

The Sizewell C Project

6.8 Volume 7 Yoxford Roundabout and Other Highway Improvements Chapter 4 Noise and Vibration Appendices 4A - 4B

Revision:1.0Applicable Regulation:Regulation 5(2)(a)PINS Reference Number:EN010012

May 2020

Planning Act 2008 Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009

VOLUME 7, CHAPTER 4, APPENDIX 4A: ROAD TRAFFIC FLOW DATA

edfenergy.com

NOT PROTECTIVELY MARKED

Volume 7 Appendix 4A Road Traffic Flow Data |

Contents

1. Road Traffic Flow Data	1
---------------------------	---

Tables

Table 1:1: 2028 Peak Construction – 18 hour flow data.	1
Table 1:2: 2034 Operational Phase – 18 hour flow data	1
Table 1:3: Night time (8 hour) flow data breakdown.	2

Plates

None provided.

Figures

None provided.

Building **better energy** together

edfenergy.com

1. Road Traffic Flow Data

Table 1:1: 2028 Peak Construction – 18 hour flow data.

Link Number	18 hour flows - 2028	2028 Reference Case		2028 T Day Consti	Typical Peak ruction	2028 E Day Consti	Speed (km/h)		
	Location	Cars.	HDVs.	Cars.	HDVs.	Cars.	HDVs.		
13a	A12 (N)	14680	887	15249	1219	15189	1271	48	
13b	B1122	4007	173	3980	458	3984	510	48	
13c	A12 (middle)	15175	840	15171	822	15121	824	48	
13d	A1120	4018	184	4565	188	4565	188	48	
13e	A12 (S)	11747	704	11164	688	11116	688	48	

Table 1:2: 2034 Operational Phase – 18 hour flow data.

Link Number	18 hour flows - 2034	2034 Refer	ence Case	2034 Ope Pha	erational se	Speed
	Location	Cars.	HDVs.	Cars.	HDVs.	(km/h)
13a	A12 (N)	15543	901	15624	906	48
13b	B1122	4277	177	3943	123	48
13c	A12 (middle)	16128	859	15382	842	48
13d	A1120	4426	188	4469	190	48
13e	A12 (S)	12453	720	11604	702	48

edfenergy.com

Table 1:3: Night time (8 hour) flow data breakdown.

13a	A12 (N)	Ref Case 2028		A12 (N) Ref Cas 2028		2028 Constru Constru Integr (Typi	Peak uction ated ical)	2028 I Constru Integr (Busi	Peak uction ated iest)	Ref C 200	ase 34	203 Operat Pha	34 tional Ise
	Hour	HDVs.	Cars.	HDVs.	Cars.	HDVs.	Cars.	HDVs.	Cars.	HDVs.	Cars.		
	0000-0100	3	33	2	63	2	63	3	35	3	35		
	0100-0200	2	22	1	31	1	31	2	23	2	23		
	0200-0300	2	20	1	20	1	20	2	21	2	22		
	0300-0400	2	25	2	25	2	25	2	26	2	27		
	0400-0500	4	50	3	55	3	54	4	53	4	53		
	0500-0600	12	154	20	188	19	187	12	162	12	163		
	0600-0700	64	521	85	602	86	603	65	542	65	551		
	2300-0000	7	86	29	93	28	93	7	91	7	91		

13b	B1122	Ref Case 2028		Ref Case 2028		2028 Peak Construction Integrated (Typical)		2028 Peak Construction Integrated (Busiest)		Ref Case 2034		2034 Operational Phase	
	Hour	HDVs.	Cars.	HDVs.	Cars.	HDVs.	Cars.	HDVs.	Cars.	HDVs.	Cars.		
	0000-0100	0	9	0	18	0	18	0	10	0	9		
	0100-0200	0	6	0	8	0	8	0	6	0	6		
	0200-0300	0	6	0	5	0	5	0	6	0	5		
	0300-0400	0	7	0	6	0	6	0	7	0	7		
	0400-0500	1	14	0	14	0	14	1	15	0	13		
	0500-0600	2	42	10	50	9	50	2	45	1	41		
	0600-0700	7	250	31	257	31	257	7	256	7	252		
	2300-0000	1	23	21	24	21	24	1	25	1	23		

13c	A12 (middle)	Ref Case 2028		2028 Peak Construction Integrated (Typical)		2028 Peak Construction Integrated (Busiest)		Ref Case 2034		2034 Operational Phase	
	Hour	HDVs.	Cars.	HDVs.	Cars.	HDVs.	Cars.	HDVs.	Cars.	HDVs.	Cars.
	0000-0100	3	31	2	57	2	57	3	33	3	32
	0100-0200	2	20	2	27	2	27	2	22	2	21
	0200-0300	2	19	2	18	2	18	2	20	2	19
	0300-0400	2	24	2	22	2	22	2	25	2	24

Building better energy together

edfenergy.com

13c	A12 (middle)	Ref Case 2028		2028 Peak Construction Integrated (Typical)		2028 Peak Construction Integrated (Busiest)		Ref Case 2034		2034 Operational Phase	
	0400-0500	4	47	4	49	4	48	4	50	4	48
	0500-0600	12	145	11	168	11	168	12	154	12	147
	0600-0700	66	435	65	479	65	480	68	456	67	440
	2300-0000	7	81	6	83	6	83	7	86	7	82

13d	A1120	Ref Case 2028		Ref Case 2028 Peak 2028 Construction Integrated (Typical)		2028 Peak Construction Integrated (Busiest)		Ref Case 2034		2034 Operational Phase	
	Hour	HDVs.	Cars.	HDVs.	Cars.	HDVs.	Cars.	HDVs.	Cars.	HDVs.	Cars.
	0000-0100	0	8	0	22	0	22	0	8	0	8
	0100-0200	0	5	0	9	0	9	0	5	0	5
	0200-0300	0	5	0	5	0	5	0	5	0	5
	0300-0400	0	6	0	6	0	6	0	6	0	6
	0400-0500	0	12	1	14	1	14	1	13	1	13
	0500-0600	2	36	2	54	2	54	2	39	2	39
	0600-0700	7	112	7	150	7	150	7	117	7	117
	2300-0000	1	20	1	24	1	24	1	22	1	22

13e	A12 (S)	Ref Case 2028		A12 (S) Ref Case 2028 Peak 2028 Integrated (Typical)		Peak uction rated ical)	2028 Peak Construction Integrated (Busiest)		Ref Case 2034		2034 Operational Phase	
	Hour	HDVs.	Cars.	HDVs.	Cars.	HDVs.	Cars.	HDVs.	Cars.	HDVs.	Cars.	
	0000-0100	2	27	2	38	2	38	2	28	2	26	
	0100-0200	1	17	1	20	1	20	1	18	1	17	
	0200-0300	1	16	1	15	1	15	1	17	1	16	
	0300-0400	2	20	1	19	1	19	2	21	2	20	
	0400-0500	3	40	3	39	3	39	3	43	3	40	
	0500-0600	9	123	9	130	9	129	10	130	9	122	
	0600-0700	54	363	53	373	53	374	57	383	55	361	
	2300-0000	5	69	5	68	5	67	5	73	5	68	

Building **better energy** together

edfenergy.com

VOLUME 7, CHAPTER 4, APPENDIX 4B: CONSTRUCTION ASSUMPTIONS

NOT PROTECTIVELY MARKED

Volume 7 Appendix 4B Construction assumptions |

Contents

1.	Construction assumptions	1
1.2	Construction noise calculations	3

Tables

Table 1.1: Assumed activities and noise sources for each phase 1	Í
Table 1.2: Construction noise calculations for Yoxford roundabout	1
Table 1.3: Construction noise calculations for A12 / A144 junction highway improvement 10)

Plates

None provided.

Figures

None provided.

1. Construction assumptions

1.1.1 **Table 1.1** provides details on the assumed construction activities, source levels and on times for works at both Yoxford roundabout and the highway improvement at the A12 / A144 junction (Bramfield).

Activity			Key noise sources	Sound power level, dB, L _{WA}	On time, %
Site set	up	and	Lorry loader crane HIAB	104	25
Clearance			Diesel / petrol generators	97	100
			360 Wheeled / tracked excavators	107	70
			180 Backhoe loaders	107	50
			Dump trucks	106	70
			Telehandlers	107	50
			Chainsaws and brush-cutters	115	17
			Wood chippers	121	17
			Road sweeper / gully sucker	107	50
			Vibratory tamping rollers	111	50
Earthworks			Tracked dozers	108	50
			Wheeled loading shovels	107	50
			360 Tracked excavators	110	70
			Motor graders / scrapers	108	50
			Articulated haulers/dump trucks	108	50
			Vibratory tamping rollers	111	50
			Road tipper waggons	107	50
Drainage			Lorry loader crane HIAB	104	25
			360 Tracked excavators	110	70
			180 Backhoe loaders	107	50
			Dump trucks	106	70
			Wheeled loading shovels	107	50
			Concrete mixer trucks	107	50
			Trench rammers	91	25
Pavements	_		Cold planer/milling machines	104	70
			Motor graders / dozers	108	50
			Wheeled loading shovels	107	50
			Dump trucks	108	50

	Table 1.1: Assum	ned activities	and noise	sources fo	or each phase
--	------------------	----------------	-----------	------------	---------------

Building better energy together

edfenergy.com

Activity	Key noise sources	Sound power level, dB, L _{WA}	On time, %
	360 Tracked excavators	110	70
	180 Backhoe loaders	107	50
	Asphalt pavers (and tipper lorries)	109	70
	Concrete mixer trucks	107	70
	Compressors and pneumatic hand tools	118	17
	Deadweight / vibrating rollers	111	50
	Vibrating plate compactors	110	25
	Road sweeper	107	70
Kerbs, Footways ar	d Lorry loader crane HIAB	104	25
Paved Areas	Telehandlers	107	50
	Cold planer/milling machines	104	70
	Concrete mixer trucks	107	70
	Compressors and pneumatic hand tools	118	17
	Mini asphalt pavers (and tipper lorries)	109	70
	Deadweight / vibrating rollers	111	50
	Vibrating plate compactors	110	25
Bridges and Civ	il Lorry loader crane HIAB	104	25
Structures	Telehandlers	107	50
	360 Tracked excavators	110	70
	Concrete mixer trucks	107	70
	Concrete pumps	108	50
	Concrete compaction plant	96	25
	Dump trucks	108	50
	Deadweight / vibrating rollers	111	50
	Compressors and pneumatic hand tools	118	17
	Mobile all terrain cranes	101	50
	Mobile elevating work platforms - vehicle mounted or self-propelled	104	25
	Continuous flight augering (CFA) / bored piles	108	50
Road Restraints	Lorry loader crane HIAB	104	25
	Telehandler	107	50
	Concrete mixer trucks	107	70
	Mini excavator	100	50

Building better energy together

edfenergy.com

Activity	Key noise sources	Sound power level, dB, L _{WA}	On time, %
	180 Backhoe loaders	107	50
Fencing	Lorry loader crane HIAB	104	25
	Telehandler	107	50
	180 Backhoe loaders	107	50
	Concrete mixer trucks	107	70
Traffic signs	Lorry loader crane HIAB	104	25
	Telehandler	107	50
	180 Backhoe loaders	107	50
	Mini excavator	100	50
	Mobile elevating work platforms - vehicle mounted or self-propelled	104	25
Road Lighting	Lorry loader crane HIAB	104	25
	Mini excavator	100	50
	Small crane / backhoe	104	25
	Telehandler	107	50
	Mobile elevating work platforms - vehicle mounted or self-propelled	104	25

1.2 Construction noise calculations

a) Yoxford roundabout

- 1.2.2 The construction of the Yoxford Roundabout has been divided into two phases comprising preparatory works and main phase construction work. Each phase would contain the following activities:
 - Preparatory works: site set up and clearance, including trees and hedgerows, the erection of temporary fencing on land required for construction and the creation of alternative access arrangements and rights of way, setting up of the temporary contractor compounds including security, welfare facilities, and temporary utilities; and
 - Construction Works: earthworks, road construction and surfacing, utility and drainage installation, construction of pavements, kerbs, footways and paved areas, installation of permanent fencing, road signs and marking, and road lighting, permanent connections to existing road networks, and landscaping.

Building better energy together

edfenergy.com

- **1.2.3 Table 1.2** shows details of the calculations carried out to predict noise levels during construction for the preparation and main construction phases.
- 1.2.4 The predictions in **Table 1.2** show sound levels forecast to arise during the use of chainsaws/chipper and chainsaw for and during vegetation clearance and during the formation of the Temporary Contractors compound (TCC) using plant such as bulldozer and roller.
- 1.2.5 Over the construction period, each receptor location would experience noise from Earth-moving, Drainage and Pavements. Pavements are predicted to produce the highest sound emission of these activities. The main phase construction work has therefore been calculated for the noisiest of the main phase works located at the notional centre of the works red-line site boundary, being approximately 30m due south of the proposed new roundabout centre.
- 1.2.6 Predictions have been made of levels during the construction of contractor compound at the notional centre of the compound. These are labelled as "edge" and "centre" in the **Table 1.2**, respectively.
- 1.2.7 Notations. 'r' is radial distance, source to receptor. A_r is attenuation for radial distance. A_g, A_a, A_{met}, A_b are attenuation for ground; air; meteorological effects and barrier, respectively.
- 1.2.8 The source values in **Table 1.2** have been derived from activities, source levels and on times shown in **Table 1.1**. For simplicity, these have been expressed as a single activity level at a reference distance of 40m.

Receptor 9 Sunnypatch	Vegetation clearance	тсс	Main construction phase
Operations	Saw/chip	Formation	Pavements
Source Value: L _{Aeq,t} @ 40m, dB	70/74	74	79
r, typical, m	40m	60m	200m
Ar	0	4	14
$A_g + A_a + A_{met}$ or $A_b + A_a + A_{met}$			
Predicted LAeq,T, dB	70/74	70	65
Receptor 14 The Old Barn	Vegetation clearance	тсс	Main construction phase
Operations	Saw/chip	Formation	Pavements
Source Value: L _{Aeq,t} @ 40m, dB	70/74	74	79
r, typical, m	65m	100m	240m
Ar	4	8	16

Table 1.2: Construction noise calculations for Yoxford roundabout

Building better energy together

edfenergy.com

$A_g + A_a + A_{met}$ or $A_b + A_a + A_{met}$			
Predicted LAeq T, dB	66/70	66	63
Receptor 15 Rookery Cottages	Vegetation	ICC	Main
	Clearance		phase
Operations	Saw/chip	Formation	Pavements
Source Value: L _{Aeq,t} @ 40m, dB	70/74	74	79
r, typical, m	70m	100m	220m
Ar	5	8	15
$A_a + A_a + A_{mat}$ or $A_b + A_a + A_{mat}$		$A_g + A_a + A_{met}$ or $A_b +$	1
	05/00	A _a + A _{met}	
Predicted LAeq, T, dB	65/69	65	63
Receptor 8 The Cottage	vegetation	TCC	Main
	cicaraneo		phase
Operations	Saw/chip	Formation	Pavements
Source Value: LAeq,t @ 40m, dB	70/74	74	79
r, typical, m	30m	60m	160m
Ar	3	4	12
Ag + Aa + Amet Or Ab + Aa + Amet			
Predicted LAeq, T, dB	73/77	70	67
Receptor 7 Rookery Lodge	Vegetation	тсс	Main
	clearance		construction
Operations	Saw/chip	Formation	Pavements
Source Value: Leegt @ 40m, dB	70/74	74	79
r. typical. m	50m	210m	80m
Ar	2	14	6
A _a + A _a + A _{met} or A _b + A _a + A _{met}			
Predicted LAeg. T. dB	68/72	60	73
······			
Receptor 6 Pinn's Piece	Vegetation		Main
	clearance		construction phase
Operations	Operations	Formation	Pavements
Source Value: L _{Aeq,t} @ 40m, dB	70/74	74	79

Building better energy together

edfenergy.com

Ar	5	15	8
$A_g + A_a + A_{met}$ or $A_b + A_a + A_{met}$			
Predicted LAeq, T, dB	65/69	59	71
Receptor 5 Sans Souci	Vegetation	TCC	Main
	clearance		construction
	Sow/ohip	Formation	phase
Operations		Formation	Pavements
Source Value: L _{Aeq,t} @ 40m, dB	70/74	74	19
r, typical, m	90m	250m	120m
Ar	1	16	10
$A_g + A_a + A_{met}$ or $A_b + A_a + A_{met}$			
Predicted L _{Aeq, T} , dB	63/67	58	69
Receptor 4 White House / White	Vegetation	тсс	Main
Louge	clearance		phase
Operations	Saw/chip	Formation	Pavements
Source Value: L _{Aea.t} @ 40m, dB	70/74	74	79
r. typical, m	120m	290m	150m
Ar	10	17	11
$A_{a} + A_{a} + A_{met}$ or $A_{b} + A_{a} + A_{met}$			
Predicted LAeg T. dB	60/64	57	68
Receptor 13 White Hse Cotts &	Vegetation	TCC	Main
Medway	clearance		construction
	Souv/ohin	Formation	phase
Operations		Formation	Pavements
Source Value: L _{Aeq,t} @ 40m, dB	10/14	74	19
r, typical, m	160m	320m	190m
Ar	12	18	14
Ag + Aa + Amet Or Ab + Aa + Amet			
Predicted L _{Aeq, T} , dB	58/62	56	65
Receptors 12 Holly House and 11	Vegetation	TCC	Main
	Clearance		phase
Operations	Saw/chip	Formation	Pavements
Source Value: L _{Aeq,t} @ 40m, dB	70/74	74	79
r, typical, m	180m	350m	210m
Ar	13	19	14
$A_g + A_a + A_{met}$ or $A_b + A_a + A_{met}$			
Predicted L _{Aeq, T} , dB	57/61	55	65

Building **better energy** together

edfenergy.com

Receptor 16 Wormley Bury, Rosewood, Southern	Vegetation clearance	тсс	Main construction phase
Operations	Saw/chip	Formation	Pavements
Source Value: L _{Aeq,t} @ 40m, dB	70/74	74	79
r, typical, m	200m	370m	230m
Ar	14	19	15
A _g + A _a + A _{met} or A _b + A _a + A _{met}	•		
Predicted LAeq T, dB	56/60	55	64
Receptor 17 King's Head, PH	Vegetation clearance	тсс	Main construction phase
Operations	Saw/chip	Formation	Pavements
Source Value: L _{Aeq,t} @ 40m, dB	70/74	74	79
r, typical, m	220m	400m	260m
Ar	15	20	16
A _g + A _a + A _{met} or A _b + A _a + A _{met}	•		
Predicted L _{Aeq, T} , dB	55/59	54	63
Receptor 18 Frith House	Vegetation clearance	тсс	Main construction phase
Operations	Saw/chip	Formation	Pavements
Source Value: L _{Aeq,t} @ 40m, dB	70/74	74	79
r, typical, m	150m	300m	200m
Ar	11	18	14
A _g + A _a + A _{met} or A _b + A _a + A _{met}		1	1
Predicted LAeq T, dB	59/63	55	64
Receptor 19 Pinns Cottage	Vegetation clearance	тсс	Main construction phase
Operations	Saw/chip	Formation	Pavements
Source Value: L _{Aeq,t} @ 40m, dB	70/74	74	79
r, typical, m	200m	350m	250m
Ar	14	19	16
$A_g + A_a + A_{met}$ or $A_b + A_a + A_{met}$	•	1	1
Predicted L _{Aeq, T} , dB	56/60	54	62
Receptor 20 Garden Cottage and Clock House	Vegetation clearance	тсс	Main construction phase
Operations	Saw/chip	Formation	Pavements
Source Value: LAeq,t @ 40m, dB	70/74	74	79
r, typical, m	320m	350m	450m

Building better energy together

edfenergy.com

Ar	18	19	21
A _g + A _a + A _{met} or A _b + A _a + A _{met}	3	3	3
Predicted L _{Aeq, T} , dB	49/53	52	55
Receptor 21 Cavan Cottage	Vegetation clearance	тсс	Main construction phase
Operations	Saw/chip	Formation	Pavements
Source Value: L _{Aeq,t} @ 40m, dB	70/74	74	79
r, typical, m	220m	400m	250m
Ar	15	20	16
$A_g + A_a + A_{met}$ or $A_b + A_a + A_{met}$		2	1
Predicted L _{Aeq, T} , dB	55/59	52	62
Receptor 10 The Limes	Vegetation clearance	тсс	Main construction phase
Operations	Saw/chip	Formation	Pavements
Source Value: LAeq,t @ 40m, dB	70/74	74	79
r, typical, m	180m	350m	200m
Ar	13	19	14
$A_g + A_a + A_{met}$ or $A_b + A_a + A_{met}$		1	
Predicted LAeq, T, dB	57/61	54	65
Receptor 1 Woodland Cottages	Vegetation clearance	тсс	Main construction phase
Operations	Saw/chip	Formation	Pavements
Source Value: LAeq,t @ 40m, dB	70/74	74	79
r, typical, m	120m	300m	150m
Ar	10	18	11
A _g + A _a + A _{met} or A _b + A _a + A _{met}		1	
Predicted L _{Aeq, T} , dB	60/64	55	68
Receptor 2 Satis House (hotel)	Vegetation clearance	тсс	Main construction phase
Operations	Saw/chip	Formation	Pavements
Source Value: LAeq,t @ 40m, dB	70/74	74	79
r, typical, m	60m	250m	100m
Ar	4	16	8
$A_g + A_a + A_{met}$ or $A_b + A_a + A_{met}$			
Predicted LAeq, T, dB	66/70		
	00/70	59	71

Building better energy together

edfenergy.com

Receptor 3 Satis Coach House	Vegetation clearance	тсс	Main construction phase
Operations	Saw/chip	Formation	Pavements
Source Value: L _{Aeq,t} @ 40m, dB	70/74	74	79
r, typical, m	70m	250m	120m
Ar	5	16	10
$A_g + A_a + A_{met}$ or $A_b + A_a + A_{met}$	•	1	
Predicted L _{Aeq, T} , dB	65/69	57	69
Receptor 22 Manger Cottage	Vegetation clearance	тсс	Main construction phase
Operations	Saw/chip	Formation	Pavements
Source Value: L _{Aeq,t} @ 40m, dB	70/74	74	79
r, typical, m	120m	300m	150m
Ar	10	18	11
$A_g + A_a + A_{met}$ or $A_b + A_a + A_{met}$		1	
Predicted L _{Aeq, T} , dB	60/64	55	68
Receptor 23 Meadowbarn	Vegetation clearance	тсс	Main construction
	Sow/ohip	Formation	phase Devemente
	70/7/	7/	70
source value: LAeq,t @ 40m, dB	200m	350m	350m
	1/	10	10
	14	2	2
$A_g + A_a + A_{met}$ Or $A_b + A_a + A_{met}$	56/60	5	5
Predicted LAeq, T, dB	50/60	52	57
Percenter 24 Honton Vard east of	Vocatation	TCC	Main
Old Barn	clearance		construction phase
Operations	Saw/chip	Formation	Pavements
Source Value: L _{Aeq,t} @ 40m, dB	70/74	74	79
r, typical, m	100m	140m	270m
Ar	8	11	17
$A_g + A_a + A_{met}$ or $A_b + A_a + A_{met}$			

Building better energy together

edfenergy.com

Predicted L _{Aeq, T} , dB	62/66	63	62
Receptor 25 Honeycroft	Vegetation clearance	тсс	Main construction phase
Operations	Saw/chip	Formation	Pavements
Source Value: L _{Aeq,t} @ 40m, dB	70/74	74	79
r, typical, m	250m	290m	400m
Ar	16	17	20
A _g + A _a + A _{met} or A _b + A _a + A _{met}			2
Predicted L _{Aeq, T} , dB	54/58	57	57

b) Highway improvement at the A12 / A144 junction

- 1.2.9 Initial preparatory works may involve the clearance of some vegetation at the junction. These works would use a chainsaw and chipper. The sound emissions of such plant can be high but of very brief duration, potentially no more than one or two days.
- 1.2.10 The main construction phase would involve some breaking of the existing road surfaces and kerbs would be expected for the widened A12. Other plant involved in the road-widening scheme would also include small excavation and handling machines, mini-asphalt and road-rolling equipment.
- 1.2.11 The full complement of plant would operate in a phased manner such that they would not combine at the same work point at the same time. Noise has been predicted for the on the likely higher sound output plant operating in a notional central location of the junction. The period over which the road widening works would feature plant operating at this level would not be expected to exceed 10 consecutive days in 15 or 40 days in total over 6 months.
- 1.2.12 Predicted noise levels for these two phases as shown in **Table 1.3**, using the same notation as **Table 1.2**. The source values in **Table 1.3** have been derived from activities, source levels and on times shown in **Table 1.1**. For simplicity, these have been expressed as a single activity level at a reference distance of 40m.

Table 1.3: Construction noise calculations for A12 / A144 junction highway improvement

Receptor 1	Vegetation clearance	Main construction phase
Operations	Saw/chip	Pavements
Source Value: LAeq,t @ 40m, dB	70/74	71
r, typical, m	40m	25m
Ar	0	+4
		edfene

Building better energy together

$A_g + A_a + A_{met}$ or $A_b + A_a + A_{met}$		
Predicted L _{Aeq, T} , dB	70/74	75
Receptor 2	Vegetation clearance	Main construction phase
Operations	Saw/chip	Pavements
Source Value: L _{Aeq,t} @ 40m, dB	70/74	71
r, typical, m	50m	70m
Ar	2	5
$A_g + A_a + A_{met}$ or $A_b + A_a + A_{met}$		
Predicted LAeq, T, dB	68/72	66

edfenergy.com