate	Moderate	Good		Good	Moderate	Good	Moderate	Good	Good	Good	DNSG
- Obje	ctive Year											
	2015	2015	2015		2015	2015	2015	2015	2015	2015	2015	2015
2021 -	Predicted											
	Moderate	Moderate	Good		High	Moderate	Good	Moderate	High	Good	High	DNSG
2027 -	Predicted											
	Moderate	Moderate	Good		High	Moderate	Good	Moderate	High	Good	High	DNSG

- Risks

Pressure Level

20 December 2018 11:31:11

Alde - Ore (d/s confluence)

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Element Level

Risk	Elements
At Risk	Curly water-thyme (Lagarosiphon major), Floating pennywort (Hydrocotyle ranunculoides), Freshwater amphipod (Dikerogammarus villosus), North American signal crayfish (Pacifastacus leniusculus), Overall INNS pressure, Water primrose (Ludwigia grandiflora)
Not Assessed	Fluoranthene
Not At Risk	American oyster drill (Urosalpinx cinerea), Australian swamp stonecrop (Crassula helmsii), Colonial tunicate (non-native Didemnum spp.), Common cord-grass, Townsend's grass or ricegrass (Spartina anglica), Giant knotweed (Fallopia sachalensis), Leathery sea squirt (Styela clava), Marine tubeworm (Ficopomatus enigmaticus), Parrot's feather (Myriophyllum aquaticum), Slipper limpet (Crepidula fornicata)
Probably At Risk	Benzo(a)pyrene, Curly water-thyme (Lagarosiphon major), Himalayan balsam (Impatiens glandulifera), Mysid crustacean (Hemimysis anomola), Polybrominateddiphenylether (PBDE), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Topmouth gudgeon (Pseudorasbora parva), Virile crayfish (Orconectes virilis), Water fern (Azolla filiculoides and Azolla caroliniana), Water primrose (Ludwigia grandiflora)
Probably Not At Risk	Australian swamp stonecrop (Crassula helmsii), Cadmium, Canadian pondweed and Nuttall's pondweeds (Elodea Canadensis and Elodea nuttallii), Chinese mitten crab (Eriocheir sinensis), Common carp (Cyprinus carpio), Copper, Di(2-ethylhexyl)phthalate (DEHP), Giant hogweed (Heracleum mantegazzianum), Goldfish (Carassius auratus), Japanese knotweed (Fallopia japonica), Japanese knotweed/ Giant knotweed hybrid (Fallopia x bohemica), Lead, Mysid crustacean (Hemimysis anomola), Nickel, Nonylphenol, Parrot's feather (Myriophyllum aquaticum), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Rhododendron (Rhododendron ponticum), Tributyltin (TBT), Triclosan, Zebra mussel (Dreissena polymorpha), Zinc

Environment Agency

Alde - Ore (d/s confluence)

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Reasons for not achieving Good —————

Significant Water Management Issue	Reason	Element	Sector/Business Category	Pressures
Diffuse source	Poor soil management	Fish	Agriculture - Arable	Sediment
			Agriculture and rural land management	Not applicable
Confirmed	Confirmed		Confirmed	
Diffuse source	Poor soil management	Phosphate	Agriculture - Arable	
			Agriculture and rural land management	
Confirmed	Confirmed		Confirmed	
Diffuse source	Livestock	Phosphate	Agriculture - Livestock	
			Agriculture and rural land management	
Probable	Probable		Suspected	
Flow	Groundwater abstraction	Fish		Hydrology
			Agriculture and rural land management	Not applicable
Suspected	Suspected		Suspected	
Flow	Groundwater abstraction	Fish	Not applicable	Hydrology
			Water Industry	Not applicable
Suspected	Suspected		Suspected	
Flow	Groundwater abstraction	Hydrological Regime		
			Agriculture and rural land management	
Suspected	Suspected		Suspected	
Flow	Groundwater abstraction	Hydrological Regime	Not applicable	
			Water Industry	
Suspected	Suspected		Suspected	

20 December 2018 11:31:12

Alde - Ore (d/s confluence)

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Point source	Sewage discharge (continuous)	Dissolved oxygen	Waste water treatment	
			Water Industry	
Probable	Probable		Probable	
Point source	Sewage discharge (continuous)	Fish	Waste water treatment	Nutrients
			Water Industry	Phosphate
Confirmed	Confirmed		Confirmed	
Point source	Sewage discharge (continuous)	Phosphate	Waste water treatment	
			Water Industry	
Confirmed	Confirmed		Confirmed	
Point source	Sewage discharge (intermittent)	Phosphate	Waste water treatment	
			Water Industry	
Probable	Probable		Suspected	

—Waterbody Level Measure Actions

-Wider Area Measures Actions

20 December 2018 11:31:12

Alde - Ore (d/s confluence)

20 December 2018 11:31:12

Alde - Ore (d/s confluence)

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

┌ Mitigation Measures (if applicable) —

Monitoring Sites —

Site ID	Site Name	Site Type	Site Waterbody Link	Easting	Northing	Elements Monitored	
33	ALDE & ORE CATCHMENT/RIVER ALDE (MAIN REACHES)/U/S	NFPD	Site in adjacent downstream water body	635900	260200	River Fish C1	
Classifications							
Barbel	Info	0					
Bleak	Info	0					
Bream	Info	0					
Bullhead	Info	0					
Carp	Info	O					
Chub	Info	O					
Dace	Info	O					
Eel	Info	O					
Fish	Mo	derate					
Grayling	Info	O					
Gudgeon	Info	0					
Lamprey	Info	0					
Minnow	Info	O					
Perch	Info	0					

20 December 2018 11:31:12

Alde - Ore (d/s confluence)

Pike		Info					
Roach		Info					
Rudd		Info					
Ruffe		Info					
Salmon		Info					
Spined loach		Info					
Stickleback		Info					
Stone loach		Info					
Tench		Info					
rout		Info					
50126	LANGHAM BRIDGE MACROPHYTE SURVEY S	BIOSYS	Site in water body	637500	258100	River Macrophytes C1, River Invertebrates C1, River diatoms (Pt C1	ytobenthos
lassifications							

20 December 2018 11:31:12

Alde - Ore (d/s confluence)

54769	LANGHAM BRIDGE	BIOSYS	Site in water body	637500	258150	River Invertebrates C1, River Macrophytes C1, River diatoms (Phytobenthos) C1
Classifications						
Invertebrates		High				

20 December 2018 11:31:13

Alde - Ore (d/s confluence)

35	ALDE & ORE CATCHMENT/RIVER ALDE (MAIN REACHES)/U/S	NFPD	Site in water body	637292	258117	River Fish C1	
Classifications							
Barbel	Info						
Bleak	Info						
Bream	Info						
Bullhead	Info						
Carp	Info						
Chub	Info						
Dace	Info)					
Eel	Info)					
Fish	Poo						
Grayling	Info						
Gudgeon	Info)					
Lamprey	Info)					
Minnow	Info)					
Perch	Info)					
Pike	Info)					
Roach	Info)					
Rudd	Info)					
Ruffe	Info						
Salmon	Info)					
Spined loach	Info						
Stickleback	Info)					
Stone loach	Info						
Геnch	Info						
Γrout	Info)					

20 December 2018 11:31:13

Alde - Ore (d/s confluence)

ALD030 R.ALDE	LANGHAM BRIDGE WIMS	Unknown	637500	258150	River Phys-Chem C1, River Chemicals C1	
Classifications						
Ammonia (Phys-Chem)	High					
Dissolved oxygen	Moderate					
pH Lower	High					
pH Upper	High					
Phosphate	Moderate					
Temperature	High					

A2 Alde & Ore (GB520503503800)

20 December 2018 11:33:02

ALDE & ORE

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

WATERBODY ID	GB520503503800	CYCLE / LATEST VI	ERSION Cycle 2 2		Geographical Boundaries			
TYPE	Transitional	DESIGNATION	Heavily Modified		EA AREA	Essex Norfolk and Suffolk		
LENGTH (km)		EASTING	641502		RBD	Anglian		
AREA (km2)		NORTHING	257141		MAN CATCHMENT	Anglian TraC		
Alkalinity		CATCHMENT AREA			OP CATCHMENT	Suffolk TraC		

Bathing Water	Nitrates	Safeguard	Shellfish Water	Freshwater	Habitats and	Drinking Water	Conservation of
Directive	Directive	Zone	Directive	Fish Directive	Species Directive	Protected Area	Wild Birds Directive
NO	YES	NO	YES	NO	YES	NO	YES

-Classifications -

Year	Overall	Ecological	Chemical	ММА	Phytoplankton Blooms	Invertebrates	Fish	Seagrass	Saltmarsh	Flucoid Extent	Opportunistic Macroalgae	•	Dissolved Oxygen	DIN	Hydrological Regime	Specific Pollutants
2013	Moderate	Moderate	Good	Good							High		High	Moderate	DNSG	High
2014	Moderate	Moderate	Good	Good							High		High	Moderate	DNSG	High
2015	Moderate	Moderate	Good	Good		Good	Good		Good		High		High	Moderate	DNSG	High
2016	Moderate	Moderate	Good	Good		Good	Good		Good		High		High	Moderate	DNSG	High

Note: DNSG = 'Does Not Support Good', DNRA = 'Does Not Require Assessment'

20 December 2018 11:33:03

ALDE & ORE

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

– Obje	ctives a	and Pre	edicted	d Outcomes —									\neg
Overall	Ecological	Chemical	ММА	Phytoplankton Invertebrates Blooms	Fish	Seagrass	Saltmarsh	Flucoid Extent	Macroalgae	Dissolved Oxygen	DIN	Hydrological Regime	Specific Pollutants
- Objective	9												
Moderate	Moderate	Good	Good	Good	Good				Good	Good	Moderate	Sup Good	High
- Objective	e Year												
2015	2015	2015	2015	2015	2015				2015	2015	2015	2027	2015
2021 - Pred	dicted												
Moderate	Moderate	Good	Good	Good	Good				High	High	Moderate	DNSG	High
2027 - Pred	dicted												
Moderate	Moderate	Good	Good	Good	Good				High	High	Moderate	Sup Good	High

Pressure Level Risk Elements At Risk Abstraction & Flow Not Assessed Not At Risk Eutrophication Probably At Risk Abstraction & Flow Probably Not At Risk

20 December 2018 11:33:03

ALDE & ORE

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Element Level

Risk	Elements
At Risk	
Not Assessed	Benzo(a)pyrene, Di(2-ethylhexyl)phthalate (DEHP), Fluoranthene, Mercury, Nonylphenol, Polybrominateddiphenylether (PBDE), Tributyltin (TBT), Triclosan
Not At Risk	Australian swamp stonecrop (Crassula helmsii), Cadmium, Colonial tunicate (non-native Didemnum spp.), Copper, Curly water-thyme (Lagarosiphon major), Floating pennywort (Hydrocotyle ranunculoides), Giant hogweed (Heracleum mantegazzianum), Lead, Leathery sea squirt (Styela clava), Nickel, Parrot's feather (Myriophyllum aquaticum), Slipper limpet (Crepidula fornicata), Water fern (Azolla filiculoides and Azolla caroliniana), Water primrose (Ludwigia grandiflora), Zebra mussel (Dreissena polymorpha), Zinc
Probably At Risk	Chinese mitten crab (Eriocheir sinensis), Overall INNS pressure
Probably Not At Risk	American oyster drill (Urosalpinx cinerea), Canadian pondweed and Nuttall's pondweeds (Elodea Canadensis and Elodea nuttallii), Common carp (Cyprinus carpio), Common cord-grass, Townsend's grass or ricegrass (Spartina anglica), Freshwater amphipod (Dikerogammarus villosus), Giant knotweed (Fallopia sachalensis), Goldfish (Carassius auratus), Himalayan balsam (Impatiens glandulifera), Japanese knotweed (Fallopia japonica), Japanese knotweed/ Giant knotweed hybrid (Fallopia x bohemica), Marine tubeworm (Ficopomatus enigmaticus), Mysid crustacean (Hemimysis anomola), North American signal crayfish (Pacifastacus leniusculus), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Rhododendron (Rhododendron ponticum), Topmouth gudgeon (Pseudorasbora parva), Virile crayfish (Orconectes virilis)

20 December 2018 11:33:04

ALDE & ORE

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Reasons for not achieving Good —————

Treasons for i	lot achieving dood —			
Significant Water Management Issue	Reason	Element	Sector/Business Category	Pressures
Diffuse source	Poor nutrient management	Dissolved Inorganic Nitrogen	Agriculture - Arable	
			Agriculture and rural land management	
Suspected	Suspected		Suspected	
Point source	Sewage discharge (continuous)	Dissolved Inorganic Nitrogen	Waste water treatment	
			Water Industry	
Suspected	Suspected		Suspected	
Unknown (pending investi	Unknown (pending investigation)	Dissolved Inorganic Nitrogen	Not applicable	
			Unknown (pending investigation)	
Not applicable	Not applicable		Not applicable	
Unknown (pending investi	Unknown (pending investigation)	Hydrological Regime	Not applicable	
			Unknown (pending investigation)	
Not applicable	Not applicable		Not applicable	

—Waterbody Level Measure Actions

CPS Action ID	Title	Measure Aim	Easting/Northing	Action Status / EA Team
30858	GEP MEASURES IN PLACE	1. Mitigation Measure		Completed (cost beneficial)
	AS AT GOOD	2.		
				AN Eastern, Catchment
		3.		Delivery Team

—Wider Area Measures Actions

20 December 2018 11:33:04

ALDE & ORE

20 December 2018 11:33:04

ALDE & ORE

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

	\ 11	•				
Designated	Working with physical form and	Structural modification	Operations and maintenance	Water H management	labitat creation Navigation	Education
Hydromorph Use	13.Realign flood defence 12.Floodplain connectivity 11.Set-back embankments 10.Flood bunds 9.Alter culvert channel bed 6.Re-opening culverts 7.Bank rehabilitation 6.In-channel morph diversity 5.Preserve or restore habitats 4.Remove or soften hard bank 3.Re-engineer river 2.Remove obsolete structure 1.Modify channel	20.Changes to locks etc 19.Enhance ecology 18.Reduce fish entrainment 17.Fish pass flow releases 16.Fish passes 15.Flow manipulation 14.Modify structure	41.Water level management 40.Woody debris 39.Maintain channel bed/margins 38.Sediment management strategy 37.Retain habitats 36.Invasive species techniques 35.Vegetation control timing 34.Vegetation control 33.Selective vegetation control 32.Phased de-watering 31.Manage seasonal water levels 30.Manage artificial drawdown 29.Sediment management regime 28.Manage disturbance 27. Dredge disposal site sel 26.Sediment management 25.Retime dredging or disposal 24.Reduce sediment resuspension 23.Reduce impact of dredging 22.Dredging disposal strategy 21.Avoid the need to dred		51.Boats in central track 50.Vessel Management 49.Modify vessel design 48.Indirect mitigation	56.Enhance ecology (recre tions 55.Recreation awareness ecology) 54.Educate landowners Response 53.Boat wash awareness 52.Invasive species awareness
Flood protection use	1 2 3 4 5 6 7 8 9 10 11 12 13	14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	42 43 44 45 46 47	48 49 50 51	52 53 54 55 56
	Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable	Not Applicable Not Applicable Not Applicable	Not Applicable		Not Applicable	

► Monitoring Sites **−**

Site ID	Site Name	Site Type	Site Waterbody Link	Easting	Northing	Elements Monitored	
OAE029	R.ORE/ALDE HOME REACH SW OF MARTELLO TWR	WIMS	Site in water body	646100	254700	TraC Chemicals C1	
Classifications							
Zinc	Hig	h					

20 December 2018 11:33:05

ALDE & ORE

rease be aware t	that data is based on ti	ne best avalla	ble information as of the	date snown ab	ove, and ma	y be subject to change	
OAE050	BUTLEY R. OYSTERAGE	WIMS	Site in water body	639600	248500	TraC Chemicals C1	
OAL030	(ORE/ALDE ESTUARY)	VVIIVIS	Site iii water body	039000	248300	Trac Chemicais C1	
	,						
Classifications							
Zinc	Н	ligh					

A3 Blyth (S) (GB510503503700)

20 December 2018 11:33:40

BLYTH (S)

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

WATERBODY ID	GB510503503700	CYCLE / LATEST VE	Cycle 2		2	Geographical Bound	laries
TYPE	Transitional	DESIGNATION	He	avily Modified		EA AREA	Essex Norfolk and Suffolk
LENGTH (km)		EASTING	646818			RBD	Anglian
AREA (km2)		NORTHING		275782		MAN CATCHMENT	Anglian TraC
, ,				273702		OP CATCHMENT	Suffolk TraC
Alkalinity		CATCHMENT AREA	4 (Ha)				

	Bathing Water		Safeguard	Shellfish Water	Freshwater	Habitats and	Drinking Water	Conservation of
NO VES NO NO NO NO VES	Directive	Directive	Zone	Directive	Fish Directive	Species Directive	Protected Area	Wild Birds Directive
NO VES NO NO NO NO VES	211 000110	26606		2668.76		0,000,000 2 000,000		2 2 2 2
	NO	YES	NO	NO	NO	NO	NO	YES

-Classifications -

Year	Overall	Ecological	Chemical	ММА	Phytoplankton Blooms	Invertebrates	Fish	Seagrass	Saltmarsh	Flucoid Extent	Opportunistic Macroalgae	•	Dissolved Oxygen	DIN	Hydrological Regime	Specific Pollutants
2013	Moderate	Moderate	Good	Good									High		Sup Good	Moderate
2014	Moderate	Moderate	Good	Good									High	Moderate	Sup Good	Moderate
2015	Moderate	Moderate	Good	Good							Good		High	Moderate	Sup Good	
2016	Moderate	Moderate	Good	Good							Good		High	Moderate	Sup Good	

Note: DNSG = 'Does Not Support Good', DNRA = 'Does Not Require Assessment'

20 December 2018 11:33:41

BLYTH (S)

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

– Obje	ctives a	and Pre	dicte	d Outcomes —									=
Overall	Ecological	Chemical	MMA	Phytoplankton Invertebrates Blooms	Fish	Seagrass	Saltmarsh	Flucoid Extent	Macroalgae	Dissolved Oxygen	DIN	Hydrological Regime	Specific Pollutants
- Objective	9												
Moderate	Moderate	Good	Good						Good	Good	Moderate	Sup Good	Not assessed
- Objective	e Year												
2015	2015	2015	2015						2015	2015	2015	2015	2015
2021 - Pred	dicted												
Moderate	Moderate	Good	Good						Good	High	Moderate	Sup Good	Not assessed
2027 - Pred	dicted												
Moderate	Moderate	Good	Good						Good	High	Moderate	Sup Good	Not assessed

Pressure Level Risk Elements At Risk Not Assessed Eutrophication Not At Risk Abstraction & Flow Probably At Risk Probably Not At Risk

20 December 2018 11:33:41

BLYTH (S)

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Element Level

Risk	Elements
At Risk	Colonial tunicate (non-native Didemnum spp.), Overall INNS pressure
Not Assessed	Benzo(a)pyrene, Copper, Di(2-ethylhexyl)phthalate (DEHP), Fluoranthene, Mercury, Nonylphenol, Polybrominateddiphenylether (PBDE), Tributyltin (TBT), Triclosan
Not At Risk	Australian swamp stonecrop (Crassula helmsii), Curly water-thyme (Lagarosiphon major), Floating pennywort (Hydrocotyle ranunculoides), Giant hogweed (Heracleum mantegazzianum), Leathery sea squirt (Styela clava), Parrot's feather (Myriophyllum aquaticum), Water fern (Azolla filiculoides and Azolla caroliniana), Water primrose (Ludwigia grandiflora), Zebra mussel (Dreissena polymorpha)
Probably At Risk	Chinese mitten crab (Eriocheir sinensis), Zinc
Probably Not At Risk	American oyster drill (Urosalpinx cinerea), Cadmium, Canadian pondweed and Nuttall's pondweeds (Elodea Canadensis and Elodea nuttallii), Common carp (Cyprinus carpio), Common cord-grass, Townsend's grass or ricegrass (Spartina anglica), Freshwater amphipod (Dikerogammarus villosus), Giant knotweed (Fallopia sachalensis), Goldfish (Carassius auratus), Himalayan balsam (Impatiens glandulifera), Japanese knotweed (Fallopia japonica), Japanese knotweed/ Giant knotweed hybrid (Fallopia x bohemica), Lead, Marine tubeworm (Ficopomatus enigmaticus), Mysid crustacean (Hemimysis anomola), Nickel, North American signal crayfish (Pacifastacus leniusculus), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Rhododendron (Rhododendron ponticum), Slipper limpet (Crepidula fornicata), Topmouth gudgeon (Pseudorasbora parva), Virile crayfish (Orconectes virilis)

20 December 2018 11:33:41

BLYTH (S)

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Titedoons for	not define ving dood —			
Significant Water Management Issue	Reason	Element	Sector/Business Category	Pressures
Diffuse source	Poor nutrient management	Dissolved Inorganic Nitrogen	Agriculture - Arable	
			Agriculture and rural land management	
Suspected	Suspected		Suspected	
Other pressures	Unknown (pending investigation)	Dissolved Inorganic Nitrogen	Not applicable	
			Unknown (pending investigation)	
Confirmed	Not applicable		Not applicable	
Point source	Sewage discharge (continuous)	Dissolved Inorganic Nitrogen	Waste water treatment	
			Water Industry	
Suspected	Suspected		Suspected	

—Waterbody Level Measure Actions

CPS Action ID	Title	Measure Aim	Easting/Northing	Action Status / EA Team
32919	Mitigation measures	1. Mitigation Measure		Completed (cost beneficial)
	deemed to be in place fRBMP	2.		
		3.		AN Eastern, Catchment Delivery Team

-Wider Area Measures Actions -

20 December 2018 11:33:42

BLYTH (S)

20 December 2018 11:33:42

BLYTH (S)

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

┌ Mitigation Measures (if applicable) —

Designated	Working with physical form and	Structural	Operations and maintenance	Water	Habitat creation	
Hydromorph Use	function	modification		management	Navigation	Education
	13.Realign flood defence 12.Floodplain connectivity 11.Set-back embankments 10.Flood bunds 9.Alter culvert channel bed 8.Re-opening culverts 7.Bank rehabilitation 6.In-channel morph diversity 5.Preserve or restore habitats 4.Remove or soften hard bank 3.Re-engineer river 2.Remove obsolete structure 1.Modify channel	20.Changes to locks etc 19.Enhance ecology 18.Reduce fish entrainment 17.Fish pass flow releases 16.Fish passes 15.Flow manipulation 14.Modify structure	41. Water level management 40. Woody debris 39. Maintain channel bed/margins 38. Sediment management strategy 37. Retain habitats 36. Invasive species techniques 35. Vegetation control timing 34. Vegetation control 32. Phased de-watering 31. Manage seasonal water levels 30. Manage artificial drawdown 29. Sediment management regime 28. Manage disposal site sel 26. Sediment management 25. Retime dredging or disposal 24. Reduce sediment resuspension 23. Reduce impact of dredging 22. Dredging disposal strategy 21. Avoid the need to dred	47. Align and attenuate flo 46. Good downstream temperature 45. Good downstream DO levels 44. Flows to move sediment 43. Downstream flow regime 42. Access to feeder-streams	51.Boats in central track 50.Vessel Management 49.Modify vessel design 48.Indirect mitigation	56.Enhance ecology (recre 55.Recreation awareness 54.Educate landowners 53.Boat wash awareness 52.Invasive species awareness
Coast protection use	1 2 3 4 5 6 7 8 9 10 11 12 13	14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	42 43 44 45 46 47	48 49 50 51	52 53 54 55 56
	Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable	Not Applicable Not Applicable Not Applicable	Not Applicable		Not Applicable	
Flood protection use	1 2 3 4 5 6 7 8 9 10 11 12 13	14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	42 43 44 45 46 47	48 49 50 51	52 53 54 55 56
·	Not Applicable Not Applicable Not Applicable In Place Not Applicable Not Applicable	Not Applicable Not Applicable Not Applicable	Not Applicable		Not Applicable	

20 December 2018 11:33:42

BLYTH (S)

Mo	nito	oring	Sites
			, -:

	0					
Site ID	Site Name	Site Type	Site Waterbody Link	Easting	Northing	Elements Monitored
168703	BLYTH (S) (WHOLE WB) MACROALGAE	BIOSYS	Site in water body	646800	275800	
Classifications						

A4 Bucklesham Mill River GB105035040280

edfenergy.com

Building better energy together

6

17 July 2019 14:02:13

Bucklesham Mill River

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

WATERBODY ID	GB105035040280	CYCLE / LATEST VE	Cycle 2	2	Geographical Bound	laries	
TYPE	River	DESIGNATION	Not D	Not Designated A/HMWB		EA AREA	Essex Norfolk and Suffolk
LENGTH (km)		EASTING		625155		RBD	Anglian
AREA (km2)		NORTHING		243180		MAN CATCHMENT	Suffolk East
. ,			ſ	245160		OP CATCHMENT	Deben
Alkalinity		CATCHMENT AREA	T AREA (Ha)				

Bathing Water	Nitrates	Safeguard	Shellfish Water	Freshwater	Habitats and	Drinking Water	Conservation of
Directive	Directive	Zone	Directive	Fish Directive	Species Directive	Protected Area	Wild Birds Directive
NO	YES	NO	NO	NO	NO	YES	YES

-Classifications -

Yea	Overall	Ecological	Chemical	MMA	Invertebrates	Fish	Macrophytes and Phosphate Phytobenthos Combined	Ammonia	Dissolved Oxygen	рН	Hydrological Regime
2013	Poor	Poor	Good		High	Poor		High	High	High	DNSG
2014	Poor	Poor	Fail		High	Poor	Good High	High	High	High	DNSG
2015	Poor	Poor	Good		High	Poor	Good High	High	Good	High	DNSG
2016	Poor	Poor	Good		High	Poor	Good High	High	Good	High	DNSG

Note: DNSG = 'Does Not Support Good', DNRA = 'Does Not Require Assessment'

17 July 2019 14:02:13

Bucklesham Mill River

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Objectives and Predicted Outcomes

- Objectives and Fredicted Outcomes												
Туре	Overall	Ecological	Chemical	ММА	Invertebrates	Fish	Macrophytes and Phytobenthos Combine	Phosphate ed	Ammonia	Dissolved Oxygen	рН	Hydrological Regime
- Obje	- Objective											
	Poor	Poor	Good		Good	Poor	Good	Good	Good	Good	Good	Sup Good
- Obje	- Objective Year											
	2015	2015	2015		2015	2015	2015	2015	2015	2015	2015	2021
2021 -	2021 - Predicted											
	Poor	Poor	Good		High	Poor	Good	High	High	High	High	Sup Good
2027 -	2027 - Predicted											
	Poor	Poor	Good		High	Poor	Good	High	High	High	High	Sup Good

- Risks

Pressure Level

17 July 2019 14:02:14

Bucklesham Mill River

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Element Level

Risk	Elements
At Risk	Curly water-thyme (Lagarosiphon major), Floating pennywort (Hydrocotyle ranunculoides), Freshwater amphipod (Dikerogammarus villosus), North American signal crayfish (Pacifastacus leniusculus), Overall INNS pressure, Water primrose (Ludwigia grandiflora)
Not Assessed	Fluoranthene
Not At Risk	American oyster drill (Urosalpinx cinerea), Australian swamp stonecrop (Crassula helmsii), Colonial tunicate (non-native Didemnum spp.), Common cord-grass, Townsend's grass or ricegrass (Spartina anglica), Copper, Giant knotweed (Fallopia sachalensis), Lead, Leathery sea squirt (Styela clava), Marine tubeworm (Ficopomatus enigmaticus), Nickel, Parrot's feather (Myriophyllum aquaticum), Slipper limpet (Crepidula fornicata)
Probably At Risk	Benzo(a)pyrene, Curly water-thyme (Lagarosiphon major), Himalayan balsam (Impatiens glandulifera), Mysid crustacean (Hemimysis anomola), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Topmouth gudgeon (Pseudorasbora parva), Virile crayfish (Orconectes virilis), Water fern (Azolla filiculoides and Azolla caroliniana), Water primrose (Ludwigia grandiflora)
Probably Not At Risk	Australian swamp stonecrop (Crassula helmsii), Cadmium, Canadian pondweed and Nuttall's pondweeds (Elodea Canadensis and Elodea nuttallii), Chinese mitten crab (Eriocheir sinensis), Common carp (Cyprinus carpio), Di(2-ethylhexyl)phthalate (DEHP), Giant hogweed (Heracleum mantegazzianum), Goldfish (Carassius auratus), Japanese knotweed (Fallopia japonica), Japanese knotweed/ Giant knotweed hybrid (Fallopia x bohemica), Mysid crustacean (Hemimysis anomola), Nonylphenol, Parrot's feather (Myriophyllum aquaticum), Polybrominateddiphenylether (PBDE), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Rhododendron (Rhododendron ponticum), Tributyltin (TBT), Triclosan, Zebra mussel (Dreissena polymorpha), Zinc

17 July 2019 14:02:14

Bucklesham Mill River

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

neasons for not define this good						
Significant Water Management Issue	Reason	Element	Sector/Business Category	Pressures		
Flow	Surface water abstraction	Hydrological Regime	Water supply	Water supply		
			Water Industry			
Confirmed	Probable		Probable			
Flow	Surface water abstraction	Hydrological Regime	Agriculture - Arable	Agriculture - Arable		
			Agriculture and rural land mana	Agriculture and rural land management		
Suspected	Suspected		Suspected			
Natural	Natural conditions - other	Fish	Not applicable	Not applicable		
			Not applicable	Not applicable		
Confirmed	Confirmed		Not applicable			

—Waterbody Level Measure Actions

CPS Action ID	Title	Measure Aim	Easting/Northing	Action Status / EA Team
38779	Change in abs lic condtn(s)	1. To control or manage abstraction		Confirmed cost beneficial
	to addrss pot. serious damage at full license,	2. Control pattern/timing of abstraction		
	Bucklesham Mill River	3. Hands Off Flow		Integrated Environment Planning

-Wider Area Measures Actions -

17 July 2019 14:02:15

Bucklesham Mill River

17 July 2019 14:02:15

Bucklesham Mill River

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

┌ Mitigation Measures (if applicable) —

► Monitoring Sites -

Site ID	Site Name	Site Type	Site Waterbody Link	Easting	Northing	Elements Monitored
152575	BRIGHTWELL BRIDGE MACROPHYTE SURVEY SITE	BIOSYS	Site in water body	625013	243183	River Macrophytes C1, River Invertebrates C1, River diatoms (Phytobenthos) C1

Classifications

Macrophytes Sub Element

Good

17 July 2019 14:02:15

Bucklesham Mill River

54879	BRIGHTWELL BRIDGE (A1093)	BIOSYS	Site in water body	625000	243200	River Invertebrates C1, River diatoms (Phytobenthos) C1, River Macrophytes C1
Classifications						
Invertebrates		High				
54880	IPSWICH INTAKE	BIOSYS	Site in water body	627000	242000	River Invertebrates C1, River Macrophytes C1, River diatoms (Phytobenthos) C1
Classifications						

17 July 2019 14:02:15

Bucklesham Mill River

53	DEBEN CATCHMENT/TIDAL NFPD DEBEN SUB CATCHMENT/BUCKLESHAM	Site in water body	625002	243202	River Fish C1
Classifications					
Barbel	Info				
Bleak	Info				
Bream	Info				
Bullhead	Info				
Carp	Info				
Chub	Info				
Dace	Info				
Eel	Info				
Fish	Moderate				
Grayling	Info				
Gudgeon	Info				
Lamprey	Info				
Minnow	Info				
Perch	Info				
Pike	Info				
Roach	Info				
Rudd	Info				
Ruffe	Info				
Salmon	Info				
Spined loach	Info				
Stickleback	Info				
Stone loach	Info				
Tench	Info				
Trout	Info				

17 July 2019 14:02:16

Bucklesham Mill River

54	DEBEN CATCHMENT/TIDAL NF DEBEN SUB CATCHMENT/BUCKLESHAM	PD Site in water body	627100	242000	River Fish C1	
Classifications						
Barbel	Info					
Bleak	Info					
Bream	Info					
Bullhead	Info					
Carp	Info					
Chub	Info					
Dace	Info					
Eel	Info					
Fish	Poor					
Grayling	Info					
Gudgeon	Info					
Lamprey	Info					
Minnow	Info					
Perch	Info					
Pike	Info					
Roach	Info					
Rudd	Info					
Ruffe	Info					
Salmon	Info					
Spined loach	Info					
Stickleback	Info					
Stone loach	Info					
「ench	Info					
Γrout	Info					

17 July 2019 14:02:16

Bucklesham Mill River

	BUCKLESHAM MILL R.A1093 BRIGHTWELL RD.BR	WIMS	Unknown	625000	243200	River Phys-Chem C1, River Chemicals C1
Classifications						
Acid Neutralising Ca	pacity	High				
Ammonia (Phys-Che	em)	High				
Arsenic		High				
Cadmium and Its Co	ompounds	Good				
Copper		High				
Dissolved oxygen		High				
Iron		High				
Lead and Its Compo	unds	Good				
Mercury and Its Cor	npounds	Good				
Nickel and Its Comp	ounds	Good				
pH Lower		High				
pH Upper		High				
Phenol		High				
Phosphate		High				
Temperature		High				
Zinc		High				

17 July 2019 14:02:16

Bucklesham Mill River

MIL030 BUCKLESHAM MILL IPSWICH WATER IN		Unknown	627000	242000	River Phys-Chem C1, River Chemicals C1
Classifications					
Ammonia (Phys-Chem)	High				
Biochemical Oxygen Demand (BOD)	High				
Copper	High				
Dissolved oxygen	Moderate				
pH Lower	High				
pH Upper	High				
Phosphate	High				
Temperature	High				

A5 Coddenham Watercourse GB105035046100

edfenergy.com

17 July 2019 14:02:42

Coddenham Watercourse

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

WATERBODY ID	GB105035046100	CYCLE / LATEST VERSION		Cycle 2	2	Geographical Boundaries		
TYPE	River	DESIGNATION	Not Designated A/HMWB		WB	EA AREA	Essex Norfolk and Suffolk	
LENGTH (km)		EASTING	614045			RBD	Anglian	
AREA (km2)		NORTHING	253669			MAN CATCHMENT	Suffolk East	
Alkalinity		CATCHMENT AREA	A (Ha)	233003		OP CATCHMENT	Gipping	
			. , [

Bathing Water Directive	Nitrates Directive	Safeguard Zone	Shellfish Water Directive	Freshwater Fish Directive	Habitats and Species Directive	Drinking Water Protected Area	Conservation of Wild Birds Directive
Directive	Directive	Zone	Directive	risii Directive	Species Directive	Protected Area	Wild Bilds Directive
NO	YES	NO	NO	NO	NO	NO	NO

-Classifications -

Yea	Overall	Ecological	Chemical	MMA	Invertebrates	Fish	Macrophytes and Phosphate Phytobenthos Combined	Ammonia	Dissolved Oxygen	рН	Hydrological Regime
2013	Good	Good	Good								High
2014	Good	Good	Good								High
2015	Moderate	Moderate	Good				Moderate	High	High	High	High
2016	Moderate	Moderate	Good				Moderate	High	High	High	High

Note: DNSG = 'Does Not Support Good', DNRA = 'Does Not Require Assessment'

17 July 2019 14:02:43

Coddenham Watercourse

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Lon	jectives	allu Ple	dicted C	utcom	C 3						
Туре	Overall	Ecological	Chemical	ММА	Invertebrates	Fish	Macrophytes and Phosphate Phytobenthos Combined	Ammonia	Dissolved Oxygen	рН	Hydrological Regime
- Obje	ctive										
	Moderate	Moderate	Good				Moderate	Good	Good	Good	Sup Good
- Obje	ctive Year										
	2015	2015	2015				2015	2015	2015	2015	2015
2021 -	Predicted										
	Moderate	Moderate	Good				Moderate	High	High	High	High
2027 -	Predicted										
	Moderate	Moderate	Good				Moderate	High	High	High	High

- Risks

Pressure Level

17 July 2019 14:02:43

Coddenham Watercourse

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Element Level

Risk	Elements
At Risk	Curly water-thyme (Lagarosiphon major), Freshwater amphipod (Dikerogammarus villosus), Overall INNS pressure, Water primrose (Ludwigia grandiflora)
Not Assessed	Fluoranthene
Not At Risk	American oyster drill (Urosalpinx cinerea), Australian swamp stonecrop (Crassula helmsii), Colonial tunicate (non-native Didemnum spp.), Common cord-grass, Townsend's grass or ricegrass (Spartina anglica), Giant knotweed (Fallopia sachalensis), Leathery sea squirt (Styela clava), Marine tubeworm (Ficopomatus enigmaticus), Parrot's feather (Myriophyllum aquaticum), Slipper limpet (Crepidula fornicata)
Probably At Risk	Benzo(a)pyrene, Curly water-thyme (Lagarosiphon major), Floating pennywort (Hydrocotyle ranunculoides), Himalayan balsam (Impatiens glandulifera), Mysid crustacean (Hemimysis anomola), North American signal crayfish (Procambarus clarkii), Topmouth gudgeon (Pseudorasbora parva), Water fern (Azolla filiculoides and Azolla caroliniana), Water primrose (Ludwigia grandiflora)
Probably Not At Risk	Australian swamp stonecrop (Crassula helmsii), Cadmium, Canadian pondweed and Nuttall's pondweeds (Elodea Canadensis and Elodea nuttallii), Chinese mitten crab (Eriocheir sinensis), Common carp (Cyprinus carpio), Copper, Di(2-ethylhexyl)phthalate (DEHP), Floating pennywort (Hydrocotyle ranunculoides), Giant hogweed (Heracleum mantegazzianum), Goldfish (Carassius auratus), Japanese knotweed (Fallopia japonica), Japanese knotweed/ Giant knotweed hybrid (Fallopia x bohemica), Lead, Mysid crustacean (Hemimysis anomola), Nickel, Nonylphenol, North American signal crayfish (Pacifastacus leniusculus), Parrot's feather (Myriophyllum aquaticum), Polybrominateddiphenylether (PBDE), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Rhododendron (Rhododendron ponticum), Tributyltin (TBT), Triclosan, Virile crayfish (Orconectes virilis), Zebra mussel (Dreissena polymorpha), Zinc

17 July 2019 14:02:43

Coddenham Watercourse

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Reasons for not achieving Good —————

Significant Water	Reason	Element	Sector/Business Category Pressures
Management Issue			
Diffuse source	Poor Livestock Management	Phosphate	Agriculture - Livestock
			Agriculture and rural land management
Confirmed	Confirmed		Confirmed
Diffuse source	Poor nutrient management	Phosphate	Agriculture - Arable
			Agriculture and rural land management
Confirmed	Confirmed		Confirmed
Point source	Sewage discharge (continuous)	Phosphate	Waste water treatment
			Water Industry
Confirmed	Confirmed		Confirmed
Point source	Private Sewage Treatment	Phosphate	Urban
			Urban and Transport
Probable	Probable		Probable

—Waterbody Level Measure Actions

17 July 2019 14:02:44

Coddenham Watercourse

17 July 2019 14:02:44

Coddenham Watercourse

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

┌ Mitigation Measures (if applicable) ——

► Monitoring Sites -

Site ID	Site Name	Site Type	Site Waterbody Link	Easting	Northing	Elements Monitored
160490	BRIDGE PLACE BRIDGE MACROPHYTE SURVEY SITE	BIOSYS	Site in water body	611199	254808	River Macrophytes C1, River Invertebrates C1, River diatoms (Phytobenthos) C1

Classifications

17 July 2019 14:02:44

Coddenham Watercourse

Ammonia (Phys-Chem)HighDissolved oxygenHighpH LowerHighpH UpperHighPhosphateModerate		DENHAM W\C B1078 WIMS DHAM ROAD BR.	Unknown	611996	254457	River Phys-Chem C1, River Chemicals C1
Dissolved oxygen High pH Lower High pH Upper High Phosphate Moderate	Classifications					
pH Lower High pH Upper High Phosphate Moderate	Ammonia (Phys-Chem)	High				
pH Upper High Phosphate Moderate	Dissolved oxygen	High				
Phosphate Moderate	pH Lower	High				
	pH Upper	High				
Temperature High	Phosphate	Moderate				
	Temperature	High				

A6 Deben (GB520503503900)

edfenergy.com

Building better energy together

17 July 2019 14:03:19

DEBEN

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

WATERBODY ID	GB520503503900	CYCLE / LATEST VI	ERSION Cycle 2	2	Geographical Bound	laries
TYPE	Transitional	DESIGNATION	Heavily Modified		EA AREA	Essex Norfolk and Suffolk
LENGTH (km)		EASTING	629509		RBD	Anglian
AREA (km2)		NORTHING	244015		MAN CATCHMENT	Anglian TraC
`					OP CATCHMENT	Suffolk TraC
Alkalinity		CATCHMENT AREA	A (Ha)			

Bathing Water Directive	Nitrates Directive	Safeguard Zone	Shellfish Water Directive	Freshwater Fish Directive	Habitats and Species Directive	Drinking Water Protected Area	Conservation of Wild Birds Directive
NO	YES	NO	YES	NO	NO	NO	YES

-Classifications -

Year	Overall	Ecological	Chemical	ММА	Phytoplankton Blooms	Invertebrates	Fish	Seagrass	Saltmarsh	Flucoid Extent	Opportunistic Macroalgae	•	Dissolved Oxygen	DIN	Hydrological Regime	Specific Pollutants
2013	Moderate	Moderate	Good	Mod/less	High	Good					High		High	Moderate	Sup Good	Moderate
2014	Moderate	Moderate	Good	Mod/less	High	Good					High		High	Moderate	Sup Good	Moderate
2015	Moderate	Moderate	Good	Mod/less	High	Good					High		High	Moderate	Sup Good	High
2016	Moderate	Moderate	Good	Mod/less	High	Good					High		High	Moderate	Sup Good	High

Note: DNSG = 'Does Not Support Good', DNRA = 'Does Not Require Assessment'

17 July 2019 14:03:19

DEBEN

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

– Obje	ctives a	and Pre	dicted	d Outco	mes —									
Overall	Ecological	Chemical	ММА	Phytoplankton Blooms	Invertebrates	Fish	Seagrass	Saltmarsh	Flucoid Extent	Macroalgae	Dissolved Oxygen	DIN	Hydrological Regime	Specific Pollutants
- Objective	е													
Moderate	Moderate	Good	Good	Good	Good					Good	Good	Moderate	Sup Good	High
- Objective	e Year													
2015	2015	2015	2027	2015	2015					2015	2015	2015	2015	2015
2021 - Pred	dicted													
Moderate	Moderate	Good	Mod/less	High	Good					High	High	Moderate	Sup Good	High
2027 - Pred	dicted													
Moderate	Moderate	Good	Good	High	Good					High	High	Moderate	Sup Good	High

Pressure Level Risk Elements At Risk Abstraction & Flow Not Assessed Not At Risk Eutrophication Probably At Risk Abstraction & Flow Probably Not At Risk

17 July 2019 14:03:20

DEBEN

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Element Level

Risk	Elements
At Risk	Overall INNS pressure, Slipper limpet (Crepidula fornicata)
Not Assessed	Benzo(a)pyrene, Di(2-ethylhexyl)phthalate (DEHP), Fluoranthene, Mercury, Nonylphenol, Polybrominateddiphenylether (PBDE), Tributyltin (TBT), Triclosan
Not At Risk	Australian swamp stonecrop (Crassula helmsii), Colonial tunicate (non-native Didemnum spp.), Copper, Curly water-thyme (Lagarosiphon major), Floating pennywort (Hydrocotyle ranunculoides), Giant hogweed (Heracleum mantegazzianum), Leathery sea squirt (Styela clava), Parrot's feather (Myriophyllum aquaticum), Water fern (Azolla filiculoides and Azolla caroliniana), Water primrose (Ludwigia grandiflora), Zebra mussel (Dreissena polymorpha)
Probably At Risk	Chinese mitten crab (Eriocheir sinensis), Zinc
Probably Not At Risk	American oyster drill (Urosalpinx cinerea), Cadmium, Canadian pondweed and Nuttall's pondweeds (Elodea Canadensis and Elodea nuttallii), Common carp (Cyprinus carpio), Common cord-grass, Townsend's grass or ricegrass (Spartina anglica), Freshwater amphipod (Dikerogammarus villosus), Giant knotweed (Fallopia sachalensis), Goldfish (Carassius auratus), Himalayan balsam (Impatiens glandulifera), Japanese knotweed (Fallopia japonica), Japanese knotweed/ Giant knotweed hybrid (Fallopia x bohemica), Lead, Marine tubeworm (Ficopomatus enigmaticus), Mysid crustacean (Hemimysis anomola), Nickel, North American signal crayfish (Pacifastacus leniusculus), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Rhododendron (Rhododendron ponticum), Topmouth gudgeon (Pseudorasbora parva), Virile crayfish (Orconectes virilis)

17 July 2019 14:03:20

DEBEN

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

	iot deflicting dood —			
Significant Water Management Issue	Reason	Element	Sector/Business Category	Pressures
Diffuse source	Poor nutrient management	Dissolved Inorganic Nitrogen	Agriculture - Arable	
			Agriculture and rural land management	
Suspected	Suspected		Suspected	
Physical modification	Other (not in list, must add details in com	Mitigation Measures Assessment	Not applicable	Flood protection use
			Central Government	
Confirmed	Confirmed		Confirmed	
Point source	Sewage discharge (continuous)	Dissolved Inorganic Nitrogen	Waste water treatment	
			Water Industry	
Suspected	Suspected		Suspected	
Unknown (pending investi	Unknown (pending investigation)	Dissolved Inorganic Nitrogen	Not applicable	
			Unknown (pending investigation)	
Not applicable	Not applicable		Not applicable	

—Waterbody Level Measure Actions

CPS Action ID	Title	Measure Aim	Easting/Northing	Action Status / EA Team
32920	Managed realignment of	1. Mitigation Measure		Scheduled for
	flood defence	2.		implementation (not cost
				AN Eastern, Coastal
		3.		Management

17 July 2019 14:03:20

DEBEN

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

cost beneficial)
Catchment
n

—Wider Area Measures Actions

17 July 2019 14:03:20

DEBEN

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Mitigation Measures (if applicable)

8.1		/				
Designated	Working with physical form and	Structural	Operations and maintenance	Water management	Habitat creation Navigation	
Hydromorph Use	13.Realign flood defence 12.Floodplain connectivity 11.Set-back embankments 10.Flood bunds 9.Alter culvert channel bed 8.Re-opening culverts 7.Bank rehabilitation fu 6.In-channel morph diversity 5.Preserve or restore habitats 4.Remove or soften hard bank 3.Re-engineer river 2.Remove obsolete structure 1.Modify channel	20.Changes to locks etc ion 19.Enhance ecology 18.Reduce fish entrainment 17.Fish pass flow releases modific.Fish passes 15.Flow manipulation 14.Modify structure	41. Water level management 40. Woody debris 39. Maintain channel bed/margins 38. Sediment management strategy 37. Retain habitats 36. Invasive species techniques 35. Vegetation control timing 34. Vegetation control 33. Selective vegetation control 32. Phased de-watering 31. Manage seasonal water levels 30. Manage artificial drawdown 29. Sediment management regime 28. Manage disturbance 27. Dredge disposal site sel 26. Sediment management 25. Retime dredging or disposal 24. Reduce sediment resuspension 23. Reduce impact of dredging 22. Dredging disposal strategy 21. Avoid the need to dred	47.Align and attenuate flo 46.Good downstream temperature 45.Good downstream DO levels 44.Flows to move sediment 43.Downstream flow regime 42.Access to feeder-streams	51.Boats in central track 50.Vessel Management 49.Modify vessel design 48.Indirect mitigation	55.Recreation awareness 54.Educate landowners 53.Boat wash awareness 52.Invasive species awareness
Flood protection use	1 2 3 4 5 6 7 8 9 10 11 12 13	14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	42 43 44 45 46 47	48 49 50 51	52 53 54 55 56
	Not In Place Not Applicable Not Applicable In Place Not Applicable Not Applicable	Not Applicable Not Applicable Not Applicable	Not Applicable		Not Applicable	

► Monitoring Sites **−**

	_						
Site ID	Site Name	Site Type	Site Waterbody Link	Easting	Northing	Elements Monitored	
DEB120	R.DEBEN METHERSGATE QUAY	WIMS	Site in water body	628200	246400	TraC Chemicals C1	
Classifications							
Copper	Hig	şh .					

17 July 2019 14:03:21

DEBEN

lease be aware 1	that data is based on	i the best availab	ole information as of the	date shown ab	ve, and may be subject to change	
.59862 Classifications	DEBEN ESTUARY OPPORTUNISTIC MACROALGAE	BIOSYS	Site in water body	630640	241182	
59861	ALDE & ORE	BIOSYS	Site in water body	632800	238300	
Classifications	OPPORTUNISTIC MACROALGAE	Biosis	Site in water body	032000	230300	

17 July 2019 14:03:21

DEBEN

A7 Felixstowe Peninsula Crag & Chalk GB40501G401800

Building better energy together

edfenergy.com

17 July 2019 14:04:16

Felixstowe Peninsula Crag & Chalk

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

WATERBODY ID	GB40501G401800	CYCLE / LATEST VI	Cycle 2 2		Geographical Boundaries	
TYPE	Groundwater	DESIGNATION	Not Applicable		EA AREA	Essex Norfolk and Suffolk
LENGTH (km)		EASTING	622800		RBD	Anglian
AREA (km2)		NORTHING	243018		MAN CATCHMENT	Anglian GW
					OP CATCHMENT	Felixstowe Peninsula Crag and Chalk
Alkalinity		CATCHMENT AREA	A (Ha)			

Bathing	Water Nitrates	s Safeguard	Shellfish Water	Freshwater	Habitats and	Drinking Water	Conservation of
Direc	ctive Directiv	e Zone	Directive	Fish Directive	Species Directive	Protected Area	Wild Birds Directive
NO	YES	NO	NO	NO	NO	YES	NO

-Classifications -

Yea	Overall	Chemical	Quantitative	Trend Assessment	Supporting Elements (Groundwater)
2013	Poor	Poor	Good	No trend	
2014	Poor	Poor	Good	No trend	
2015	Poor	Poor	Good	No trend	
2016	Poor	Poor	Good	No trend	

Note: DNSG = 'Does Not Support Good', DNRA = 'Does Not Require Assessment'

17 July 2019 14:04:17

Felixstowe Peninsula Crag & Chalk

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Objectives and Predicted Outcomes

Туре	Overall	Chemical	Quantitative	Trend Assessment	Supporting Elements (Groundwater)
- Objective	Poor	Poor	Good		
- Objective Year	2015	2015	2015		
2021 - Predicted	Poor	Poor	Good		
2027 - Predicted	Poor	Poor	Good		

Risks

Pressure Level			
Risk	Elements		
At Risk			
Not At Risk			
Probably At Risk			
Probably Not At Risk			

17 July 2019 14:04:17

Felixstowe Peninsula Crag & Chalk

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Element Level

Risk	Elements
At Risk	Abstraction impact on saline intrusion, General chemical assessment, Overall chemical assessment, Overall quantitative assessment, Saline intrusion
Not At Risk	Impact on surface water chemistry and ecology
Probably At Risk	Abstraction impact on dependent terrestrial ecocsystems, Abstraction impact on surface water, Abstraction impact on water balance, Impact on dependent terrestrial ecosystems
Probably Not At Risk	Impact on Drinking Water protected areas, Trend assessment

17 July 2019 14:04:17

Felixstowe Peninsula Crag & Chalk

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Reasons for not define ving dood					
Significant Water Management Issue	Reason	Element	Sector/Business Category	Pressures	
Diffuse source	Poor Livestock Management	General Chemical Test	Agriculture - Livestock		
			Agriculture and rural land manageme	nt	
Confirmed	Probable		Probable		
Diffuse source	Poor nutrient management	General Chemical Test	Agriculture - Arable		
			Agriculture and rural land manageme	nt	
Confirmed	Probable		Probable		
Point source	Farm/site infrastructure	General Chemical Test			
			Agriculture and rural land manageme	nt	
Confirmed	Suspected		Suspected		

—Waterbody Level Measure Actions

CPS Action ID	Title	Measure Aim	Easting/Northing	Action Status / EA Team
14128	Field & Crop - Arable soils	1. To control or manage diffuse source inputs		New
		2. Reduce diffuse pollution at source		
		3. Field & Crop - Arable soils		AN Eastern, EM Land & Water
14132	Field & Crop - Livestock	1. To control or manage diffuse source inputs		New
		2. Reduce diffuse pollution at source		
		3. Field & Crop - Livestock		AN Eastern, EM Land & Water

17 July 2019 14:04:17

Felixstowe Peninsula Crag & Chalk

14130	Field & Crop - Nutrients /	1. To control or manage diffuse source inputs	New
	Other Rural sources	2. Reduce diffuse pollution at source	
		3. Field & Crop - Nutrients	AN Eastern, EM Land & Water
14083	Generic action - Field &	1. To control or manage diffuse source inputs	New
	Crop - arable soils	2. Reduce diffuse pollution at source	
		3. Field & Crop - Arable soils	AN Eastern, Integrated Environment Planning
14091	Generic action - Field &	1. To control or manage diffuse source inputs	New
	Crop - Nutrients/ Other Rural Nutrient Sources	2. Reduce diffuse pollution at source	
		3. Field & Crop - Nutrients	AN Eastern, Integrated Environment Planning
14090	Generic action - Field and	1. To control or manage diffuse source inputs	New
	Crop - Livestock	2. Reduce diffuse pollution at source	
		3. Field & Crop - Livestock	AN Eastern, Integrated Environment Planning
14082	Generic Action for Surface	1. To control or manage diffuse source inputs	New
	Run-off and Drainage	2. Reduce diffuse pollution pathways (i.e. control entry to water environment)	
		3. Surface run-off & drainage management	AN Eastern, Integrated Environment Planning

17 July 2019 14:04:17

Felixstowe Peninsula Crag & Chalk

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

14127	Surface Run-off and	1. To control or manage diffuse source inputs	New
	drainage	2. Reduce diffuse pollution pathways (i.e. control entry to water environment)	
		3. Surface run-off & drainage management	AN Eastern, EM Land & Water

—Wider Area Measures Actions

17 July 2019 14:04:17

Felixstowe Peninsula Crag & Chalk

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Mitigation Measures (if applicable) —

► Monitoring Sites

A8 Hundred River (GB 105035046260)

edfenergy.com

20 December 2018 11:29:44

Hundred River

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

WATERBODY ID	GB105035046260	CYCLE / LATEST VERSION	Cycle 2	2	Geographical Boundaries			
TYPE	River	DESIGNATION	Heavily Modified		EA AREA	Essex Norfolk and Suffolk		
LENGTH (km)		EASTING	644066		RBD	Anglian		
AREA (km2)		NORTHING	260879		MAN CATCHMENT	Suffolk East		
. ,					OP CATCHMENT	Suffolk Coastal		
Alkalinity		CATCHMENT AREA (Ha)						

Bathing Water Directive	Nitrates Directive	Safeguard Zone	Shellfish Water Directive	Freshwater Fish Directive	Habitats and Species Directive	Drinking Water Protected Area	Conservation of Wild Birds Directive
NO	YES	NO	NO	NO	NO	NO	NO

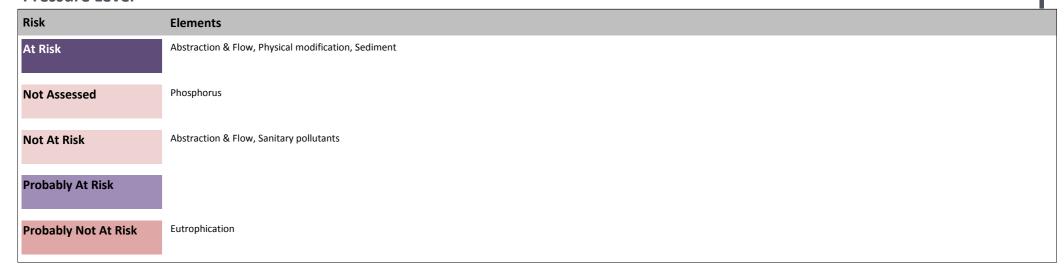
–Classifications Macrophytes and Hydrological **Phosphate Overall Ecological** Chemical Fish **Dissolved Oxygen** Yea **MMA Invertebrates** Ammonia рΗ **Phytobenthos Combined** Regime Bad Mod/less Good Good 2013 Bad Bad DNSG

2014	Poor	Poor	Good	Mod/less	High	Poor						DNSG
2015	Bad	Bad	Good	Good		Bad	Good	Moderate	High	Bad	High	DNSG
2016	Moderate	Moderate	Good	Good		Bad		Moderate	High	Bad	High	Sup Good

Note: DNSG = 'Does Not Support Good', DNRA = 'Does Not Require Assessment'

20 December 2018 11:29:45

Hundred River


Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

-Objectives and Predicted Outcomes -

Lon	- Objectives and Fredicted Outcomes											
Туре	Overall	Ecological	Chemical	MMA	Invertebrates	Fish	Macrophytes and Phytobenthos Combine	Phosphate ed	Ammonia	Dissolved Oxygen	рН	Hydrological Regime
- Obje	ctive											
	Bad	Bad	Good	Good		Bad	Good	Moderate	Good	Bad	Good	DNSG
- Obje	ctive Year											
	2015	2015	2015	2015		2015	2015	2015	2015	2015	2015	2015
2021 -	Predicted											
	Bad	Bad	Good	Good		Bad	Good	Moderate	High	Bad	High	DNSG
2027 -	Predicted											
	Bad	Bad	Good	Good		Bad	Good	Moderate	High	Bad	High	DNSG

- Risks

Pressure Level

20 December 2018 11:29:45

Hundred River

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Element Level

Risk	Elements
At Risk	Curly water-thyme (Lagarosiphon major), Floating pennywort (Hydrocotyle ranunculoides), Freshwater amphipod (Dikerogammarus villosus), North American signal crayfish (Pacifastacus leniusculus), Overall INNS pressure, Water primrose (Ludwigia grandiflora)
Not Assessed	Fluoranthene
Not At Risk	American oyster drill (Urosalpinx cinerea), Australian swamp stonecrop (Crassula helmsii), Colonial tunicate (non-native Didemnum spp.), Common cord-grass, Townsend's grass or ricegrass (Spartina anglica), Giant knotweed (Fallopia sachalensis), Leathery sea squirt (Styela clava), Marine tubeworm (Ficopomatus enigmaticus), Parrot's feather (Myriophyllum aquaticum), Slipper limpet (Crepidula fornicata)
Probably At Risk	Benzo(a)pyrene, Curly water-thyme (Lagarosiphon major), Floating pennywort (Hydrocotyle ranunculoides), Himalayan balsam (Impatiens glandulifera), Mysid crustacean (Hemimysis anomola), Polybrominateddiphenylether (PBDE), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Topmouth gudgeon (Pseudorasbora parva), Virile crayfish (Orconectes virilis), Water fern (Azolla filiculoides and Azolla caroliniana), Water primrose (Ludwigia grandiflora)
Probably Not At Risk	Australian swamp stonecrop (Crassula helmsii), Cadmium, Canadian pondweed and Nuttall's pondweeds (Elodea Canadensis and Elodea nuttallii), Chinese mitten crab (Eriocheir sinensis), Common carp (Cyprinus carpio), Copper, Di(2-ethylhexyl)phthalate (DEHP), Giant hogweed (Heracleum mantegazzianum), Goldfish (Carassius auratus), Japanese knotweed (Fallopia japonica), Japanese knotweed/ Giant knotweed hybrid (Fallopia x bohemica), Lead, Mysid crustacean (Hemimysis anomola), Nickel, Nonylphenol, Parrot's feather (Myriophyllum aquaticum), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Rhododendron (Rhododendron ponticum), Tributyltin (TBT), Triclosan, Zebra mussel (Dreissena polymorpha), Zinc

20 December 2018 11:29:46

Hundred River

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Reasons for not achieving Good ——————

Fited30113 101	not acmeving dood -			
Significant Water Management Issue	Reason	Element	Sector/Business Category	Pressures
Natural	Drought	Dissolved oxygen	Not applicable	
			Not applicable	
Confirmed	Confirmed		Not applicable	
Natural	Drought	Fish	Not applicable	Other (not in list)
			Not applicable	Not applicable
Confirmed	Confirmed		Not applicable	
Point source	Sewage discharge (continuous)	Phosphate	Waste water treatment	
			Water Industry	
Confirmed	Confirmed		Confirmed	

—Waterbody Level Measure Actions

CPS Action ID	Title	Measure Aim	Easting/Northing	Action Status / EA Team
32944	Mitigation measures	1. Mitigation Measure		Completed (cost beneficial)
	deemed to be in place fRBMP	2.		
		3.		AN Eastern, Catchment
		J.		Delivery Team
32943	Retain woody debris where	1. Mitigation Measure		Confirmed cost beneficial
	appropriate	2.		
				AN Eastern, Asset
		3.		Performance

Hundred River

Hundred River

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

	· · · · · ·	•				
Designated Hydromorph Use	Working with physical form and function	Structural modification	Operations and maintenance	Water management	Habitat creation Navigation	Education
Tryuromorph ose	13.Realign flood defence 12.Floodplain connectivity 11.Set-back embankments 10.Flood bunds 9.Alter culvert channel bed 8.Re-opening culverts 7.Bank rehabilitation 6.In-channel morph diversity 5.Preserve or restore habitats 4.Remove or soften hard bank 3.Re-engineer river 2.Remove obsolete structure 1.Modify channel	20.Changes to locks etc 19.Enhance ecology 18.Reduce fish entrainment 17.Fish pass flow releases 16.Fish passes 15.Flow manipulation 14.Modify structure	41.Water level management 40.Woody debris 39.Maintain channel bed/margins 38.Sediment management strategy 37.Retain habitats 36.Invasive species techniques 35.Vegetation control timing 34.Vegetation control 33.Selective vegetation control 32.Phased de-watering 31.Manage seasonal water levels 30.Manage artificial drawdown 29.Sediment management regime 28.Manage disturbance 27. Dredge disposal site sel 26.Sediment management 25.Retime dredging or disposal 24.Reduce sediment resuspension 23.Reduce impact of dredging 22.Dredging disposal strategy 21.Avoid the need to dred	47.Align and attenuate flo 46.Good downstream temperature 45.Good downstream DO levels 44.Flows to move sediment 43.Downstream flow regime 42.Access to feeder-streams	51.Boats in central track 50.Vessel Management 49.Modify vessel design 48.Indirect mitigation	55.Recreation awareness 55.Recreation awareness 54.Educate landowners 53.Boat wash awareness 52.Invasive species awareness
Flood protection	1 2 3 4 5 6 7 8 9 10 11 12 13	14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	42 43 44 45 46 47	48 49 50 51	52 53 54 55 56
	Not Applicable	Not Applicable Not Applicable Not Applicable Not Applicable	Not Applicable In Place	Not Applicable		Not Applicable

► Monitoring Sites —

	0					
Site ID	Site Name	Site Type	Site Waterbody Link	Easting	Northing	Elements Monitored
631	YOX & MINSMERE CATCHMENT/THORPENESS HUNDRED	NFPD	Site in water body	643400	260800	River Fish C1
Classifications						
Barbel	Info)				
Bleak	Info)				
Bream	Info)				
Bullhead	Info)				

20 December 2018 11:29:46

Hundred River

icase se attaie tilat aatt	is wasta oil the best available i	into interior as of the date shown above, and may be subject to thanke
Carp	Info	
Chub	Info	
Dace	Info	
Eel	Info	
Fish	Bad	
Grayling	Info	
Gudgeon	Info	
Lamprey	Info	
Minnow	Info	
Perch	Info	
Pike	Info	
Roach	Info	
Rudd	Info	
Ruffe	Info	
Salmon	Info	
Spined loach	Info	
Stickleback	Info	
Stone loach	Info	
Tench	Info	
Trout	Info	

20 December 2018 11:29:46

Hundred River

icase be aware t	ilat data is basca on t	ne best available i	inormation as or the dat	e shown abov	e, and may be subject to change	
149973	PRIORY MARSHES (A12 BRIDGE) MACROPHYTE SURVEY SITE	BIOSYS	Unknown	646300	279100	
Classifications						
Macrophytes Sub	Element F	High				
54974	HILL FARM BRIDGE	BIOSYS	Unknown	646100	277900	
Classifications						

20 December 2018 11:29:46

Hundred River

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change River Chemicals C1, River Phys-Chem C1 THP006 THORPENESS HUNDRED R. WIMS Unknown 644600 260700 **B1122 ALDRINGHAM** Classifications High Iron **THP020** Unknown 258320 River Phys-Chem C1, River Chemicals C1 THORPENESS HUNDRED R. WIMS 646780 AT TIDAL SLUICE Classifications Ammonia (Phys-Chem) High Dissolved oxygen Bad pH Lower High pH Upper High Phosphate Moderate Temperature High

A9 Leiston Beck (GB105035046271)

Building better energy together

edfenergy.com

20 December 2018 11:28:48

Leiston Beck

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

WATERBODY ID	GB105035046271	CYCLE / LATEST VEF	RSION Cycle 2	1	Geographical Boundaries
TYPE	River	DESIGNATION	Heavily Modified		EA AREA Essex Norfolk and Suffolk
LENGTH (km)		EASTING	646927		RBD Anglian
AREA (km2)		NORTHING	264490		MAN CATCHMENT Suffolk East
Alkalinity		CATCHMENT AREA	(Ha)	OP CATCHMENT Suffolk Coastal	
Rathing Water	Nitrates Safegu	ıard Shellfish Wa	ter Freshwater	∐ahi	hitats and Drinking Water Conservation of

Directive Directive Zone Directive Fish Directive Species Directive Protected Area Wild Birds Directive

-Classifications -

Yea	Overall	Ecological	Chemical	MMA	Invertebrates	Fish	Macrophytes and Phosphate Phytobenthos Combined	Ammonia	Dissolved Oxygen	рН	Hydrological Regime
2013	Moderate	Moderate	Good				Bad	High	Good	High	DNSG
2014	Moderate	Moderate	Good		Good		Bad	High	Good	High	DNSG
2015	Moderate	Moderate	Good	Mod/less	Good		Good	High	Good	High	Sup Good
2016	Moderate	Moderate	Good	Mod/less	Good		Poor	Good	Bad	High	Sup Good

Note: DNSG = 'Does Not Support Good', DNRA = 'Does Not Require Assessment'

20 December 2018 11:28:48

Leiston Beck

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

_Objectives and Predicted Outcomes **−**

	jectives	andrie	dicted (Jutcomi	-3							
Туре	Overall	Ecological	Chemical	ММА	Invertebrates	Fish	Macrophytes and Phytobenthos Combine	Phosphate ed	Ammonia	Dissolved Oxygen	рН	Hydrological Regime
- Obje	ctive											
	Good	Good	Good	Good	Good		Not assessed	Good	Good	Good	Good	Sup Good
- Obje	ctive Year											
	2027	2027	2015	2027	2015		2015	2015	2015	2015	2015	2015
2021 -	Predicted											
	Moderate	Moderate	Good	Mod/less	Good		Not assessed	Good	High	Good	High	Sup Good
2027 -	Predicted											
	Good	Good	Good	Good	Good		Not assessed	Good	High	Good	High	Sup Good

- Risks

Pressure Level

Leiston Beck

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Element Level

Risk	Elements
At Risk	Curly water-thyme (Lagarosiphon major), Floating pennywort (Hydrocotyle ranunculoides), Freshwater amphipod (Dikerogammarus villosus), North American signal crayfish (Pacifastacus leniusculus), Overall INNS pressure, Water primrose (Ludwigia grandiflora)
Not Assessed	Fluoranthene
Not At Risk	American oyster drill (Urosalpinx cinerea), Australian swamp stonecrop (Crassula helmsii), Colonial tunicate (non-native Didemnum spp.), Common cord-grass, Townsend's grass or ricegrass (Spartina anglica), Giant knotweed (Fallopia sachalensis), Leathery sea squirt (Styela clava), Marine tubeworm (Ficopomatus enigmaticus), Parrot's feather (Myriophyllum aquaticum), Slipper limpet (Crepidula fornicata)
Probably At Risk	Benzo(a)pyrene, Curly water-thyme (Lagarosiphon major), Himalayan balsam (Impatiens glandulifera), Mysid crustacean (Hemimysis anomola), Polybrominateddiphenylether (PBDE), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Topmouth gudgeon (Pseudorasbora parva), Virile crayfish (Orconectes virilis), Water fern (Azolla filiculoides and Azolla caroliniana), Water primrose (Ludwigia grandiflora)
Probably Not At Risk	Australian swamp stonecrop (Crassula helmsii), Cadmium, Canadian pondweed and Nuttall's pondweeds (Elodea Canadensis and Elodea nuttallii), Chinese mitten crab (Eriocheir sinensis), Common carp (Cyprinus carpio), Copper, Di(2-ethylhexyl)phthalate (DEHP), Giant hogweed (Heracleum mantegazzianum), Goldfish (Carassius auratus), Japanese knotweed (Fallopia japonica), Japanese knotweed/ Giant knotweed hybrid (Fallopia x bohemica), Lead, Mysid crustacean (Hemimysis anomola), Nickel, Nonylphenol, Parrot's feather (Myriophyllum aquaticum), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Rhododendron (Rhododendron ponticum), Tributyltin (TBT), Triclosan, Zebra mussel (Dreissena polymorpha), Zinc

20 December 2018 11:28:49

Leiston Beck

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

ricasons for	not acine ving dood —			
Significant Water Management Issue	Reason	Element	Sector/Business Category	Pressures
Physical modification	Other (not in list, must add details in com	Mitigation Measures Assessment	Not applicable	Land drainage
			Unknown (pending investigation)	
Confirmed	Confirmed		Confirmed	
Point source	Sewage discharge (continuous)	Dissolved oxygen	Waste water treatment	
			Water Industry	
Confirmed	Confirmed		Confirmed	
Point source	Sewage discharge (continuous)	Phosphate	Waste water treatment	
			Water Industry	
Confirmed	Confirmed		Confirmed	

—Waterbody Level Measure Actions

-Wider Area Measures Actions -

20 December 2018

11:28:49

Extended Waterbody Summary Report

Leiston Beck

Leiston Beck

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

► Mitigation Measures (if applicable) ————

	`	•				
Designated Hydromorph Use	Working with physical form and function	Structural modification	Operations and maintenance	Water management	Habitat creation Navigation	
nyuromorph ose	13.Realign flood defence 12.Floodplain connectivity 11.Set-back embankments 10.Flood bunds 9.Alter culvert channel bed 8.Re-opening culverts 7.Bank rehabilitation 6.In-channel morph diversity 5.Preserve or restore habitats 4.Remove or soften hard bank 3.Re-engineer river 2.Remove obsolete structure 1.Modify channel	20.Changes to locks etc 19.Enhance ecology 18.Reduce fish entrainment 17.Fish pass flow releases 16.Fish passes 15.Flow manipulation 14.Modify structure	41. Water level management 40. Woody debris 39. Maintain channel bed/margins 38. Sediment management strategy 37. Retain habitats 36. Invasive species techniques 35. Vegetation control timing 34. Vegetation control 33. Selective vegetation control 32. Phased de-watering 31. Manage seasonal water levels 30. Manage artificial drawdown 29. Sediment management regime 28. Manage disturbance 27. Dredge disposal site sel 26. Sediment management 25. Retime dredging or disposal 24. Reduce sediment resuspension 23. Reduce impact of dredging 22. Dredging disposal strategy 21. Avoid the need to dred	47.Align and attenuate flo 46.Good downstream temperature 45.Good downstream DO levels 44.Flows to move sediment 43.Downstream flow regime 42.Access to feeder-streams	51.Boats in central track 50.Vessel Management 49.Modify vessel design 48.Indirect mitigation	55. Recreation awareness 54. Educate landowners 53. Boat wash awareness 52. Invasive species awareness
Land drainage	1 2 3 4 5 6 7 8 9 10 11 12 13	14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	42 43 44 45 46 47	48 49 50 51	52 53 54 55 56
	Not in Place	Not In Place Not In Place Not In Place	Not in Place	Not in Place		Not In Place

► Monitoring Sites **−**

Site ID	Site Name	Site Type	Site Waterbody Link	Easting	Northing	Elements Monitored
MIN035	LEISTON BECK AT RECKHAM PITS WOOD BI	WIMS R.	Site in water body	646130	263730	
Classifications						
Ammonia (Phys-C	hem) (Good				
Dissolved oxygen	E	Bad				
pH Lower	H	ligh				
pH Upper	ŀ	ligh				

Leiston Beck

Phosphate	Poo	or				
Temperature	Hig	h				
149964	RECKFORD BRIDGE MACROPHYTE SURVEY SITE	BIOSYS	Unknown	643700	267700	
Classifications						
Macrophytes Sub	Element Mo	derate				
54882	YOXFORD BRIDGE (A12)	BIOSYS	Unknown	639900	268900	
34002	TOXI OND BRIDGE (A12)	ыозтз	Officiowifi	039900	200900	
Classifications						
Invertebrates	God	od				

Leiston Beck

884 EAST BRIDGE	BIOSYS	Unknown	645300	266400	
assifications					
vertebrates	Good				

A10 Minsmere Old River (GB105035046270)

edfenergy.com

20 December 2018 11:29:16

Minsmere Old River

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

WATERBODY ID	GB105035046270	CYCLE / LATEST VERSION Cycle 2 2		2	Geographical Boundaries			
TYPE	River	DESIGNATION	Н	leavily Modified		EA AREA	Essex Norfolk and Suffolk	
LENGTH (km)		EASTING	646552			RBD	Anglian	
AREA (km2)		L				MAN CATCHMENT	Suffolk East	
,		NORTHING	NORTHING 266200			OP CATCHMENT	Suffolk Coastal	
Alkalinity		CATCHMENT AREA	(Ha)			3. 3. 1. 3. IIVIEIT		

Bathing Water	Nitrates	Safeguard	Shellfish Water	Freshwater	Habitats and	Drinking Water	Conservation of
Directive	Directive	Zone	Directive	Fish Directive	Species Directive	Protected Area	Wild Birds Directive
NO	YES	NO	NO	NO	YES	NO	YES

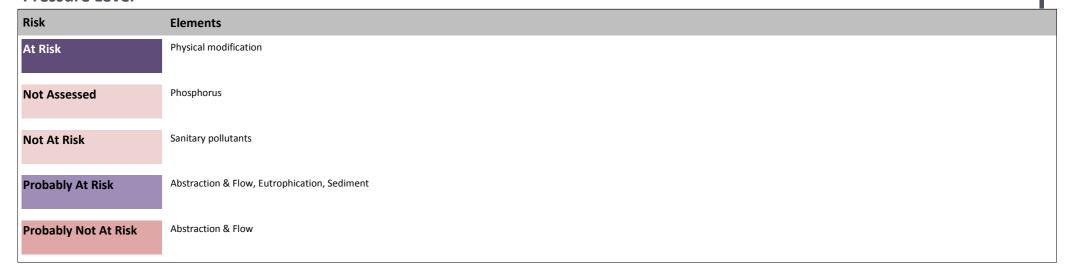
-Classifications -

Yea	Overall	Ecological	Chemical	MMA	Invertebrates	Fish	Macrophytes and Phosphate Phytobenthos Combined	Ammonia	Dissolved Oxygen	рН	Hydrological Regime
2013	Moderate	Moderate	Good	Mod/less				High	Good	High	Sup Good
2014	Moderate	Moderate	Good	Mod/less	Good			High	Good	High	Sup Good
2015	Moderate	Moderate	Good	Mod/less	Good	Poor	Good	High	Good	High	Sup Good
2016	Moderate	Moderate	Good	Mod/less	Good	Poor	Good	High	Good	High	Sup Good

Note: DNSG = 'Does Not Support Good', DNRA = 'Does Not Require Assessment'

20 December 2018 11:29:16

Minsmere Old River


Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Objectives and Predicted Outcomes

Lon	objectives and Fredicted Outcomes											
Туре	Overall	Ecological	Chemical	MMA	Invertebrates	Fish	Macrophytes and Phytobenthos Combine	Phosphate ed	Ammonia	Dissolved Oxygen	р Н	Hydrological Regime
- Obje	ctive											
	Good	Good	Good	Good	Good	Poor	Not assessed	Good	Good	Good	Good	Sup Good
- Obje	ctive Year											
	2027	2027	2015	2027	2015	2015	2015	2015	2015	2015	2015	2015
2021 -	Predicted											
	Moderate	Moderate	Good	Mod/less	Good	Poor	Not assessed	Good	High	Good	High	Sup Good
2027 -	Predicted											
	Good	Good	Good	Good	Good	Poor	Not assessed	Good	High	Good	High	Sup Good

- Risks

Pressure Level

Minsmere Old River

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Element Level

Risk	Elements
At Risk	Curly water-thyme (Lagarosiphon major), Floating pennywort (Hydrocotyle ranunculoides), Freshwater amphipod (Dikerogammarus villosus), North American signal crayfish (Pacifastacus leniusculus), Overall INNS pressure, Water primrose (Ludwigia grandiflora)
Not Assessed	Fluoranthene
Not At Risk	American oyster drill (Urosalpinx cinerea), Australian swamp stonecrop (Crassula helmsii), Colonial tunicate (non-native Didemnum spp.), Common cord-grass, Townsend's grass or ricegrass (Spartina anglica), Giant knotweed (Fallopia sachalensis), Leathery sea squirt (Styela clava), Marine tubeworm (Ficopomatus enigmaticus), Parrot's feather (Myriophyllum aquaticum), Slipper limpet (Crepidula fornicata)
Probably At Risk	Benzo(a)pyrene, Curly water-thyme (Lagarosiphon major), Himalayan balsam (Impatiens glandulifera), Mysid crustacean (Hemimysis anomola), Polybrominateddiphenylether (PBDE), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Topmouth gudgeon (Pseudorasbora parva), Virile crayfish (Orconectes virilis), Water fern (Azolla filiculoides and Azolla caroliniana), Water primrose (Ludwigia grandiflora)
Probably Not At Risk	Australian swamp stonecrop (Crassula helmsii), Cadmium, Canadian pondweed and Nuttall's pondweeds (Elodea Canadensis and Elodea nuttallii), Chinese mitten crab (Eriocheir sinensis), Common carp (Cyprinus carpio), Copper, Di(2-ethylhexyl)phthalate (DEHP), Giant hogweed (Heracleum mantegazzianum), Goldfish (Carassius auratus), Japanese knotweed (Fallopia japonica), Japanese knotweed/ Giant knotweed hybrid (Fallopia x bohemica), Lead, Mysid crustacean (Hemimysis anomola), Nickel, Nonylphenol, Parrot's feather (Myriophyllum aquaticum), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Rhododendron (Rhododendron ponticum), Tributyltin (TBT), Triclosan, Zebra mussel (Dreissena polymorpha), Zinc

20 December 2018 11:29:17

Minsmere Old River

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Titedoons for	Tot deflicting dood —			
Significant Water Management Issue	Reason	Element	Sector/Business Category	Pressures
Physical modification	Barriers - ecological discontinuity	Fish	Not applicable	Morphology
			Conservation	Not applicable
Confirmed	Confirmed		Confirmed	
Physical modification	Land drainage - operational management	Fish	Not applicable	Morphology
			Agriculture and rural land management	Not applicable
Suspected	Suspected		Suspected	
Physical modification	Other (not in list, must add details in com	Mitigation Measures Assessment		Land drainage
			Agriculture and rural land management	
Confirmed	Confirmed		Confirmed	

—Waterbody Level Measure Actions

CPS Action ID	Title	Measure Aim	Easting/Northing	Action Status / EA Team
32945	Mitigation measures deemed to be in place fRBMP	1. Mitigation Measure		Completed (cost beneficial)
		2.		
		3.		AN Eastern, Catchment Delivery Team

-Wider Area Measures Actions -

Minsmere Old River

20 December 2018

11:29:18

Extended Waterbody Summary Report

Environment Agency

Minsmere Old River

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

┌ Mitigation Measures (if applicable) ————

	`	•				
Designated	Working with physical form and	Structural	Operations and maintenance	Water	Habitat creation	
Hydromorph Use	function	modification		management	Navigation	
	13.Realign flood defence 12.Floodplain connectivity 11.Set-back embankments 10.Flood bunds 9.Alter culvert channel bed 8.Re-opening culverts 7.Bank rehabilitation 6.In-channel morph diversity 5.Preserve or restore habitats 4.Remove or soften hard bank 3.Re-engineer river 2.Remove obsolete structure 1.Modify channel	20.Changes to locks etc 19.Enhance ecology 18.Reduce fish entrainment 17.Fish pass flow releases 16.Fish passes 15.Flow manipulation 14.Modify structure	41. Water level management 40. Woody debris 39. Maintain channel bed/margins 38. Sediment management strategy 37. Retain habitats 36. Invasive species techniques 35. Vegetation control timing 34. Vegetation control 32. Phased de-watering 31. Manage seasonal water levels 30. Manage artificial drawdown 29. Sediment management regime 28. Manage disturbance 27. Dredge disposal site sel 26. Sediment management 25. Retime dredging or disposal 24. Reduce sediment resuspension 23. Reduce impact of dredging 22. Dredging disposal strategy 21. Avoid the need to dred	47.Align and attenuate flo 46.Good downstream temperature 45.Good downstream DO levels 44.Flows to move sediment 43.Downstream flow regime 42.Access to feeder-streams	51.Boats in central track 50.Vessel Management 49.Modify vessel design 48.Indirect mitigation	55.Recreation awareness 54.Educate landowners 53.Boat wash awareness 52.Invasive species awareness
Land drainage	1 2 3 4 5 6 7 8 9 10 11 12 13	14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	42 43 44 45 46 47	48 49 50 51	52 53 54 55 56
	Not in Place	Not in Place Not in Place Not in Place	Not in Place Not in Place	Not In Place		Not in Place

► Monitoring Sites —

	0					
Site ID	Site Name	Site Type	Site Waterbody Link	Easting	Northing	Elements Monitored
149964 Classification	RECKFORD BRIDGE MACROPHYTE SURVEY S	BIOSYS ITE	Site in water body	643700	267700	River Macrophytes C1, River Invertebrates C1, River diatoms (Phytobenthos) C1
Macrophytes		Moderate				

Minsmere Old River

hat data is based on th	he best available	information as of the o	late shown abo	ove, and ma	y be subject to change	
YOXFORD BRIDGE (A12)	BIOSYS	Site in water body	639900	268900	River Invertebrates C1, River Macrophytes C1, River C1	diatoms (Phytobenthos)
G	Good					
FAST BRIDGE	RIOSYS	Site in water hody	645300	266400	River Invertehrates C1 River Macronhytes C1 River	diatoms (Phytohenthos)
EXIST BINIDGE	510313	Site iii water bouy	043300	200400	C1	and to my to be minosy
G	Good					
	YOXFORD BRIDGE (A12)	YOXFORD BRIDGE (A12) BIOSYS Good	YOXFORD BRIDGE (A12) BIOSYS Site in water body Good EAST BRIDGE BIOSYS Site in water body	YOXFORD BRIDGE (A12) BIOSYS Site in water body 639900 Good EAST BRIDGE BIOSYS Site in water body 645300	YOXFORD BRIDGE (A12) BIOSYS Site in water body 639900 268900 GOOD EAST BRIDGE BIOSYS Site in water body 645300 266400	Good GOOD EAST BRIDGE BIOSYS Site in water body 645300 266400 River Invertebrates C1, River Macrophytes C1, River C1

Minsmere Old River

47163	YOX & MINSMERE CATCHMENT/RIVER YOX / MINSMERE RIVER/A12	NFPD	Site in water body	639969	268929	
Classifications						

Minsmere Old River

632	BLYTH CATCHMENT/DUNWICH RIVER/BRIDGE FARM/	NFPD	Unknown	647300	270700	River Fish C1
Classifications						
Barbel	Info	0				
Bleak	Info	0				
Bream	Info	0				
Bullhead	Info	0				
Carp	Info	0				
Chub	Info	0				
Dace	Info	0				
Eel	Info	0				
Fish	Poo	or				
Grayling	Info	0				
Gudgeon	Info	0				
Lamprey	Info	0				
Minnow	Info	0				
Perch	Info	0				
Pike	Info	0				
Roach	Info	0				
Rudd	Info	0				
Ruffe	Info	0				
Salmon	Info	0				
Spined loach	Info	0				
Stickleback	Info	0				
Stone loach	Info	0				
Tench	Info	0				
Trout	Info	0				

20 December 2018 11:29:19

Minsmere Old River

Classifications Ammonia (Phys-Chem) High Biochemical Oxygen Demand (BOD) High Dissolved oxygen Good PH Lower High Phosphate Good Temperature High MINSMERE RIVER RECKFORD BRIDGE Classifications Ammonia (Phys-Chem) High Dissolved oxygen Good High High High MINSMERE RIVER RECKFORD BRIDGE Classifications Ammonia (Phys-Chem) High Dissolved oxygen Good PH Lower High High	I	MINSMERE RIVER A12 RD.BR.YOXFORD	WIMS	Unknown	639900	268900	River Phys-Chem C1, River Chemicals C1	
Biochemical Oxygen Demand (BOD) Dissolved oxygen Good PH Lower High PH Upper High Phosphate Good Temperature High MINNO10 MINSMERE RIVER RECKFORD BRIDGE WIMS Unknown 643700 267700 River Phys-Chem C1, River Chemicals C1 Classifications Ammonia (Phys-Chem) High Dissolved oxygen Good PH Lower High Phosphate Good PH Lower High Phosphate Good PH Upper High Phosphate Good	Classifications							
Dissolved oxygen	Ammonia (Phys-Che	em)	High					
pH Lower	Biochemical Oxygen	Demand (BOD)	High					
PH Upper	Dissolved oxygen		Good					
Phosphate Good Temperature High MIN010 MINSMERE RIVER RECKFORD BRIDGE WIMS Unknown 643700 267700 River Phys-Chem C1, River Chemicals C1 Classifications Ammonia (Phys-Chem) High Dissolved oxygen Good pH Lower High pH Upper High Phosphate Good	pH Lower		High					
Temperature High MIN010 MINSMERE RIVER RECKFORD BRIDGE WIMS Unknown 643700 267700 River Phys-Chem C1, River Chemicals C1 Classifications Ammonia (Phys-Chem) High Dissolved oxygen Good pH Lower High pH Upper High Phosphate Good	pH Upper		High					
MINO10 MINSMERE RIVER RECKFORD BRIDGE WIMS Unknown 643700 267700 River Phys-Chem C1, River Chemicals C1 Classifications Ammonia (Phys-Chem) High Dissolved oxygen Good pH Lower High pH Upper High Phosphate Good	Phosphate		Good					
Classifications Ammonia (Phys-Chem) High Dissolved oxygen Good pH Lower High pH Upper High Phosphate Good	Temperature		High					
Classifications Ammonia (Phys-Chem) High Dissolved oxygen Good pH Lower High pH Upper High Phosphate Good								
Ammonia (Phys-Chem) High Dissolved oxygen Good pH Lower High pH Upper High Phosphate Good			WIMS	Unknown	643700	267700	River Phys-Chem C1, River Chemicals C1	
Dissolved oxygen Good pH Lower High pH Upper High Phosphate Good	Classifications							
pH Lower High pH Upper High Phosphate Good	Ammonia (Phys-Che	em)	High					
pH Upper High Phosphate Good	Dissolved oxygen		Good					
Phosphate Good	pH Lower		High					
	pH Upper		High					
Temperature High	Phosphate		Good					
	Temperature		High					

20 December 2018 11:29:19

Minsmere Old River

	MINSMERE RIVER EAST BRIDGE	WIMS	Unknown	645300	266400	River Phys-Chem C1, River Chemicals C1	
Classifications							
Ammonia (Phys-Ch	em)	High					
Dissolved oxygen		Poor					
pH Lower		High					
pH Upper		High					
Phosphate		Good					
Temperature		High					

A11 River Alde (GB105035046060)

edfenergy.com

20 December 2018 11:30:12

Alde

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

WATERBODY ID	GB105035046060	CYCLE / LATEST V	ERSION Cycle 2	2	Geographical Bound	daries
TYPE	River	DESIGNATION	Not Designated A/HMWB		EA AREA	Essex Norfolk and Suffolk
LENGTH (km)		EASTING	634154		RBD	Anglian
AREA (km2)		NORTHING			MAN CATCHMENT	Suffolk East
]	264913		OP CATCHMENT	Suffolk Coastal
Alkalinity		CATCHMENT ARE	A (Ha)			

Bathing Water Directive	Nitrates Directive	Safeguard Zone	Shellfish Water Directive	Freshwater Fish Directive	Habitats and Species Directive	Drinking Water Protected Area	Conservation of Wild Birds Directive
Directive	Directive	Zone	Directive	risii Directive	Species Directive	Protected Area	Wild Bilds Directive
NO	YES	NO	NO	NO	NO	NO	NO

-Classifications -

Yea	Overall	Ecological	Chemical	MMA	Invertebrates	Fish	Macrophytes and Phytobenthos Combine	Phosphate d	Ammonia	Dissolved Oxygen	рН	Hydrological Regime
2013	Poor	Poor	Good		High	Poor		High	High	Poor	High	DNSG
2014	Poor	Poor	Good		High	Poor	Moderate	High	High	Poor	High	DNSG
2015	Poor	Poor	Good		High	Poor	Moderate	High	High	Poor	High	Sup Good
2016	Poor	Poor	Good		High	Poor	Moderate	Good	High	Poor	High	DNSG

Note: DNSG = 'Does Not Support Good', DNRA = 'Does Not Require Assessment'

20 December 2018 11:30:13

Alde

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Objectives		Duadiated	Outcome
Objectives	and	Predicted	Outcomes

Lon	jective:	s allu Pie	edicted C	Jutcom	E 3							
Туре	Overall	Ecological	Chemical	ММА	Invertebrates	Fish	Macrophytes and Phytobenthos Combine	Phosphate ed	Ammonia	Dissolved Oxygen	рН	Hydrological Regime
- Obje	ctive											
	Good	Good	Good		Good	Good	Good	Good	Good	Good	Good	Sup Good
- Obje	ctive Year											
	2027	2027	2015		2015	2027	2027	2015	2015	2027	2015	2015
2021 -	Predicted											
	Poor	Poor	Good		High	Poor	Moderate	High	High	Moderate	High	Sup Good
2027 -	Predicted											
	Good	Good	Good		High	Good	Good	High	High	Good	High	Sup Good

- Risks

Pressure Level

Risk	Elements
At Risk	
Not Assessed	Phosphorus
Not At Risk	Sanitary pollutants
Probably At Risk	Abstraction & Flow, Sediment
Probably Not At Risk	Abstraction & Flow, Eutrophication, Physical modification

20 December 2018 11:30:13

Alde

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Element Level

Risk	Elements
At Risk	Curly water-thyme (Lagarosiphon major), Floating pennywort (Hydrocotyle ranunculoides), Freshwater amphipod (Dikerogammarus villosus), North American signal crayfish (Pacifastacus leniusculus), Overall INNS pressure, Water primrose (Ludwigia grandiflora)
Not Assessed	Fluoranthene
Not At Risk	American oyster drill (Urosalpinx cinerea), Australian swamp stonecrop (Crassula helmsii), Colonial tunicate (non-native Didemnum spp.), Common cord-grass, Townsend's grass or ricegrass (Spartina anglica), Giant knotweed (Fallopia sachalensis), Leathery sea squirt (Styela clava), Marine tubeworm (Ficopomatus enigmaticus), Parrot's feather (Myriophyllum aquaticum), Slipper limpet (Crepidula fornicata)
Probably At Risk	Benzo(a)pyrene, Curly water-thyme (Lagarosiphon major), Himalayan balsam (Impatiens glandulifera), Mysid crustacean (Hemimysis anomola), Polybrominateddiphenylether (PBDE), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Topmouth gudgeon (Pseudorasbora parva), Virile crayfish (Orconectes virilis), Water fern (Azolla filiculoides and Azolla caroliniana), Water primrose (Ludwigia grandiflora)
Probably Not At Risk	Australian swamp stonecrop (Crassula helmsii), Cadmium, Canadian pondweed and Nuttall's pondweeds (Elodea Canadensis and Elodea nuttallii), Chinese mitten crab (Eriocheir sinensis), Common carp (Cyprinus carpio), Copper, Di(2-ethylhexyl)phthalate (DEHP), Giant hogweed (Heracleum mantegazzianum), Goldfish (Carassius auratus), Japanese knotweed (Fallopia japonica), Japanese knotweed/ Giant knotweed hybrid (Fallopia x bohemica), Lead, Mysid crustacean (Hemimysis anomola), Nickel, Nonylphenol, Parrot's feather (Myriophyllum aquaticum), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Rhododendron (Rhododendron ponticum), Tributyltin (TBT), Triclosan, Zebra mussel (Dreissena polymorpha), Zinc

Alde

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Significant Water Management Issue	Reason	Element	Sector/Business Category	Pressures
Diffuse source	Poor soil management	Fish	Agriculture - Arable	Sediment
			Agriculture and rural land management	Not applicable
Probable	Probable		Probable	
Diffuse source	Riparian/in-river activities (inc bankside er	Macrophytes and Phytobenthos Com	Agriculture - Arable	Morphology
			Agriculture and rural land management	Not applicable
Confirmed	Confirmed		Confirmed	
Diffuse source	Track/rural road	Macrophytes and Phytobenthos Com	Roads	Morphology
			Agriculture and rural land management	Not applicable
Confirmed	Confirmed		Confirmed	
Flow	Unknown (pending investigation)	Hydrological Regime	Not applicable	
			Unknown (pending investigation)	
Suspected	Not applicable		Not applicable	
Natural	Drought	Fish	Not applicable	Dissolved oxygen
			Not applicable	Not applicable
Confirmed	Confirmed		Not applicable	
Physical modification	Barriers - ecological discontinuity	Fish	Environment, Farming, Rural	Morphology
			Central Government	Not applicable
Confirmed	Confirmed		Confirmed	
Point source	Domestic drainage	Dissolved oxygen	Not applicable	
			Domestic/General public	
Suspected	Suspected		Suspected	

20 December 2018 11:30:14

Alde

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Point source Farm/site infrastructure Fish Sediment

Agriculture and rural land management Not applicable

Probable Probable Probable

—Waterbody Level Measure Actions

CPS Action ID	Title	Measure Aim	Easting/Northing	Action Status / EA Team
14082	Generic Action for Surface	1. To control or manage diffuse source inputs		New
	Run-off and Drainage	2. Reduce diffuse pollution pathways (i.e. control entry to water environment)		
		3. Surface run-off & drainage management		AN Eastern, Integrated Environment Planning
14080	Generic Barriers to Migration	1. To improve modified habitat		New
		2. Removal or easement of barriers to fish migration		
		3. Enable fish passage (e.g. fish pass)		AN Eastern, Integrated Environment Planning
14085	Generic Increase in channel morphological diversity	1. To improve modified habitat		New
		2. Improvement to condition of channel/bed and/or banks/shoreline		
		3. Increase in-channel morphological diversity		AN Eastern, Integrated Environment Planning
39237	Habitat improvement - East Suffolk Watershed Initiative	1. To improve modified habitat		Affordable
		2. Improvement to condition of channel/bed and/or banks/shoreline		
		3. Improvements to longitudinal connectivity		Environment Programme

20 December 2018 11:30:14

Alde

40282	River Restoration at Benhall	1. To improve modified habitat	Completed (cost beneficial)
		2. Improvement to condition of channel/bed and/or banks/shoreline	
		3. Increase in-channel morphological diversity	Integrated Environment Planning
19270	WB - Enable fish passage	1. To improve modified habitat	New
		2. Removal or easement of barriers to fish migration	
		3. Enable fish passage (e.g. fish pass)	AN Eastern, Fisheries, Recreation & Biodiversity
14129	WB specific increase in channel morphological diversity	1. To improve modified habitat	New
		2. Improvement to condition of channel/bed and/or banks/shoreline	
		3. Increase in-channel morphological diversity	AN Eastern, Asset Performance
14123	WB specific measure- Surface Run-off and Drainage	1. To control or manage diffuse source inputs	New
		2. Reduce diffuse pollution pathways (i.e. control entry to water environment)	
		3. Surface run-off & drainage management	AN Eastern, EM Land & Water
14136	WB specific-Surface Run-Off and Drainage	1. To control or manage diffuse source inputs	New
		2. Reduce diffuse pollution pathways (i.e. control entry to water environment)	
		3. Surface run-off & drainage management	AN Eastern, EM Land & Water

20 December 2018 11:30:14

Alde

20 December 2018 11:30:14

Alde

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Mitigation Measures (if applicable) ——

► Monitoring Sites -

Site ID	Site Name	Site Type	Site Waterbody Link	Easting	Northing	Elements Monitored
54767	BRUISYARD ARCH	BIOSYS	Site in water body	633440	265600	River Invertebrates C1, River Macrophytes C1, River diatoms (Phytobenthos) C1

Classifications

20 December 2018 11:30:14

Alde

Classifications			C1
Invertebrates			
invertebrates	High		

20 December 2018 11:30:15

Alde

625	ALDE & ORE CATCHMENT/RIVER ALDE (HEADWATERS)/COLSTON	NFPD	Site in water body	631400	266600	River Fish C1
Classifications						
Barbel	Info)				
Bleak	Info)				
Bream	Info)				
Bullhead	Info)				
Carp	Info)				
Chub	Info)				
Dace	Info)				
Eel	Info)				
Fish	Poo	or				
Grayling	Info)				
Gudgeon	Info)				
Lamprey	Info)				
Minnow	Info)				
Perch	Info)				
Pike	Info)				
Roach	Info)				
Rudd	Info)				
Ruffe	Info)				
Salmon	Info)				
Spined loach	Info)				
Stickleback	Info)				
Stone loach	Info)				
Tench	Info)				
Trout	Info)				

20 December 2018 11:30:15

Alde

526	ALDE & ORE CATCHMENT/RIVER ALDE (HEADWATERS)/BRUISYAR	NFPD	Site in water body	633300	265600	River Fish C1	
Classifications							
Barbel	Info)					
Bleak	Info)					
Bream	Info)					
Bullhead	Info)					
Carp	Info)					
Chub	Info)					
Dace	Info)					
Eel	Info)					
Fish	Poo	or					
Grayling	Info)					
Gudgeon	Info)					
Lamprey	Info)					
Minnow	Info)					
Perch	Info)					
Pike	Info)					
Roach	Info)					
Rudd	Info)					
Ruffe	Info						
Salmon	Info						
Spined loach	Info)					
Stickleback	Info)					
Stone loach	Info)					
Tench	Info)					
Trout	Info)					

20 December 2018 11:30:15

Alde

160494	U/S MARLESFORD BRIDG MACROPHYTE SURVEY S		Site in water body	632700	257700		
Classifications							
Macrophytes Sub	Element .	Moderate					
ALD004	R.ALDE BRUISYARD ARCI	H WIMS	Unknown	633400	265600	River Phys-Chem C1, River Chemicals C1	
			•				
Classifications							
Ammonia (Phys-0	Chem)	High					
Dissolved oxygen	1	Bad					
pH Lower	1	High					
pH Upper	1	High					
Phosphate		Good					
Temperature	ı	High					

20 December 2018 11:30:15

Alde

Classifications Ammonia (Phys-Chem) High Dissolved oxygen Moderate
Dissolved oxygen Moderate
will average the second
pH Lower High
pH Upper High
Phosphate High
Temperature High

A12 River Deben (Brandeston Bridge - Melton) (GB105035046310)

edfenergy.com

17 July 2019 14:03:47

Deben (Brandeston Bridge - Melton)

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

WATERBODY ID	GB105035046310	CYCLE / LATEST VERS	GION Cycle 2	2	Geographical Boundaries		
TYPE	River	DESIGNATION	Heavily Modified		EA AREA	Essex Norfolk and Suffolk	
LENGTH (km)		EASTING	629571		RBD	Anglian	
AREA (km2)		NORTHING	256815		MAN CATCHMENT	Suffolk East	
Alkalinity		CATCHMENT AREA (OP CATCHMENT	Deben	
Dathing Mateu	Nituatas Cafan		. Fusiksten		tata and Duinkin	- Water Consequentian of	

Bathing Water	Nitrates	Safeguard	Shellfish Water	Freshwater	Habitats and	Drinking Water	Conservation of
Directive	Directive	Zone	Directive	Fish Directive	Species Directive	Protected Area	Wild Birds Directive
NO	YES	NO	NO	NO	NO	NO	YES

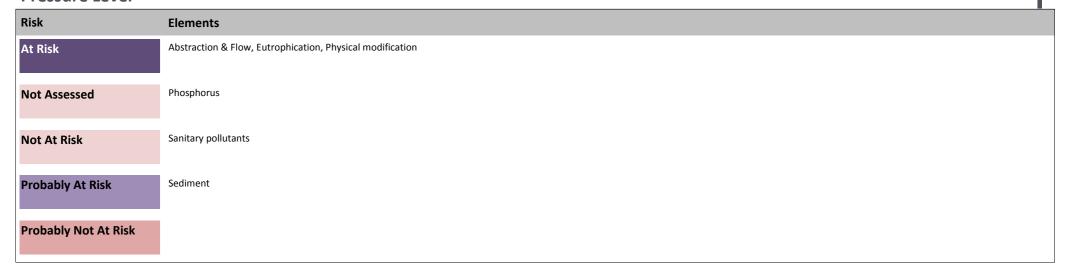
-Classifications -

Yea	Overall	Ecological	Chemical	MMA	Invertebrates	Fish	Macrophytes and Pho Phytobenthos Combined	osphate	Ammonia	Dissolved Oxyger	n pH	Hydrological Regime
2013	Moderate	Moderate	Good	Mod/less	Good		Mo	oderate	High	Moderate	High	DNSG
2014	Moderate	Moderate	Good	Mod/less	Good		Mo	<mark>oderate</mark>	High	Moderate	High	DNSG
2015	Moderate	Moderate	Good	Mod/less	Good		Moderate Mo	oderate	High	Good	High	DNSG
2016	Moderate	Moderate	Good	Mod/less	Good		Mo	oderate	High	Good	High	Sup Good

Note: DNSG = 'Does Not Support Good', DNRA = 'Does Not Require Assessment'

17 July 2019 14:03:48

Deben (Brandeston Bridge - Melton)


Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

_Objectives and Predicted Outcomes **−**

Lon	jectives	allu Fie	aicteu (Jutcomi	-5							
Туре	Overall	Ecological	Chemical	MMA	Invertebrates	Fish	Macrophytes and Phytobenthos Combine	Phosphate ed	Ammonia	Dissolved Oxygen	рН	Hydrological Regime
- Obje	ctive											
	Moderate	Moderate	Good	Good	Good		Good	Moderate	Good	Good	Good	Sup Good
- Obje	ctive Year											
	2015	2015	2015	2027	2015		2015	2015	2015	2015	2015	2021
2021 -	Predicted											
	Moderate	Moderate	Good	Mod/less	Good		Not assessed	Moderate	High	Good	High	Sup Good
2027 -	Predicted											
	Moderate	Moderate	Good	Good	Good		Not assessed	Moderate	High	Good	High	Sup Good

- Risks

Pressure Level

17 July 2019 14:03:48

Deben (Brandeston Bridge - Melton)

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Element Level

Risk	Elements
At Risk	Curly water-thyme (Lagarosiphon major), Floating pennywort (Hydrocotyle ranunculoides), Freshwater amphipod (Dikerogammarus villosus), North American signal crayfish (Pacifastacus leniusculus), Overall INNS pressure, Water primrose (Ludwigia grandiflora)
Not Assessed	Fluoranthene
Not At Risk	American oyster drill (Urosalpinx cinerea), Australian swamp stonecrop (Crassula helmsii), Colonial tunicate (non-native Didemnum spp.), Common cord-grass, Townsend's grass or ricegrass (Spartina anglica), Copper, Giant knotweed (Fallopia sachalensis), Leathery sea squirt (Styela clava), Marine tubeworm (Ficopomatus enigmaticus), Parrot's feather (Myriophyllum aquaticum), Slipper limpet (Crepidula fornicata)
Probably At Risk	Benzo(a)pyrene, Curly water-thyme (Lagarosiphon major), Himalayan balsam (Impatiens glandulifera), Mysid crustacean (Hemimysis anomola), Polybrominateddiphenylether (PBDE), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Topmouth gudgeon (Pseudorasbora parva), Virile crayfish (Orconectes virilis), Water fern (Azolla filiculoides and Azolla caroliniana), Water primrose (Ludwigia grandiflora)
Probably Not At Risk	Australian swamp stonecrop (Crassula helmsii), Cadmium, Canadian pondweed and Nuttall's pondweeds (Elodea Canadensis and Elodea nuttallii), Chinese mitten crab (Eriocheir sinensis), Common carp (Cyprinus carpio), Di(2-ethylhexyl)phthalate (DEHP), Giant hogweed (Heracleum mantegazzianum), Goldfish (Carassius auratus), Japanese knotweed (Fallopia japonica), Japanese knotweed/ Giant knotweed hybrid (Fallopia x bohemica), Lead, Mysid crustacean (Hemimysis anomola), Nickel, Nonylphenol, Parrot's feather (Myriophyllum aquaticum), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Rhododendron (Rhododendron ponticum), Tributyltin (TBT), Triclosan, Zebra mussel (Dreissena polymorpha), Zinc

17 July 2019 14:03:49

Deben (Brandeston Bridge - Melton)

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Reasons for not achieving Good ——————

Fired 30113 101	Hot deflicting dood —			
Significant Water Management Issue	Reason	Element	Sector/Business Category	Pressures
Diffuse source	Poor Livestock Management	Phosphate	Agriculture - Livestock	
			Agriculture and rural land management	
Probable	Probable		Suspected	
Diffuse source	Poor nutrient management	Phosphate	Agriculture - Arable	
			Agriculture and rural land management	
Probable	Probable		Probable	
Diffuse source	Riparian/in-river activities (inc bankside er	Phosphate		
			Agriculture and rural land management	
Suspected	Suspected		Suspected	
Physical modification	Other (not in list, must add details in com	Mitigation Measures Assessment	Not applicable	Flood protection
			Central Government	
Confirmed	Confirmed		Confirmed	
Point source	Sewage discharge (continuous)	Phosphate	Waste water treatment	
			Water Industry	
Confirmed	Confirmed		Confirmed	

—Waterbody Level Measure Actions

CPS Action ID	Title	Measure Aim	Easting/Northing	Action Status / EA Team
38782	Change in abs lic condtn(s)	1. To control or manage abstraction		Confirmed cost beneficial
	to address pot. serious damage at full	2. Control pattern/timing of abstraction		
	license,Brandeston Bridge,Melton	3. Hands Off Flow		Integrated Environment Planning
	.			

17 July 2019 14:03:49

Deben (Brandeston Bridge - Melton)

32954	Enable fish passage	1. Mitigation Measure	Confirmed cost beneficial
		2.	
		3.	AN Eastern, Asset Performance
14083	Generic action - Field &	1. To control or manage diffuse source inputs	New
	Crop - arable soils	2. Reduce diffuse pollution at source	
		3. Field & Crop - Arable soils	AN Eastern, Integrated Environment Planning
14090	Generic action - Field and	1. To control or manage diffuse source inputs	New
	Crop - Livestock	2. Reduce diffuse pollution at source	
		3. Field & Crop - Livestock	AN Eastern, Integrated Environment Planning
14082	Generic Action for Surface	1. To control or manage diffuse source inputs	New
	Run-off and Drainage	2. Reduce diffuse pollution pathways (i.e. control entry to water environment)	
		3. Surface run-off & drainage management	AN Eastern, Integrated Environment Planning
14085	Generic Increase in channel	1. To improve modified habitat	New
	morphological diversity	2. Improvement to condition of channel/bed and/or banks/shoreline	
		3. Increase in-channel morphological diversity	AN Eastern, Integrated Environment Planning

17 July 2019 14:03:49

Deben (Brandeston Bridge - Melton)

reduction	2. Mitigate/Remediate point source impacts on receptor	
	3. Install nutrient reduction	AN Eastern, Integrated Environment Planning
Generic Tree Planting	1. To improve modified habitat	New
	2. Vegetation management	
	3. Plant new vegetation	AN Eastern, Integrated Environment Planning
Mitigation measures	1. Mitigation Measure	Completed (cost beneficial)
	2.	
TADIVII	3.	AN Eastern, Catchment Delivery Team
Mitigation measures	1. Mitigation Measure	Completed (cost beneficial)
investigated and screened	2.	
out as not required	3.	AN Eastern, Catchment Delivery Team
River Restoration at Easton	1. Mitigation Measure	Confirmed cost beneficial
	2.	
	3.	Environment Programme
	Mitigation measures deemed to be in place fRBMP Mitigation measures investigated and screened out as not required	Generic Tree Planting 1. To improve modified habitat 2. Vegetation management 3. Plant new vegetation Mitigation measures deemed to be in place fRBMP 1. Mitigation Measure 2. 3. Mitigation measures investigated and screened out as not required 1. Mitigation Measure 2. 3. River Restoration at Easton 1. Mitigation Measure 2. 3.

17 July 2019 14:03:49

Deben (Brandeston Bridge - Melton)

18284	WB - Tree Planting	1. To improve modified habitat	New		
		2. Vegetation management			
		3. Plant new vegetation	AN Eastern, Operations Delivery		
14313	WB Specifc arable measure	1. To control or manage diffuse source inputs	New		
		2. Reduce diffuse pollution at source			
		3. Field & Crop - Arable soils	AN Eastern, EM Land & Water		
14314	WB specific livestock	1. To control or manage diffuse source inputs	New		
	measure	2. Reduce diffuse pollution at source			
		3. Field & Crop - Livestock	AN Eastern, EM Land & Water		
14315	WB Specific Pathway	1. To control or manage diffuse source inputs	New		
	Measure	2. Reduce diffuse pollution pathways (i.e. control entry to water environment)			
		3. Surface run-off & drainage management	AN Eastern, EM Land & Water		
14312	WB Specific Point Source	1. To control or manage point source inputs	New		
	Phosphorus Improvement	2. Mitigate/Remediate point source impacts on receptor			
		3. Install nutrient reduction	AN Eastern, Integrated Environment Planning		

17 July 2019 14:03:49

Deben (Brandeston Bridge - Melton)

17 July 2019 14:03:49

Deben (Brandeston Bridge - Melton)

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

┌ Mitigation Measures (if applicable) ———

		•				
Designated	Working with physical form and	Structural	Operations and maintenance	Water	Habitat creation	
Hydromorph Use	function	modification		management	Navigation	Education
	13.Realign flood defence 12.Floodplain connectivity 11.Set-back embankments 10.Flood bunds 9.Alter culvert channel bed 8.Re-opening culverts 7.Bank rehabilitation 6.In-channel morph diversity 5.Preserve or restore habitats 4.Remove or soften hard bank 3.Re-engineer river 2.Remove obsolete structure 1.Modify channel	20.Changes to locks etc 19.Enhance ecology 18.Reduce fish entrainment 17.Fish pass flow releases 16.Fish passes 15.Flow manipulation 14.Modify structure	41.Water level management 40.Woody debris 39.Maintain channel bed/margins 38.Sediment management strategy 37.Retain habitats 36.Invasive species techniques 35.Vegetation control timing 34.Vegetation control 33.Selective vegetation control 32.Phased de-watering 31.Manage seasonal water levels 30.Manage artificial drawdown 29.Sediment management regime 28.Manage disposal site sel 26.Sediment management 25.Retime dredging or disposal 24.Reduce sediment resuspension 23.Reduce impact of dredging 22.Dredging disposal strategy 21.Avoid the need to dred	47.Align and attenuate flo 46.Good downstream temperature 45.Good downstream DO levels 44.Flows to move sediment 43.Downstream flow regime 42.Access to feeder-streams	51.Boats in central track 50.Vessel Management 49.Modify vessel design 48.Indirect mitigation	55.Recreation awareness 55.Recreation awareness 54.Educate landowners 53.Boat wash awareness 52.Invasive species awareness
Flood protection	1 2 3 4 5 6 7 8 9 10 11 12 13	14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	42 43 44 45 46 47	48 49 50 51	52 53 54 55 56
	Not In Place Not Applicable	Not Applicable Not Applicable Not Applicable	Not Applicable Not Applicable In Place In Place In Place In Place In Place	Not Applicable		Not Applicable

Monitoring Sites —

Site ID	Site Name	Site Type	Site Waterbody Link	Easting	Northing	Elements Monitored
149959	BRANDESTON BRIDGE MACROPHYTE SURVEY SITE	BIOSYS	Site in water body	623800	260300	River Macrophytes C1, River Invertebrates C1, River diatoms (Phytobenthos) C1

Classifications

17 July 2019 14:03:50

Deben (Brandeston Bridge - Melton)

Please be aware	that data is based or	n the best availal	ole information as of the	date shown ab	ove, and ma	ay be subject to change
54826	BRANDESTON BRIDGE CRETINGHAM	BIOSYS	Site in water body	623800	260100	River Invertebrates C1, River diatoms (Phytobenthos) C1, River Macrophytes C1
Classifications						
Invertebrates		Good				
54827	EASTON FARM PARK	BIOSYS	Site in water body	627700	257900	River Invertebrates C1, River diatoms (Phytobenthos) C1, River Macrophytes
34627	BRIDGE	ыозтз	Site iii water body	627700	257900	C1
Classifications						
Invertebrates		High				

17 July 2019 14:03:50

Deben (Brandeston Bridge - Melton)

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change Site in water body River Invertebrates C1, River Macrophytes C1, River diatoms (Phytobenthos) 54830 EYKE FORD **BIOSYS** 631320 252750 Classifications Invertebrates Good **DEB075** Site in water body 254628 River Chemicals C1, River Phys-Chem C1 R.DEBEN D/S PETTISTREE WIMS 631348 WTW Classifications

17 July 2019 14:03:50

Deben (Brandeston Bridge - Melton)

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change Site in water body DEB042 LETHERINGHAM MILL WIMS 627950 258170 Classifications Copper High **DEB030** Unknown 260300 River Phys-Chem C1, River Chemicals C1 R.DEBEN BRANDESTON WIMS 623800 BR.CRETINGHAM Classifications Acid Neutralising Capacity High Ammonia (Phys-Chem) High Biochemical Oxygen Demand (BOD) High Copper High Cypermethrin Info Dissolved oxygen Good Mecoprop High pH Lower High pH Upper High Phosphate Moderate Temperature High

17 July 2019 14:03:51

Deben (Brandeston Bridge - Melton)

DEB040	R.DEBEN LETHERINGH BRIDGE	AM WIMS	Unknown	627200	258600	River Phys-Chem C1, River Chemicals C1
Classifications						
Ammonia (Phys-Cl	nem)	High				
Dissolved oxygen		Bad				
pH Lower		High				
pH Upper		High				
Phosphate		Good				
Temperature		High				
DEB050	R.DEBEN GLEVERING BRIDGE	WIMS	Unknown	629500	256600	River Phys-Chem C1, River Chemicals C1
Classifications						
Ammonia (Phys-Cl	nem)	High				
Dissolved oxygen		Good				
pH Lower		High				
pH Upper		High				
Phosphate		Good				
Temperature		High				

17 July 2019 14:03:51

Deben (Brandeston Bridge - Melton)

Classifications Acid Neutralising Capacity Ammonia (Phys-Chem) Dissolved oxygen	High				
Ammonia (Phys-Chem)					
	110 -1-				
Dissolved oxygen	High				
	Moderate				
pH Lower	High				
pH Upper	High				
Phosphate	Moderate				
Temperature	High				
DEB085 R.DEBEN NAUN	TON HALL WIMS	Unknown	632200	253400	River Phys-Chem C1, River Chemicals C1
GAUGING STAT		UNKHOWN	632200	253400	River Phys-Chem C1, River Chemicals C1
Classifications					
Ammonia (Phys-Chem)	High				
Dissolved oxygen	Good				
pH Lower	High				
pH Upper	High				
Phosphate	Moderate				
Temperature	High				
·	Ü				

17 July 2019 14:03:52

Deben (Brandeston Bridge - Melton)

DEB090 R.DEBEN UF	FORD BRIDGE WIMS	Unknown	630000	251900	River Phys-Chem C1, River Chemicals C1	
Classifications						
Ammonia (Phys-Chem)	High					
Dimethoate	High					
Dissolved oxygen	Moderate					
pH Lower	High					
pH Upper	High					
Phosphate	Moderate					
Temperature	High					

A13 River Fromus (GB105035045980)

Building better energy together

edfenergy.com

17 July 2019 14:04:43

Fromus

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

WATERBODY ID	GB105035045980	CYCLE / LATEST VE	ERSION Cycle 2 2		Geographical Boundaries		
TYPE	River	DESIGNATION	Not [Designated A/HM	WB	EA AREA	Essex Norfolk and Suffolk
LENGTH (km)		EASTING	638755		RBD	Anglian	
AREA (km2)		NORTHING				MAN CATCHMENT	Suffolk East
			NORTHING 262658			OP CATCHMENT	Suffolk Coastal
Alkalinity		CATCHMENT AREA	EA (Ha)				

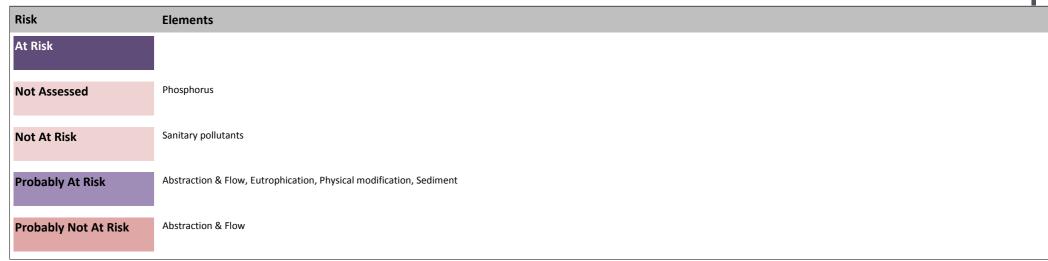
Bathing Water	Nitrates	Safeguard	Shellfish Water	Freshwater	Habitats and	Drinking Water	Conservation of
Directive	Directive	Zone	Directive	Fish Directive	Species Directive	Protected Area	Wild Birds Directive
NO	YES	NO	NO	NO	NO	NO	NO

Yea Overall Ecological Chemical MMA Invertebrates Fish Macrophytes and Phytobenthos Combined Phosphate Ammonia Dissolved Oxygen pH Hydrological Regime 2013 Poor Poor Good Good Poor Sup Good

2013	Poor	Poor	Good	Good Poor						Sup Good
2014	Bad	Bad	Good	Bad Poor	Good				High	Sup Good
2015	Poor	Poor	Good	Moderate Poor	Good	Poor	High	Poor	High	Sup Good
2016	Poor	Poor	Good	Moderate Poor	Good	Poor	High	Bad	High	Sup Good

Note: DNSG = 'Does Not Support Good', DNRA = 'Does Not Require Assessment'

17 July 2019 14:04:44


Fromus

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Lon	jectives	allu Ple	dicted C	Jutcom	E 3							
Туре	Overall	Ecological	Chemical	MMA	Invertebrates	Fish	Macrophytes and Phytobenthos Combine	Phosphate ed	Ammonia	Dissolved Oxygen	рН	Hydrological Regime
- Obje	ctive											
	Moderate	Moderate	Good		Good	Good	Good	Poor	Good	Moderate	Good	Sup Good
- Obje	ctive Year											
	2027	2027	2015		2027	2027	2015	2015	2015	2015	2015	2015
2021 -	Predicted											
	Poor	Poor	Good		Moderate	Poor	Good	Poor	High	Moderate	High	Sup Good
2027 -	Predicted											
	Moderate	Moderate	Good		Good	Good	Good	Poor	High	Moderate	High	Sup Good

Risks

Pressure Level

17 July 2019 14:04:44

Fromus

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Element Level

Risk	Elements
At Risk	Curly water-thyme (Lagarosiphon major), Floating pennywort (Hydrocotyle ranunculoides), Freshwater amphipod (Dikerogammarus villosus), North American signal crayfish (Pacifastacus leniusculus), Overall INNS pressure, Water primrose (Ludwigia grandiflora)
Not Assessed	Fluoranthene
Not At Risk	American oyster drill (Urosalpinx cinerea), Australian swamp stonecrop (Crassula helmsii), Colonial tunicate (non-native Didemnum spp.), Common cord-grass, Townsend's grass or ricegrass (Spartina anglica), Giant knotweed (Fallopia sachalensis), Leathery sea squirt (Styela clava), Marine tubeworm (Ficopomatus enigmaticus), Parrot's feather (Myriophyllum aquaticum), Slipper limpet (Crepidula fornicata)
Probably At Risk	Benzo(a)pyrene, Curly water-thyme (Lagarosiphon major), Himalayan balsam (Impatiens glandulifera), Mysid crustacean (Hemimysis anomola), Polybrominateddiphenylether (PBDE), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Topmouth gudgeon (Pseudorasbora parva), Virile crayfish (Orconectes virilis), Water fern (Azolla filiculoides and Azolla caroliniana), Water primrose (Ludwigia grandiflora)
Probably Not At Risk	Australian swamp stonecrop (Crassula helmsii), Cadmium, Canadian pondweed and Nuttall's pondweeds (Elodea Canadensis and Elodea nuttallii), Chinese mitten crab (Eriocheir sinensis), Common carp (Cyprinus carpio), Copper, Di(2-ethylhexyl)phthalate (DEHP), Giant hogweed (Heracleum mantegazzianum), Goldfish (Carassius auratus), Japanese knotweed (Fallopia japonica), Japanese knotweed/ Giant knotweed hybrid (Fallopia x bohemica), Lead, Mysid crustacean (Hemimysis anomola), Nickel, Nonylphenol, Parrot's feather (Myriophyllum aquaticum), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Rhododendron (Rhododendron ponticum), Tributyltin (TBT), Triclosan, Zebra mussel (Dreissena polymorpha), Zinc

Fromus

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Significant Water Management Issue	Reason	Element	Sector/Business Category	Pressures
Diffuse source	Transport Drainage	Fish	Urban	Sediment
			Urban and Transport	Not applicable
Probable	Probable		Probable	
Diffuse source	Poor soil management	Invertebrates	Agriculture - Livestock	Sediment
			Agriculture and rural land management	Not applicable
Probable	Probable		Probable	
Diffuse source	Poor Livestock Management	Phosphate	Agriculture - Livestock	
			Agriculture and rural land management	
Confirmed	Confirmed		Confirmed	
Natural	Drought	Dissolved oxygen	Not applicable	
			Not applicable	
Probable	Probable		Not applicable	
Physical modification	Other (not in list, must add details in com	Fish	Not applicable	Morphology
			Other (not in list)	Not applicable
Confirmed	Confirmed		Confirmed	
Physical modification	Barriers - ecological discontinuity	Fish	Environment, Farming, Rural	Nutrients
			Central Government	Phosphate
Confirmed	Confirmed		Confirmed	
Physical modification	Barriers - ecological discontinuity	Fish	Not applicable	Nutrients
			Urban and Transport	Phosphate
Confirmed	Confirmed		Confirmed	

17 July 2019 14:04:45

Fromus

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

			<u> </u>	
Point source	Trade/Industry discharge	Fish	Not applicable	Dissolved oxygen
			Industry, Manufacturing and other Busi	Not applicable
Confirmed	Confirmed		Confirmed	
Point source	Sewage discharge (continuous)	Invertebrates	Not applicable	Nutrients
			Water Industry	Phosphate
Probable	Probable		Probable	

—Waterbody Level Measure Actions

CPS Action ID	Title	Measure Aim	Easting/Northing	Action Status / EA Team
14083	Generic action - Field &	1. To control or manage diffuse source inputs		New
	Crop - arable soils	2. Reduce diffuse pollution at source		
		3. Field & Crop - Arable soils		AN Eastern, Integrated Environment Planning
Crop	Generic action - Field &	1. To control or manage diffuse source inputs		New
	Crop - Nutrients/ Other	2. Reduce diffuse pollution at source		
	Rural Nutrient Sources	3. Field & Crop - Nutrients		AN Eastern, Integrated Environment Planning
14090	Generic action - Field and	1. To control or manage diffuse source inputs		New
	Crop - Livestock	2. Reduce diffuse pollution at source		
		3. Field & Crop - Livestock		AN Eastern, Integrated Environment Planning

17 July 2019 14:04:45

Fromus

14256 Generic action- Field & 1. To control or manage diffuse source inputs Crop- Pesticides 2. Reduce diffuse pollution at source	New		
	Crop- Pesticides	2. Reduce diffuse pollution at source	
		3. Field & Crop - Pesticide management	AN Eastern, EM Land & Water
14082	Generic Action for Surface	1. To control or manage diffuse source inputs	New
	Run-off and Drainage	2. Reduce diffuse pollution pathways (i.e. control entry to water environment)	
		3. Surface run-off & drainage management	AN Eastern, Integrated Environment Planning
14080	Generic Barriers to	2. Removal or easement of barriers to fish migration AN Eastern, Integrated	New
	Migration	2. Removal or easement of barriers to fish migration	
		3. Enable fish passage (e.g. fish pass)	AN Eastern, Integrated Environment Planning
14085	Generic Increase in channel	1. To improve modified habitat	New
	morphological diversity	2. Improvement to condition of channel/bed and/or banks/shoreline	
		3. Increase in-channel morphological diversity	AN Eastern, Integrated Environment Planning
14077	Generic Point Source P	1. To control or manage point source inputs	New
	reduction	2. Mitigate/Remediate point source impacts on receptor	
		3. Install nutrient reduction	AN Eastern, Integrated Environment Planning

17 July 2019 14:04:45

Fromus

14088	Generic Tree Planting	1. To improve modified habitat	New
		2. Vegetation management	
		3. Plant new vegetation	AN Eastern, Integrated Environment Planning
19259	WB - Enable Fish Passage	1. To improve modified habitat	New
		2. Removal or easement of barriers to fish migration	
		3. Enable fish passage (e.g. fish pass)	AN Eastern, Fisheries, Recreation & Biodiversity
19250	WB - Field & Crop - Arable	1. To control or manage diffuse source inputs	New
	soils	2. Reduce diffuse pollution at source	
		3. Field & Crop - Arable soils	AN Eastern, EM Land & Water
19255	WB - Field & Crop - Livestock	1. To control or manage diffuse source inputs	New
		2. Reduce diffuse pollution at source	
		3. Field & Crop - Livestock	AN Eastern, EM Land & Water
19254	WB - Field & Crop -	1. To control or manage diffuse source inputs	New
	Pesticides	2. Reduce diffuse pollution at source	
		3. Field & Crop - Pesticide management	AN Eastern, EM Land & Water

17 July 2019 14:04:45

Fromus

19262	WB - Increase In Channel	1. To improve modified habitat	New
	Morphological Diversity	2. Improvement to condition of channel/bed and/or banks/shoreline	
		3. Increase in-channel morphological diversity	AN Eastern, Operations Delivery
19253	WB - Other Nutrient Sources	1. To control or manage diffuse source inputs	New
		2. Reduce diffuse pollution at source	
		3. Field & Crop - Nutrients	AN Eastern, EM Land & Water
19248	WB - Surface Run-off and	1. To control or manage diffuse source inputs	New
	Drainage	2. Reduce diffuse pollution pathways (i.e. control entry to water environment)	
		3. Surface run-off & drainage management	AN Eastern, EM Land & Water
19264	WB - Tree Planting	1. To improve modified habitat	New
		2. Vegetation management	
		3. Plant new vegetation	AN Eastern, Fisheries, Recreation & Biodiversity
19247	WB Specific Point Source	1. To control or manage point source inputs	New
	Phosphorus Improvement	2. Mitigate/Remediate point source impacts on receptor	
		3. Install nutrient reduction	AN Eastern, Integrated Environment Planning

17 July 2019 14:04:45

Fromus

17 July 2019 14:04:45

Fromus

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

┌ Mitigation Measures (if applicable) ——

Monitoring Sites —

Site ID	Site Name	Site Type	Site Waterbody Link	Easting	Northing	Elements Monitored
149961	GROMFORD FORD MACROPHYTE SURVEY SITE	BIOSYS	Site in water body	638230	258810	River Macrophytes C1, River Invertebrates C1, River diatoms (Phytobenthos) C1

Classifications

17 July 2019 14:04:45

Fromus

54843	BENHALL GREEN BRIDGE	BIOSYS	Site in water body	638700	261100	River Invertebrates C1, River Macrophytes C1, River di C1	atoms (Phytobenthos)
Classifications							
Invertebrates	Mo	oderate					
54845	GROMFORD	BIOSYS	Site in water body	638500	258600	River Invertebrates C1, River diatoms (Phytobenthos) C1	C1, River Macrophytes
Classifications Invertebrates	Co	ood					
invertebrates	do	ioù					

17 July 2019 14:04:46

Fromus

618	ALDE & ORE CATCHMENT/RIVER FROMUS/SAXMUNDHAM/	NFPD	Site in water body	638700	263000	River Fish C1	
Classifications							
Barbel	Info	0					
Bleak	Info	0					
Bream	Info	0					
Bullhead	Info	0					
Carp	Info	0					
Chub	Info	0					
Dace	Info	0					
Eel	Info	0					
Fish	Poo	or					
Grayling	Info	0					
Gudgeon	Info	0					
Lamprey	Info	0					
Minnow	Info	0					
Perch	Info	0					
Pike	Info	0					
Roach	Info	0					
Rudd	Info	0					
Ruffe	Info	0					
Salmon	Info	0					
Spined loach	Info	0					
Stickleback	Info	0					
Stone loach	Info	0					
Tench	Info	0					
Trout	Info	0					

17 July 2019 14:04:46

Fromus

619	ALDE & ORE CATCHMENT/RIVER FROMUS/SNAPE	NFPD	Site in water body	638200	259900	River Fish C1	
Classifications							
Barbel		Info					
Bleak		Info					
Bream		Info					
Bullhead		Info					
Carp		Info					
Chub		Info					
Dace		Info					
Eel		Info					
Fish		Moderate					
Grayling		Info					
Gudgeon		Info					
Lamprey		Info					
Minnow		Info					
Perch		Info					
Pike		Info					
Roach		Info					
Rudd		Info					
Ruffe		Info					
Salmon		Info					
Spined loach		Info					
Stickleback		Info					
Stone loach		Info					
Tench		Info					
Trout		Info					

17 July 2019 14:04:46

Fromus

FRO020	R.FROMUS BENHALL GREEN BRIDGE	WIMS	Site in water body	638700	261100	River Phys-Chem C1, River Chemicals C1
Classifications						
Ammonia (Phys-	Chem)	High				
Dissolved oxygen	1	Bad				
pH Lower		High				
pH Upper		High				
Phosphate		High				
Temperature		High				
FRO030	R.FROMUS THE WATE	RING WIMS	Site in water body	638300	259900	River Phys-Chem C1, River Chemicals C1
1110030	SNAPE	WING WING	Site iii water boay	030300	233300	niver rings enem et, niver enemieus et
Classifications						
Ammonia (Phys-	Chem)	High				
Dissolved oxygen	1	Poor				
pH Lower		High				
pH Upper		High				
Phosphate		Poor				
Temperature		High				

17 July 2019 14:04:46

Fromus

ssifications nmonia (Phys-Chem) High ssolved oxygen Poor Lower High Upper High
Ssolved oxygen Poor Lower High
Lower High
Upper High
osphate Poor
mperature High

A14 River Lark GB105035040360

edfenergy.com

17 July 2019 14:06:12

Lark

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

WATERBODY ID	GB105035040360	CYCLE / LATEST VI	ERSION	Cycle 2	2	Geographical Bound	daries
TYPE	River	DESIGNATION	Not De	esignated A/HM	WB	EA AREA	Essex Norfolk and Suffolk
LENGTH (km)		EASTING		622923		RBD	Anglian
AREA (km2)		NORTHING		250990		MAN CATCHMENT	Suffolk East
. ,					OP CATCHMENT	Deben	
Alkalinity		CATCHMENT AREA	A (Ha)				

Bathing Water Directive	Nitrates Directive	Safeguard Zone	Shellfish Water Directive	Freshwater Fish Directive	Habitats and Species Directive	Drinking Water Protected Area	Conservation of Wild Birds Directive
Directive	Directive	Zone	Directive	risii Directive	Species Directive	Protected Area	Wild Bilds Directive
NO	YES	NO	NO	NO	NO	NO	NO

-Classifications -

Yea	Overall	Ecological	Chemical	MMA	Invertebrates	Fish	Macrophytes and Phytobenthos Combined	Phosphate d	Ammonia	Dissolved Oxygen	рН	Hydrological Regime
2013	Moderate	Moderate	Good			Moderate						Sup Good
2014	Moderate	Moderate	Good		High	Moderate	Good					Sup Good
2015	Moderate	Moderate	Good		High	Moderate	Good	Poor	High	Moderate	High	Sup Good
2016	Moderate	Moderate	Good		High	Moderate	Good	Poor	High	Moderate	High	Sup Good

Note: DNSG = 'Does Not Support Good', DNRA = 'Does Not Require Assessment'

17 July 2019 14:06:12

Lark

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

-Objectives	and	Predicted	Outcomes
-------------	-----	------------------	----------

	Jectives	andrie	dicted C	Jutcom	C 3							
Туре	Overall	Ecological	Chemical	MMA	Invertebrates	Fish	Macrophytes and Phytobenthos Combine	Phosphate ed	Ammonia	Dissolved Oxygen	рН	Hydrological Regime
- Obje	ctive											
	Moderate	Moderate	Good		Good	Good	Good	Poor	Good	Good	Good	Sup Good
- Obje	ctive Year											
	2015	2015	2015		2015	2027	2015	2015	2015	2015	2015	2015
2021 -	Predicted											
	Moderate	Moderate	Good		High	Moderate	Good	Poor	High	High	High	Sup Good
2027 -	Predicted											
	Moderate	Moderate	Good		High	Good	Good	Poor	High	High	High	Sup Good

- Risks

Pressure Level

17 July 2019 14:06:13

Lark

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Element Level

Risk	Elements
At Risk	Curly water-thyme (Lagarosiphon major), Floating pennywort (Hydrocotyle ranunculoides), Freshwater amphipod (Dikerogammarus villosus), North American signal crayfish (Pacifastacus leniusculus), Overall INNS pressure, Water primrose (Ludwigia grandiflora)
Not Assessed	Fluoranthene
Not At Risk	American oyster drill (Urosalpinx cinerea), Australian swamp stonecrop (Crassula helmsii), Colonial tunicate (non-native Didemnum spp.), Common cord-grass, Townsend's grass or ricegrass (Spartina anglica), Giant knotweed (Fallopia sachalensis), Leathery sea squirt (Styela clava), Marine tubeworm (Ficopomatus enigmaticus), Parrot's feather (Myriophyllum aquaticum), Slipper limpet (Crepidula fornicata)
Probably At Risk	Benzo(a)pyrene, Curly water-thyme (Lagarosiphon major), Himalayan balsam (Impatiens glandulifera), Mysid crustacean (Hemimysis anomola), Polybrominateddiphenylether (PBDE), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Topmouth gudgeon (Pseudorasbora parva), Virile crayfish (Orconectes virilis), Water fern (Azolla filiculoides and Azolla caroliniana), Water primrose (Ludwigia grandiflora)
Probably Not At Risk	Australian swamp stonecrop (Crassula helmsii), Cadmium, Canadian pondweed and Nuttall's pondweeds (Elodea Canadensis and Elodea nuttallii), Chinese mitten crab (Eriocheir sinensis), Common carp (Cyprinus carpio), Copper, Di(2-ethylhexyl)phthalate (DEHP), Giant hogweed (Heracleum mantegazzianum), Goldfish (Carassius auratus), Japanese knotweed (Fallopia japonica), Japanese knotweed/ Giant knotweed hybrid (Fallopia x bohemica), Lead, Mysid crustacean (Hemimysis anomola), Nickel, Nonylphenol, Parrot's feather (Myriophyllum aquaticum), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Rhododendron (Rhododendron ponticum), Tributyltin (TBT), Triclosan, Zebra mussel (Dreissena polymorpha), Zinc

17 July 2019 14:06:13

Lark

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Significant Water Management Issue	Reason	Element	Sector/Business Category	Pressures
Diffuse source	Poor Livestock Management	Fish	Agriculture - Livestock	Sediment
			Agriculture and rural land management	Not applicable
Probable	Probable		Probable	
Diffuse source	Poor soil management	Fish	Agriculture - Arable	Sediment
			Agriculture and rural land management	Not applicable
Probable	Probable		Probable	
Diffuse source	Poor Livestock Management	Phosphate	Agriculture - Livestock	
			Agriculture and rural land management	
Probable	Probable		Probable	
Diffuse source	Poor soil management	Phosphate	Agriculture - Arable	
			Agriculture and rural land management	
Probable	Probable		Probable	
Physical modification	Land drainage - operational management	Fish	Not applicable	Morphology
			Agriculture and rural land management	Not applicable
Confirmed	Probable		Probable	
Point source	Sewage discharge (continuous)	Dissolved oxygen	Waste water treatment	
			Water Industry	
Probable	Probable		Suspected	
Point source	Sewage discharge (continuous)	Fish	Not applicable	Dissolved oxygen
			Water Industry	Not applicable
Probable	Probable		Probable	

17 July 2019 14:06:13

Lark

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Point source	Private Sewage Treatment	Phosphate	Urban
			Urban and Transport
Probable	Probable		Suspected
Point source	Sewage discharge (continuous)	Phosphate	Waste water treatment
			Water Industry
Probable	Probable		Probable

—Waterbody Level Measure Actions

neric action - Field & op - arable soils	1. To control or manage diffuse source inputs 2. Reduce diffuse pollution at source 3. Field & Crop - Arable soils 1. To control or manage diffuse source inputs		New AN Eastern, Integrated Environment Planning
neric action - Field &	3. Field & Crop - Arable soils		
	1. To control or manage diffuse source inputs		
n Nutrionts/Other	1. To control of manage unituse source inputs		New
pp - Nutrients/ Other	2. Reduce diffuse pollution at source		
Rural Nutrient Sources	3. Field & Crop - Nutrients		AN Eastern, Integrated Environment Planning
neric action - Field and	1. To control or manage diffuse source inputs		New
p - Livestock	2. Reduce diffuse pollution at source		
	3. Field & Crop - Livestock		AN Eastern, Integrated Environment Planning
ne	ric action - Field and	3. Field & Crop - Nutrients ric action - Field and - Livestock 2. Reduce diffuse pollution at source	3. Field & Crop - Nutrients ric action - Field and - Livestock 2. Reduce diffuse pollution at source

17 July 2019 14:06:13

Lark

14082	Generic Action for Surface	1. To control or manage diffuse source inputs	New
	Run-off and Drainage	2. Reduce diffuse pollution pathways (i.e. control entry to water environment)	
		3. Surface run-off & drainage management	AN Eastern, Integrated Environment Planning
14085	Generic Increase in channel	1. To improve modified habitat	New
	morphological diversity	2. Improvement to condition of channel/bed and/or banks/shoreline	
	3. Increase in-channel morphological diversity	AN Eastern, Integrated Environment Planning	
18583	WB - Field & Crop - Arable	1. To control or manage diffuse source inputs	New
	soils	2. Reduce diffuse pollution at source	
		3. Field & Crop - Arable soils	AN Eastern, EM Land & Water
18585	WB - Field & Crop -	1. To control or manage diffuse source inputs	New
	Nutrients	2. Reduce diffuse pollution at source	
		3. Field & Crop - Nutrients	AN Eastern, EM Land & Water
18584	WB - Field and Crop -	1. To control or manage diffuse source inputs	New
	Livestock	2. Reduce diffuse pollution at source	
		3. Field & Crop - Livestock	AN Eastern, EM Land & Water

17 July 2019 14:06:13

Lark

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

18786	WB - Increase In Channel Morphological Diversity	To improve modified habitat Improvement to condition of channel/bed and/or banks/shoreline	New
		3. Increase in-channel morphological diversity	AN Eastern, Operations Delivery
18582	WB - Surface Run-off and	1. To control or manage diffuse source inputs	New
	Drainage	2. Reduce diffuse pollution pathways (i.e. control entry to water environment)	
		3. Surface run-off & drainage management	AN Eastern, EM Land & Water

—Wider Area Measures Actions

17 July 2019 14:06:13

Lark

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

┌ Mitigation Measures (if applicable) ——

► Monitoring Sites **−**

Site ID	Site Name	Site Type	Site Waterbody Link	Easting	Northing	Elements Monitored
54849	GREAT BEALINGS	BIOSYS	Site in water body	623400	248400	River Invertebrates C1, River diatoms (Phytobenthos) C1, River Macrophytes C1

Classifications

Invertebrates High

17 July 2019 14:06:14

Lark

616	DEBEN CATCHMENT/FYNN NFPD & LARK SUB CATCHMENT/RIVER	Site in water body	622898	249007	River Fish C1	
Classifications						
Barbel	Info					
Bleak	Info					
Bream	Info					
Bullhead	Info					
Carp	Info					
Chub	Info					
Dace	Info					
Eel	Info					
Fish	Moderate					
Grayling	Info					
Gudgeon	Info					
Lamprey	Info					
Minnow	Info					
Perch	Info					
Pike	Info					
Roach	Info					
Rudd	Info					
Ruffe	Info					
Salmon	Info					
Spined loach	Info					
Stickleback	Info					
Stone loach	Info					
Tench	Info					
Trout	Info					

17 July 2019 14:06:14

Lark

FYN045	HASKETON W\C BOULGE BRIDGE	WIMS	Site in water body	625731	252158		
Classifications	BNIDGE						
Classifications							
161098	BOOT STREET MACROPHYTE SURVEY SITE	BIOSYS	Site in water body	622915	248907	River Macrophytes C1, River Invertebrates C1, River diaton C1	ns (Phytobenthos)
Classifications							
Macrophytes Sub	Element Go	od					

17 July 2019 14:06:14

Lark

Ammonia (Phys-Chem)HighDissolved oxygenModeratepH LowerHighpH UpperHighPhosphatePoor	FYN050	R.LARK GREAT BEALING BRIDGE (R.FYNN)	GS WIMS	Unknown	623400	248400	River Phys-Chem C1, River Chemicals C1
Dissolved oxygen Moderate pH Lower High pH Upper High Phosphate Poor	Classifications						
pH Lower High pH Upper High Phosphate Poor	Ammonia (Phys-Ch	nem)	High				
pH Upper High Phosphate Poor	Dissolved oxygen		Moderate				
Phosphate Poor	pH Lower		High				
	pH Upper		High				
Temperature High	Phosphate		Poor				
	Temperature		High				

A15 River Ore (GB105035045970)

edfenergy.com

20 December 2018 11:30:41

Ore

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

WATERBODY ID	GB105035045970	CYCLE / LATEST VE	Cycle 2 2			Geographical Boundaries				
TYPE	River	DESIGNATION	Not D	Designated A/HM	WB	EA AREA	Essex Norfolk and Suffolk			
LENGTH (km)		EASTING		630850		RBD	Anglian			
AREA (km2)		NORTHING				MAN CATCHMENT	Suffolk East			
. ,]]	260434			OP CATCHMENT	Suffolk Coastal			
Alkalinity		CATCHMENT AREA	(Ha)							

Ва	athing Water Directive	Nitrates Directive	Safeguard Zone	Shellfish Water Directive	Freshwater Fish Directive	Habitats and Species Directive	Drinking Water Protected Area	Conservation of Wild Birds Directive
	NO	YES	NO	NO	NO	NO	NO	NO

-Classifications -

Yea	Overall	Ecological	Chemical	MMA	Invertebrates	Fish	Macrophytes and Phytobenthos Combined	Phosphate d	Ammonia	Dissolved Oxyger	рН	Hydrological Regime
2013	Poor	Poor	Good		High	Poor		Poor	High	Moderate		DNSG
2014	Poor	Poor	Good		Good	Poor	Moderate	Poor	High	Good	High	DNSG
2015	Poor	Poor	Good		Good	Poor	Moderate	Poor	High	High	High	DNSG
2016	Poor	Poor	Good		Good	Poor	Moderate	Poor	High	Good	High	DNSG

Note: DNSG = 'Does Not Support Good', DNRA = 'Does Not Require Assessment'

20 December 2018 11:30:42

Ore

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

_Objectives and Predicted Outcomes **−**

	jectives	andic	dicted C	dicom	CS							
Туре	Overall	Ecological	Chemical	MMA	Invertebrates	Fish	Macrophytes and Phytobenthos Combine	Phosphate ed	Ammonia	Dissolved Oxygen	рН	Hydrological Regime
- Obje	ctive											
	Moderate	Moderate	Good		Good	Good	Good	Poor	Good	Good	Good	DNSG
- Obje	ctive Year											
	2021	2021	2015		2015	2027	2027	2015	2015	2015	2015	2015
2021 -	Predicted											
	Moderate	Moderate	Good		Good	Moderate	Moderate	Poor	High	High	High	DNSG
2027 -	Predicted											
	Moderate	Moderate	Good		Good	Good	Good	Poor	High	High	High	DNSG

- Risks

Pressure Level

20 December 2018 11:30:42

Ore

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Element Level

Risk	Elements
At Risk	Curly water-thyme (Lagarosiphon major), Floating pennywort (Hydrocotyle ranunculoides), Freshwater amphipod (Dikerogammarus villosus), North American signal crayfish (Pacifastacus leniusculus), Overall INNS pressure, Water primrose (Ludwigia grandiflora)
Not Assessed	Fluoranthene
Not At Risk	American oyster drill (Urosalpinx cinerea), Australian swamp stonecrop (Crassula helmsii), Colonial tunicate (non-native Didemnum spp.), Common cord-grass, Townsend's grass or ricegrass (Spartina anglica), Giant knotweed (Fallopia sachalensis), Leathery sea squirt (Styela clava), Marine tubeworm (Ficopomatus enigmaticus), Parrot's feather (Myriophyllum aquaticum), Slipper limpet (Crepidula fornicata)
Probably At Risk	Benzo(a)pyrene, Curly water-thyme (Lagarosiphon major), Himalayan balsam (Impatiens glandulifera), Mysid crustacean (Hemimysis anomola), Polybrominateddiphenylether (PBDE), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Topmouth gudgeon (Pseudorasbora parva), Virile crayfish (Orconectes virilis), Water fern (Azolla filiculoides and Azolla caroliniana), Water primrose (Ludwigia grandiflora)
Probably Not At Risk	Australian swamp stonecrop (Crassula helmsii), Cadmium, Canadian pondweed and Nuttall's pondweeds (Elodea Canadensis and Elodea nuttallii), Chinese mitten crab (Eriocheir sinensis), Common carp (Cyprinus carpio), Copper, Di(2-ethylhexyl)phthalate (DEHP), Giant hogweed (Heracleum mantegazzianum), Goldfish (Carassius auratus), Japanese knotweed (Fallopia japonica), Japanese knotweed/ Giant knotweed hybrid (Fallopia x bohemica), Lead, Mysid crustacean (Hemimysis anomola), Nickel, Nonylphenol, Parrot's feather (Myriophyllum aquaticum), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Rhododendron (Rhododendron ponticum), Tributyltin (TBT), Triclosan, Zebra mussel (Dreissena polymorpha), Zinc

Ore

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Significant Water Management Issue	Reason	Element	Sector/Business Category	Pressures
Diffuse source	Poor soil management	Macrophytes and Phytobenthos Com	Agriculture - Arable	Morphology
			Agriculture and rural land management	Not applicable
Confirmed	Confirmed		Confirmed	
Diffuse source	Livestock	Macrophytes and Phytobenthos Com	Agriculture - Livestock	Morphology
			Agriculture and rural land management	Not applicable
Probable	Probable		Probable	
Diffuse source	Livestock	Phosphate	Agriculture - Livestock	
			Agriculture and rural land management	
Probable	Probable		Probable	
Diffuse source	Poor nutrient management	Phosphate	Agriculture - Arable	
			Agriculture and rural land management	
Probable	Probable		Probable	
Flow	Groundwater abstraction	Hydrological Regime		
			Agriculture and rural land management	
Suspected	Suspected		Suspected	
Flow	Groundwater abstraction	Hydrological Regime	Not applicable	
			Water Industry	
Suspected	Suspected		Suspected	
Natural	Barriers - ecological discontinuity	Fish	Not applicable	Morphology
			Not applicable	Not applicable
Probable	Probable		Not applicable	

20 December 2018 11:30:43

Ore

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Physical modification	Urbanisation - urban development	Fish	Local authorities	Morphology
			Local Government	Not applicable
Probable	Probable		Probable	
Physical modification	Land drainage	Macrophytes and Phytobenthos Com	Agriculture - Arable	Morphology
			Agriculture and rural land management	Not applicable
Probable	Probable		Probable	
Point source	Sewage discharge (continuous)	Phosphate	Not applicable	
			Water Industry	
Confirmed	Confirmed		Confirmed	
Point source	Sewage discharge (intermittent)	Phosphate	Waste water treatment	
			Water Industry	
Probable	Probable		Suspected	

—Waterbody Level Measure Actions

CPS Action ID	Title	Measure Aim	Easting/Northing	Action Status / EA Team
14083	Generic action - Field &	1. To control or manage diffuse source inputs		New
	Crop - arable soils	2. Reduce diffuse pollution at source		
		3. Field & Crop - Arable soils		AN Eastern, Integrated Environment Planning
14082	Generic Action for Surface	1. To control or manage diffuse source inputs		New
	Run-off and Drainage	2. Reduce diffuse pollution pathways (i.e. control entry to water environment)		
		3. Surface run-off & drainage management		AN Eastern, Integrated Environment Planning

20 December 2018 11:30:43

Ore

14085	Generic Increase in channel	1. To improve modified habitat	New
	morphological diversity	2. Improvement to condition of channel/bed and/or banks/shoreline	
		3. Increase in-channel morphological diversity	AN Eastern, Integrated Environment Planning
14077	Generic Point Source P	1. To control or manage point source inputs	New
	reduction	2. Mitigate/Remediate point source impacts on receptor	
		3. Install nutrient reduction	AN Eastern, Integrated Environment Planning
39236	Habitat improvement -	1. To improve modified habitat	Affordable
	ESufflk Catch. Partnshp project to reduce impact of structures on water course	2. Improvement to condition of channel/bed and/or banks/shoreline	
		3. Improvements to longitudinal connectivity	Environment Programme
19187	WB - Field & Crop - arable	1. To control or manage diffuse source inputs	New
	soils	2. Reduce diffuse pollution at source	
		3. Field & Crop - Arable soils	AN Eastern, EM Land & Water
19186	WB - Surface Run-off and	1. To control or manage diffuse source inputs	New
	Drainage	2. Reduce diffuse pollution pathways (i.e. control entry to water environment)	
		3. Surface run-off & drainage management	AN Eastern, EM Land & Water

20 December 2018 11:30:43

Ore

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

14268	WB Increase in channel	1. To improve modified habitat	New
	morphological diversity	2. Improvement to condition of channel/bed and/or banks/shoreline	
		3. Increase in-channel morphological diversity	AN Eastern, Asset Performance
19188	WB Specific Point Source	1. To control or manage point source inputs	New
	Phosphorus Improvement	2. Mitigate/Remediate point source impacts on receptor	
		3. Install nutrient reduction	AN Eastern, Integrated Environment Planning

—Wider Area Measures Actions

20 December 2018 11:30:43

Ore

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

┌ Mitigation Measures (if applicable) ——

► Monitoring Sites —

Site ID	Site Name	Site Type	Site Waterbody Link	Easting	sting Northing Elements Monitored			
54892	MARLESFORD BRIDGE	BIOSYS	Site in water body	632700	257700	River Invertebrates C1, River Macrophytes C1, River diatoms (Phytobenthos) C1		

Classifications

Invertebrates Good

20 December 2018 11:30:43

Ore

54893	BEVERSHAM BRIDGE	BIOSYS	Site in water body	635800	258300	River Invertebrates C1, River Macrophytes C1, River diatoms (Phytobenthos) C1
Classifications						

20 December 2018 11:30:43

Ore

620	ALDE & ORE CATCHMENT/RIVER ORE (HEADWATERS)/U/S	NFPD	Site in water body	628400	264000	River Fish C1	
Classifications							
Barbel	Inf	o					
Bleak	Inf	o					
Bream	Inf	o					
Bullhead	Inf	o					
Carp	Inf	o					
Chub	Inf	o					
Dace	Inf	o					
Eel	Inf	o					
Fish	Po	or					
Grayling	Inf	o					
Gudgeon	Inf	o					
Lamprey	Inf	o					
Minnow	Inf	o					
Perch	Inf	o					
Pike	Inf	o					
Roach	Inf	o					
Rudd	Inf	o					
Ruffe	Inf	o					
Salmon	Inf	o					
Spined loach	Inf	o					
Stickleback	Inf	o					
Stone loach	Inf	o					
Tench	Inf	o					
Trout	Inf	o					

20 December 2018 11:30:44

Ore

521	ALDE & ORE CATCHMENT/RIVER ORE (HEADWATERS)/D/S	NFPD	Site in water body	628400	263200	River Fish C1	
Classifications							
Barbel	Inf	o					
Bleak	Inf	o					
Bream	Inf	o					
Bullhead	Inf	o					
Carp	Inf	o					
Chub	Inf	o					
Dace	Inf	o					
Eel	Inf	o					
Fish	Po	or					
Grayling	Inf	o					
Gudgeon	Inf	o					
Lamprey	Inf	o					
Minnow	Inf	o					
Perch	Inf	o					
Pike	Inf	o					
Roach	Inf	o					
Rudd	Inf	o					
Ruffe	Inf	o					
Salmon	Inf	o					
Spined loach	Inf	o					
Stickleback	Inf	o					
Stone loach	Inf	o					
Tench	Inf	o					
Trout	Inf	o					

20 December 2018 11:30:44

Ore

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change Site in water body River Macrophytes C1, River Invertebrates C1, River diatoms (Phytobenthos) 160106 U/S BEVERSHAM BRIDGE BIOSYS 635890 258170 MACROPHYTE SURVEY SITE Classifications Macrophytes Sub Element Moderate **ORE020** Unknown 628905 261568 River Phys-Chem C1, River Chemicals C1 R.ORE BROADWATER WIMS **BRIDGE** Classifications Ammonia (Phys-Chem) High Dissolved oxygen Good pH Lower High pH Upper High Phosphate Bad Temperature High

20 December 2018 11:30:44

Ore

ORE025	DITCH D/S PARHAM WTV	V WIMS	Unknown	631559	260012	
Classifications						
ORE030	R.ORE MARLESFORD BRIDGE	WIMS	Unknown	632717	257739 River Phys-Chem C1, River Chemic	cals C1
Classifications						
Ammonia (Phys-Ch		ligh				
Dissolved oxygen		Good				
pH Lower		ligh				
pH Upper		ligh				
Phosphate	F	oor				
Temperature	H	ligh				

20 December 2018 11:30:45

Ore

ORE040	R.ORE BEVERSHAM BRIDGE WIMS	Unknown	635943	258203	River Phys-Chem C1, River Chemicals C1
Classifications					
Ammonia (Phys-Che	em) High				
Dissolved oxygen	Good				
pH Lower	High				
pH Upper	High				
Phosphate	Poor				
Temperature	High				

A16 Suffolk (GB650503520002)

edfenergy.com

20 December 2018 11:31:48

Suffolk

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

WATERBODY ID	GB650503520002	CYCLE / LATEST V	Cycle 2 2		Geographical Boundaries				
TYPE	Coastal	DESIGNATION	Heavily Modified		EA AREA	Essex Norfolk and Suffolk			
LENGTH (km)		EASTING	646705		RBD	Anglian			
AREA (km2)		NORTHING			MAN CATCHMENT	Anglian TraC			
. ,			252695		OP CATCHMENT	Suffolk TraC			
Alkalinity		CATCHMENT AREA	\ (Ha)						

Bathing Water	Nitrates	Safeguard	Shellfish Water	Freshwater	Habitats and	Drinking Water	Conservation of
Directive	Directive	Zone	Directive	Fish Directive	Species Directive	Protected Area	Wild Birds Directive
YES	YES	NO	NO	NO	YES	NO	YES

Classifications Specific Year Overall Ecological Chemical MMA Phytoplankton Invertebrates Fish Seagrass Saltmarsh Flucoid Opportunistic Rocky Shore Dissolved DIN Hydrological **Blooms** Extent Macroalgae Macroalgae Oxygen Regime **Pollutants** 2013 Moderate Moderate Good Good Good Moderate High High 2014 Moderate Moderate Good Good Good High Moderate High Moderate Moderate Good Good Good Moderate 2015 Moderate Moderate Good Good Good Moderate 2016 High

Note: DNSG = 'Does Not Support Good', DNRA = 'Does Not Require Assessment'

20 December 2018 11:31:49

Suffolk

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

C Object	ctives a	and Pre	dicte	d Outco	mes —									
Overall	Ecological	Chemical	ММА	Phytoplankton Blooms	Invertebrates	Fish	Seagrass	Saltmarsh	Flucoid Extent	Macroalgae	Dissolved Oxygen	DIN	Hydrological Regime	Specific Pollutants
- Objective	9													
Moderate	Moderate	Good	Good	Good							Good	Moderate		Not assesse
- Objective	e Year													
2015	2015	2015	2015	2015							2015	2015		2015
2021 - Pred	dicted													
Moderate	Moderate	Good	Good	Good							High	Moderate		Not assesse
2027 - Pred	dicted													
Moderate	Moderate	Good	Good	Good							High	Moderate		Not assesse

Pressure Level Risk Elements At Risk Not Assessed Not At Risk Probably Not At Risk Eutrophication

20 December 2018 11:31:49

Suffolk

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Element Level

Risk	Elements
At Risk	Common cord-grass, Townsend's grass or ricegrass (Spartina anglica), Overall INNS pressure
Not Assessed	Benzo(a)pyrene, Copper, Di(2-ethylhexyl)phthalate (DEHP), Fluoranthene, Mercury, Nonylphenol, Polybrominateddiphenylether (PBDE), Tributyltin (TBT), Triclosan
Not At Risk	Australian swamp stonecrop (Crassula helmsii), Canadian pondweed and Nuttall's pondweeds (Elodea Canadensis and Elodea nuttallii), Colonial tunicate (non-native Didemnum spp.), Common carp (Cyprinus carpio), Curly water-thyme (Lagarosiphon major), Floating pennywort (Hydrocotyle ranunculoides), Freshwater amphipod (Dikerogammarus villosus), Giant hogweed (Heracleum mantegazzianum), Giant knotweed (Fallopia sachalensis), Himalayan balsam (Impatiens glandulifera), Japanese knotweed (Fallopia japonica), Japanese knotweed/ Giant knotweed hybrid (Fallopia x bohemica), Leathery sea squirt (Styela clava), Marine tubeworm (Ficopomatus enigmaticus), Mysid crustacean (Hemimysis anomola), North American signal crayfish (Pacifastacus leniusculus), Parrot's feather (Myriophyllum aquaticum), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Rhododendron (Rhododendron ponticum), Slipper limpet (Crepidula fornicata), Topmouth gudgeon (Pseudorasbora parva), Virile crayfish (Orconectes virilis), Water fern (Azolla filiculoides and Azolla caroliniana), Water primrose (Ludwigia grandiflora), Zebra
Probably Not At Risk	American oyster drill (Urosalpinx cinerea), Cadmium, Chinese mitten crab (Eriocheir sinensis), Goldfish (Carassius auratus), Lead, Nickel, Zinc

20 December 2018 11:31:50

Suffolk

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Firedsoils for	not acmeving dood -		
Significant Water Management Issue	Reason	Element	Sector/Business Category Pressures
Diffuse source	Livestock	Dissolved Inorganic Nitrogen	Agriculture - Livestock
			Agriculture and rural land management
Suspected	Suspected		Suspected
Diffuse source	Poor nutrient management	Dissolved Inorganic Nitrogen	Agriculture - Arable
			Agriculture and rural land management
Suspected	Suspected		Suspected
Point source	Sewage discharge (continuous)	Dissolved Inorganic Nitrogen	Waste water treatment
			Water Industry
Suspected	Suspected		Suspected

—Waterbody Level Measure Actions

CPS Action ID	Title	Measure Aim	Easting/Northing	Action Status / EA Team
30860	GEP MEASURES IN PLACE	1. Mitigation Measure		Completed (cost beneficial)
	AS AT GOOD	2.		
				AN Eastern, Catchment
		3.		Delivery Team

-Wider Area Measures Actions -

20 December 2018 11:31:50

Suffolk

20 December 2018 11:31:50

Suffolk

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

► Mitigation Measures (if applicable) ——

	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	•				
Designated	Working with physical form and	Structural	Operations and maintenance	Water	Habitat creation	
Hydromorph Use	function	modification	·	management	Navigation	Education
	13.Realign flood defence 12.Floodplain connectivity 11.Set-back embankments 10.Flood bunds 9.Alter culvert channel bed 8.Re-opening culverts 7.Bank rehabilitation 6.In-channel morph diversity 5.Preserve or restore habitats 4.Remove or soften hard bank 3.Re-engineer river 2.Remove obsolete structure 1.Modify channel	20.Changes to locks etc 19.Enhance ecology 18.Reduce fish entrainment 17.Fish pass flow releases 16.Fish passes 15.Flow manipulation 14.Modify structure	41.Water level management 40.Woody debris 39.Maintain channel bed/margins 38.Sediment management strategy 37.Retain habitats 36.Invasive species techniques 35.Vegetation control timing 34.Vegetation control 33.Selective vegetation control 32.Phased de-watering 31.Manage seasonal water levels 30.Manage artificial drawdown 29.Sediment management regime 28.Manage disposal site sel 26.Sediment management 27. Dredge disposal site sel 26.Sediment resuspension 23.Reduce sediment resuspension 23.Reduce impact of dredging 22.Dredging disposal strategy 21.Avoid the need to dred	47. Align and attenuate flo 46. Good downstream temperature 45. Good downstream DO levels 44. Flows to move sediment 43. Downstream flow regime 42. Access to feeder-streams	51.Boats in central track 50.Vessel Management 49.Modify vessel design 48.Indirect mitigation	56.Enhance ecology (recressors) 55.Recreation awareness 54.Educate landowners 53.Boat wash awareness 52.Invasive species awareness
Coast protection use	1 2 3 4 5 6 7 8 9 10 11 12 13	14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	42 43 44 45 46 47	48 49 50 51	52 53 54 55 56
	Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable	Not Applicable Not Applicable Not Applicable	Not Applicable		Not Applicable	
Flood protection use	1 2 3 4 5 6 7 8 9 10 11 12 13	14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	42 43 44 45 46 47	48 49 50 51	52 53 54 55 56
	Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable	Not Applicable Not Applicable Not Applicable	Not Applicable		Not Applicable	

20 December 2018 11:31:50

Suffolk

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

r Moni	toring Sites —		
Site ID	Site Name	Site Type	Site Waterbody Link

Site ID	Site Name	Site Type	Site Waterbody Link	Easting	Northing	Elements Monitored
157169	SUFFOLK NO.33 SUF001P	BIOSYS	Site in water body	657800	295400	

Classifications

157170	SUFFOLK NO.34 SUF002P	BIOSYS	Site in water body	657400	291200

Classifications

20 December 2018 11:31:50

Suffolk

157171	SUFFOLK NO.43B SUF003P	BIOSYS	Site in water body	647600	251700	
Classifications						
157172	SUFFOLK NO.46 SUF004P	BIOSYS	Site in water body	643700	246400	
15/1/2	SUFFULK NO.46 SUFUU4P	BIOSYS	Site in water body	643700	240400	
Classifications						

20 December 2018 11:31:51

Suffolk

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

157173	SUFFOLK NO.51 SUF005P	BIOSYS	Site in water body	635300	236600
Classifications					

Waveney & East Suffolk Chalk and Crag (GB40501G400600) **A17** edfenergy.com Building better energy together

20 December 2018 11:34:06

Waveney and East Suffolk Chalk & Crag

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

WATERBODY ID	GB40501G400600	CYCLE / LATEST VE	RSION	Cycle 2	2	Geographical Bound	laries
TYPE	Groundwater	DESIGNATION	No	ot Applicable		EA AREA	Essex Norfolk and Suffolk
LENGTH (km)		EASTING		628292		RBD	Anglian
AREA (km2)		NORTHING				MAN CATCHMENT	Anglian GW
		NORTHING		245384		OP CATCHMENT	Waveney and Suffolk East Chalk and Crag
Alkalinity		CATCHMENT AREA	A (Ha)				

Bathing Water	Nitrates	Safeguard	Shellfish Water	Freshwater	Habitats and	Drinking Water	Conservation of
Directive	Directive	Zone	Directive	Fish Directive	Species Directive	Protected Area	Wild Birds Directive
NO	YES	NO	NO	NO	NO	YES	NO

-Classifications -

Yea	Overall	Chemical	Quantitative	Trend Assessment	Supporting Elements (Groundwater)
2013	Poor	Poor	Poor	Upward	
2014	Poor	Poor	Poor	Upward	
2015	Poor	Poor	Poor	Upward	
2016	Poor	Poor	Poor	Upward	

Note: DNSG = 'Does Not Support Good', DNRA = 'Does Not Require Assessment'

20 December 2018 11:34:06

Waveney and East Suffolk Chalk & Crag

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Objectives and Predicted Outcomes

,					
Туре	Overall	Chemical	Quantitative	Trend Assessment	Supporting Elements (Groundwater)
- Objective	Poor	Poor	Good		
- Objective Year	2015	2015	2027		
2021 - Predicted	Poor	Poor	Poor		
2027 - Predicted	Poor	Poor	Good		

Risks

Pressure Level	
Risk	Elements
At Risk	
Not At Risk	
Probably At Risk	

20 December 2018 11:34:07

Waveney and East Suffolk Chalk & Crag

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Element Level

Risk	Elements
At Risk	Abstraction impact on saline intrusion, Abstraction impact on surface water, General chemical assessment, Impact on Drinking Water protected areas, Overall chemical assessment, Overall quantitative assessment, Saline intrusion, Trend assessment
Not At Risk	Impact on surface water chemistry and ecology
Probably At Risk	Abstraction impact on dependent terrestrial ecocsystems, Abstraction impact on water balance, Impact on dependent terrestrial ecosystems

20 December 2018 11:34:07

Waveney and East Suffolk Chalk & Crag

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Reasons for not achieving Good —————

Significant Water Management Issue	Reason	Element	Sector/Business Category	Pressures
Diffuse source	Livestock	Chemical Drinking Water Protected A	Agriculture - Livestock	
			Agriculture and rural land management	
Confirmed	Confirmed		Confirmed	
Diffuse source	Livestock	General Chemical Test	Agriculture - Livestock	
			Agriculture and rural land management	
Confirmed	Confirmed		Confirmed	
Diffuse source	Livestock	Trend Assessment	Agriculture - Livestock	
			Agriculture and rural land management	
Confirmed	Confirmed		Confirmed	
Flow	Groundwater abstraction	Quantitative Water Balance	Agriculture - Arable	
			Agriculture and rural land management	
Suspected	Suspected		Suspected	
Flow	Surface water abstraction	Quantitative Water Balance	Agriculture - Arable	
			Agriculture and rural land management	
Suspected	Suspected		Suspected	

—Waterbody Level Measure Actions

20 December 2018 11:34:07

Waveney and East Suffolk Chalk & Crag

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

-Wider Area Measures Actions -

20 December 2018 11:34:07

Waveney and East Suffolk Chalk & Crag

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Mitigation Measures (if applicable) —

Monitoring Sites

A18 Wenhaston Watercourse (GB105035046010)

edfenergy.com

Building better energy together

17 July 2019 14:07:47

Wenhaston Watercourse

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

WATERBODY ID	GB105035046010	CYCLE / LATEST VE	RSION	Cycle 2	2	Geographical Bound	laries
TYPE	River	DESIGNATION	Not [Designated A/HM	WB	EA AREA	Essex Norfolk and Suffolk
LENGTH (km)		EASTING		641351		RBD	Anglian
AREA (km2)		NORTHING		274353		MAN CATCHMENT	Suffolk East
				2/4353		OP CATCHMENT	Suffolk Coastal
Alkalinity		CATCHMENT AREA	(Ha)				

Bathing Water Directive	Nitrates Directive	Safeguard Zone	Shellfish Water Directive	Freshwater Fish Directive	Habitats and Species Directive	Drinking Water Protected Area	Conservation of Wild Birds Directive
NO	YES	NO	NO	NO	YES	NO	NO

-Classifications -

Yea	Overall	Ecological	Chemical	MMA	Invertebrates	Fish	Macrophytes and Phosphate Phytobenthos Combined	Ammonia	Dissolved Oxygen	рН	Hydrological Regime
2013	Good	Good	Good		Good						Sup Good
2014	Moderate	Moderate	Good		Moderate						Sup Good
2015	Moderate	Moderate	Good				Poor	High	Poor	High	Sup Good
2016	Moderate	Moderate	Good		Moderate		Poor	High	Bad	High	Sup Good

Note: DNSG = 'Does Not Support Good', DNRA = 'Does Not Require Assessment'

17 July 2019 14:07:47

Wenhaston Watercourse

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

-Objectives	and	Predicted	Outcomes
-------------	-----	------------------	----------

Lon	jectives	allu Pie	dicted C	utcom	C 3						
Туре	Overall	Ecological	Chemical	ММА	Invertebrates	Fish	Macrophytes and Phosphate Phytobenthos Combined	Ammonia	Dissolved Oxygen	рН	Hydrological Regime
- Obje	ctive										
	Moderate	Moderate	Good				Poor	Good	Poor	Good	Sup Good
- Obje	ctive Year										
	2015	2015	2015				2015	2015	2015	2015	2015
2021 -	Predicted										
	Moderate	Moderate	Good				Poor	High	Poor	High	Sup Good
2027 -	Predicted										
	Moderate	Moderate	Good				Poor	High	Poor	High	Sup Good

r Risks

Pressure Level

17 July 2019 14:07:48

Wenhaston Watercourse

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

Element Level

Risk	Elements
At Risk	Curly water-thyme (Lagarosiphon major), Floating pennywort (Hydrocotyle ranunculoides), Freshwater amphipod (Dikerogammarus villosus), North American signal crayfish (Pacifastacus leniusculus), Overall INNS pressure, Water primrose (Ludwigia grandiflora)
Not Assessed	Fluoranthene
Not At Risk	American oyster drill (Urosalpinx cinerea), Australian swamp stonecrop (Crassula helmsii), Colonial tunicate (non-native Didemnum spp.), Common cord-grass, Townsend's grass or ricegrass (Spartina anglica), Giant knotweed (Fallopia sachalensis), Leathery sea squirt (Styela clava), Marine tubeworm (Ficopomatus enigmaticus), Parrot's feather (Myriophyllum aquaticum), Slipper limpet (Crepidula fornicata)
Probably At Risk	Benzo(a)pyrene, Curly water-thyme (Lagarosiphon major), Himalayan balsam (Impatiens glandulifera), Mysid crustacean (Hemimysis anomola), Polybrominateddiphenylether (PBDE), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Topmouth gudgeon (Pseudorasbora parva), Virile crayfish (Orconectes virilis), Water fern (Azolla filiculoides and Azolla caroliniana), Water primrose (Ludwigia grandiflora)
Probably Not At Risk	Australian swamp stonecrop (Crassula helmsii), Cadmium, Canadian pondweed and Nuttall's pondweeds (Elodea Canadensis and Elodea nuttallii), Chinese mitten crab (Eriocheir sinensis), Common carp (Cyprinus carpio), Copper, Di(2-ethylhexyl)phthalate (DEHP), Giant hogweed (Heracleum mantegazzianum), Goldfish (Carassius auratus), Japanese knotweed (Fallopia japonica), Japanese knotweed/ Giant knotweed hybrid (Fallopia x bohemica), Lead, Mysid crustacean (Hemimysis anomola), Nickel, Nonylphenol, Parrot's feather (Myriophyllum aquaticum), Ponto Caspian shrimp (Dikerogammarus haemobaphes), Red swamp crayfish (Procambarus clarkii), Rhododendron (Rhododendron ponticum), Tributyltin (TBT), Triclosan, Zebra mussel (Dreissena polymorpha), Zinc

17 July 2019 14:07:48

Wenhaston Watercourse

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

	-			-
Significant Water Management Issue	Reason	Element	Sector/Business Category	Pressures
Diffuse source	Poor Livestock Management	Invertebrates	Agriculture - Livestock	Dissolved oxygen
			Agriculture and rural land manageme	nt Not applicable
Suspected	Suspected		Suspected	
Diffuse source	Poor nutrient management	Invertebrates	Agriculture - Arable	Dissolved oxygen
			Agriculture and rural land manageme	nt Not applicable
Suspected	Suspected		Suspected	
Diffuse source	Poor Livestock Management	Phosphate	Agriculture - Livestock	
			Agriculture and rural land manageme	nt
Confirmed	Confirmed		Confirmed	
Diffuse source	Poor nutrient management	Phosphate	Agriculture - Arable	
			Agriculture and rural land manageme	nt
Confirmed	Confirmed		Confirmed	
Point source	Sewage discharge (continuous)	Dissolved oxygen	Not applicable	
			Water Industry	
Probable	Probable		Probable	

—Waterbody Level Measure Actions

CPS Action ID	Title	Measure Aim	Easting/Northing	Action Status / EA Team
14083	Generic action - Field &	1. To control or manage diffuse source inputs		New
	Crop - arable soils	2. Reduce diffuse pollution at source		
		3. Field & Crop - Arable soils		AN Eastern, Integrated Environment Planning

17 July 2019 14:07:48

Wenhaston Watercourse

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

L4090	Generic action - Field and	1. To control or manage diffuse source inputs	New
	Crop - Livestock	2. Reduce diffuse pollution at source	
		3. Field & Crop - Livestock	AN Eastern, Integrated Environment Planning
.4085	Generic Increase in channel	1. To improve modified habitat	New
	morphological diversity	2. Improvement to condition of channel/bed and/or banks/shoreline	
		3. Increase in-channel morphological diversity	AN Eastern, Integrated Environment Planning
L4077	Generic Point Source P	1. To control or manage point source inputs	New
	reduction	2. Mitigate/Remediate point source impacts on receptor	
		3. Install nutrient reduction	AN Eastern, Integrated Environment Planning
14088	Generic Tree Planting	1. To improve modified habitat	New
		2. Vegetation management	
		3. Plant new vegetation	AN Eastern, Integrated Environment Planning
14269	Tree Planting	1. To improve modified habitat	New
		2. Vegetation management	
		3. Plant new vegetation	AN Eastern, Catchment Delivery Team

17 July 2019 14:07:48

Wenhaston Watercourse

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

19189	WB - Field & Crop - arable	1. To control or manage diffuse source inputs	New
	soils	2. Reduce diffuse pollution at source	
		3. Field & Crop - Arable soils	AN Eastern, EM Land & Water
19190	WB - Field & Crop - Livestock	1. To control or manage diffuse source inputs	New
		2. Reduce diffuse pollution at source	
		3. Field & Crop - Livestock	AN Eastern, EM Land & Water
14270	WB Increase in channel	1. To improve modified habitat	Affordable
	morphological diversity	2. Improvement to condition of channel/bed and/or banks/shoreline	
		3. Increase in-channel morphological diversity	Integrated Environment Planning
14144	WB Specific Point Source	1. To control or manage point source inputs	New
	Phosphorus Improvement	2. Mitigate/Remediate point source impacts on receptor	
		3. Install nutrient reduction	AN Eastern, Integrated Environment Planning

—Wider Area Measures Actions

17 July 2019 14:07:48

Wenhaston Watercourse

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

17 July 2019 14:07:48

Wenhaston Watercourse

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

► Mitigation Measures (if applicable) ———

Monitoring Sites —

Site ID	Site Name	Site Type	Site Waterbody Link	Easting	Northing	Elements Monitored
54792	BLACKHEATH BRIDGE	BIOSYS	Site in water body	643300	274600	River Invertebrates C1, River diatoms (Phytobenthos) C1, River Macrophytes C1

Classifications

17 July 2019 14:07:49

Wenhaston Watercourse

Please be aware that data is based on the best available information as of the date shown above, and may be subject to change

	WENHASTON W/C. BLACKHEATH BR.(R.BL	WIMS YTH)	Unknown	643260	274619	River Phys-Chem C1, River Chemicals C1
assifications						
Ammonia (Phys-Che	em)	High				
Dissolved oxygen		Bad				
pH Lower		High				
pH Upper		High				
Phosphate		Poor				
Temperature		High				