

The Sizewell C Project

6.4 Volume 3 Northern Park and RideChapter 10 Soils and AgricultureAppendix 10A Agricultural Land Classification

Revision: 1.0

Applicable Regulation: Regulation 5(2)(a)

PINS Reference Number: EN010012

May 2020

Planning Act 2008 Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009

NOT PROTECTIVELY MARKED

	_		4 -	4.	_
•	$\boldsymbol{\cap}$	n	ГΟ	nte	•
	u		ᅜ	nts	-

Exec	utive Summary	
	Northern Park And Ride Site: Agricultural Land Classification	
1.1	Introduction	2
Refer	rences	8
Tabl	les	
Table	e 1.1 Northern park and ride ALC climate data	2
Table	e 1.2 ALC grade distribution	£

Plates

None provided.

Figures

None provided.

Appendices

Appendix 10A1 – Auger log and key

Appendix 10A2 – Particle size distribution

NOT PROTECTIVELY MARKED

Executive Summary

An assessment of agricultural land quality, involving a desktop study and a detailed Agricultural Land Classification (ALC) survey, has been undertaken to determine the quality of agricultural land at the proposed Northern Park and Ride development for Sizewell C. The assessment was undertaken in accordance with the ALC system for England and Wales, October 1988 ('the ALC Guidelines').

The detailed survey found agricultural land in Grades 3a (21.8ha) and 3b (4.5ha), along with a small area of non-agricultural land (1.6ha). Grade 3a land is considered to be among the best and most versatile (BMV) agricultural land in England and Wales, the lowest ALC grade to fall in this category.

1 Northern Park and Ride Site: Agricultural Land Classification

1.1 Introduction

- 1.1.1 This report presents an assessment of agricultural land quality (Agricultural Land Classification; ALC) at the proposed northern park and ride development (hereafter referred to as the proposed development) for the Sizewell C Project.
- 1.1.2 The purpose of this report is to present details of the agricultural land quality at the site. This report has been prepared by Arcadis on behalf of SZC Co.
- 1.1.3 The site is approximately 27.9 hectares (ha) in size and is located to the west of the village of Darsham and the A12, to the east of the mainline railway and to the north of Darsham Station. The site includes approximately 26.3ha of agricultural land, and is approximately six kilometres (km) to the north-west of the main development site.
- 1.1.4 When surveyed the site was in arable production (wheat with some areas of fallow) with the southern tip excluded from cultivation.
 - a) Agricultural Land Planning Policy and Context
- 1.1.5 This ALC assessment is consistent with the direction given by the National Planning Policy Framework (NPPF) (Ref. 1.1).
- 1.1.6 Section 15 of the NPPF deals with conserving and enhancing the natural environment. This includes a requirement that planning policies and decisions should recognise "the intrinsic character and beauty of the countryside, and the wider benefits from natural capital and ecosystem services including the economic and other benefits of the best and most versatile agricultural land, and of trees and woodland."
- 1.1.7 A footnote to this adds that "Where significant development of agricultural land is demonstrated to be necessary, areas of poorer quality land should be preferred to those of a higher quality."
- 1.1.8 Agricultural land in England and Wales is graded between 1 and 5, depending on the extent to which physical or chemical characteristics impose long-term limitations on agricultural use. Grade 1 land is excellent quality agricultural land with very minor or no limitations to agricultural use, and Grade 5 is very poor quality land, with severe limitations due to adverse soil characteristics, relief, climate or a combination of these. Grade

NOT PROTECTIVELY MARKED

3 land is subdivided into Subgrade 3a (good quality land) and Subgrade 3b (moderate quality land).

- 1.1.9 Grades 1, 2 and 3a are defined as the BMV land.
- 1.1.10 The site falls within the area covered by the Suffolk Coastal District Core Strategy and Development Management Policies (Ref. 1.2). A number of references are made to the need to, where possible, preserve prime agricultural land for essential food production. No specific policy is, however, set out and it should be considered therefore that guidance related to BMV land reverts to the NPPF.
 - b) Agricultural Land Classification Methodology
 - i. MAFF Agricultural Land Classification System
- 1.1.11 The Ministry of Agriculture, Fisheries and Food (MAFF) ALC (Ref. 1.3) system of grading land quality for use in land use planning purposes divides farmland into five grades according to the degree of limitation imposed upon land use by the inherent physical characteristics of climate, site and soils. As detailed above, Grade 1 land is of an excellent quality, whilst Grade 5 land has very severe limitations for agricultural use.
- 1.1.12 Accordingly, a detailed assessment of the proposal site has been undertaken using the MAFF revised guidelines and criteria for ALC published October 1988. The proposed approach to undertake detailed ALC surveys on areas which had not previously been surveyed was accepted by Natural England during consultation in 2016.
- 1.1.13 The detailed survey involved examination of the soil's physical properties at 28 locations on a 100m by 100m grid. The grid reference of the sample locations was recorded to enable these to be relocated for verification, if necessary.
- 1.1.14 At each location, the soil profile was examined to a maximum depth of approximately 1.2m by hand with the use of a 5cm diameter Dutch (Edleman) soil auger. A number of soil pits were excavated at selected locations with a spade in order to examine the physical soil profile characteristics, including subsoil structure, of the main representative soil types.
- 1.1.15 The soil profile at each sample location was described using the Soil Survey Field Handbook: Describing and Sampling Soil Profiles (Ref. 1.4). Each soil profile was ascribed an ALC grade following the MAFF ALC Guidelines.

- 1.1.16 These MAFF guidelines require that the following factors be investigated:
 - climate: Average Annual Rainfall (AAR) and Accumulated Temperature above 0°C between January and June (AT0);
 - site: gradient, micro relief and flooding;
 - soils: texture, structure, depth, stoniness, and chemical toxicity; and
 - interactive factors: soil wetness, soil droughtiness and liability to erosion.
- 1.1.17 To confirm soil texture a topsoil sample was collected from 1 auger location and sent to an accredited laboratory for particle size distribution analysis. The data sheet is included as **Appendix 10A.2** of this volume of the **Environmental Statement (ES)**.
 - ii. Natural England Technical Advice Note 049
- 1.1.18 Use of the ALC methodology is also supported by Natural England Technical Advice Note 049 (TIN049) (Ref. 1.5), published in 2012.
- 1.1.19 TIN049 describes a detailed ALC survey as having approximately one sample point per hectare. To achieve this sample density and to remove surveyor selection bias, as noted above, sample points were set at 100m intersections aligned with the national grid, located in the field by hand held GPS.
 - c) Agricultural Land Classification Assessment
 - i. Climate
- 1.1.20 Climatological data for ALC are provided for 5km intersections of the National Grid by the Meteorological Office, in collaboration with the National Soil Resources Institute. The data from these points can be interpolated providing climate data for specific sites. Interpolated data for the site is given in **Table 1.1**.

Table 1.1 Northern park and ride ALC climate data

Reference Point	National Grid Reference TM 407 702
Altitude (m)	27
AAR (mm)	595
AT0 (day degrees)	1411
Moisture Deficit for wheat (mm)	123

Reference Point	National Grid Reference TM 407 702
Moisture Deficit for potatoes (mm)	119
Field Capacity Days (FCD)	111

- 1.1.21 The main parameters used in the assessment of an overall climatic limitation are AAR as a measure of overall wetness, and AT0 as a measure of the warmth in the growing season.
- 1.1.22 Climate does not impose an overall limitation on ALC grade at this site. Climate does, however, have an important influence on the interactive limitations of soil wetness and soil droughtiness. The site has both relatively low rainfall and a long growing season, acting to decrease the severity of any potential soil wetness limitation, but increasing the severity of any potential soil droughtiness limitation.

ii. The Site

- 1.1.23 Land within the site is gently sloping down to the south and east, levelling out on the higher ground to the north-east. Gradient and microtopography do not limit ALC Grade within the site.
- 1.1.24 No natural watercourses adjoin the site which appears to drain to a surface water ditch running along the edge of the East Suffolk line.
- 1.1.25 There is no evidence that flood risk limits ALC grade at any part of the site (Ref. 1.6). However, the site is quite low lying so achieving adequate fall for field drainage may be problematic.

iii. Soils and Parent Materials

- 1.1.26 The British Geological Survey Geology of Britain Viewer (Ref. 1.7) shows the site to be underlain by an area mapped as the Crag Group (quaternary shallow-water marine and estuarine sands, gravels, silts and clays), with an overlying drift deposit of superficial diamicton of the Lowestoft Formation (an extensive sheet of poorly-sorted matrix-supported chalky till as well as outwash sands and gravels, silts and clays).
- 1.1.27 Field survey work at the site found soil material that was predominantly medium to heavy textured (loams to clays) with some lighter textured (sandy) material found at depth.
- 1.1.28 Stone content often rises in the lower subsoil but the topsoil content of larger stones (above 2cm) is not high enough to limit ALC Grade.

iv. Interactive Factors

- 1.1.29 A typical soil profile found at the site has a clay loam topsoil over a clayey subsoil.
- 1.1.30 The clayey subsoil impedes the drainage of excess water down through the soil profile, trapping water in the topsoil after rain and leaving this land vulnerable to persistent structural damage from livestock hooves, vehicle wheels and cultivators.
- 1.1.31 Avoiding or minimising such damage limits land management options. However, due to the relatively low rainfall the land is only occasionally wet (Wetness Class III) rather than seasonally waterlogged. Soil wetness limitations at the site are dependent on the topsoil clay content and the presence of carbonates. A higher clay content increases the vulnerability of topsoil to structural damage when wet, giving rise to a stronger soil wetness limitation. The presence of calcium carbonate in the topsoil can mitigate this limitation as it acts to improve soil structural development.
- 1.1.32 The slowly permeable clayey subsoil has a poor structure that limits root penetration as well as drainage. As a result, the volume of water held by the soil that is available to the plant is further limited. Soil profiles across the site are all limited to ALC Grade 3a by soil droughtiness; however, some have an equal or greater limitation due to soil wetness.
 - v. Agricultural Land Classification Grade Distribution
- 1.1.33 A small area of the site is classed as non-agricultural land. This comprises the section of the A12 that falls within the site. The remainder of the site is agricultural land in ALC Grades 3a and 3b.
- 1.1.34 The extent of ALC grades across the site shown on **Figure 17.1** attached to the **ES** chapter, with area measurements given in **Table 1.2** below.

Table 1.2 ALC grade distribution

ALC Grade	Area (ha)	Area (%)
3a - good quality agricultural land	21.8	78.14
3b – moderate quality agricultural land	4.5	16.13
Non-agricultural	1.6	5.73
Total	27.9	100.00

1.1.35 Grade 3a land covers approximately 78% of the site, an area of 21.8ha, comprising soils with a number of key characteristics. There are small areas of land with medium textured topsoil over a light textured subsoil.

NOT PROTECTIVELY MARKED

This land is limited to Grade 3a by soil droughtiness. The majority of the land falling within Grade 3a has a medium textured non-calcareous topsoil over a slowly permeable heavy textured subsoil. The land is occasionally waterlogged (Wetness Class III) and limited to Grade 3a by both soil wetness and soil droughtiness. Some soil profiles are present with a calcareous heavy textured topsoil, also limited to Grade 3a by soil wetness and droughtiness.

1.1.36 Grade 3b land comprises 4.5ha in total (approximately 16% of the site) in three parts of the site. Soil profiles comprise a heavy textured and non-calcareous topsoil above a heavy textured and slowly permeable subsoil. As for the Grade 3a land described above the land is occasionally wet (Wetness Class III) but has a more severe soil wetness limitation as the higher clay content of the topsoil increases the vulnerability to structural damage.

d) Conclusions

1.1.37 A detailed ALC survey of the site found agricultural land in Grades 3a (21.8ha) and 3b (4.5ha). Grade 3a land is considered to be among the best and most versatile agricultural land in England and Wales, the lowest ALC grade to fall in this category.

References

- 1.1 National Planning Policy Framework. Department for Communities and Local Government, February 2019 https://www.gov.uk/government/publications/national-planning-policy-framework--2
- 1.2 Suffolk Coastal Core Strategy Adopted July 2013 http://www.eastsuffolk.gov.uk/planning/local-plans/suffolk-coastal-district-local-plans/
- 1.3 Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land. Ministry of Agriculture Fisheries and Food, October 1988. http://archive.defra.gov.uk/foodfarm/landmanage/land-use/documents/alc-guidelines-1988.pdf
- 1.4 Soil Survey Field Handbook: Describing and Sampling Soil Profiles' (Ed. J.M. Hodgson, Cranfield University, 1997.
- 1.5 Agricultural Land Classification: protecting the best and most versatile agricultural land (TIN049). Natural England, 2012. http://publications.naturalengland.org.uk/publication/35012
- 1.6 Environment Agency Flood map for Planning. http://apps.environment-agency.gov.uk/wiyby/37837.aspx
- 1.7 British Geological Survey Geology of Britain viewer. http://www.bgs.ac.uk/data/mapViewers/home.html?src=topNav

NOT PROTECTIVELY MARKED

APPENDIX A: APPENDIX 10A1: AUGER LOG AND KEY

oint	Grid re	ef.		Alt	Grad	Aspect	Land use	Dent	th (cm)		Soil matrix	Mott	le 1	Mott	le 2	Glev	Texture	St	ones	SUBS STR	Calc.	Mn C	SPL	Droi	ight		Wet		Classifi	cation	Point notes
-	Sqr. E		N	1		"				Thick			Munsell colour		Munsell colour	1 7			Туре	1			1			Gd				Limitation	1
			69809	11	2	NW	FLW	0 30 55 60	30 55 60 120	30 25 5 60	10yr32 10yr56 10yr56	CD	10yr52 10yr52		Thronsen colour	Y Y	MCL HCL HCL HCL	8 5 30	HR	P P P	М		Y Y	-1		3a				DR	
-	ΓM 4	10504	69907	11	2	NW	FLW	0 25 40 75 110	25 40 75 110 120	25 15 35 35 10	10yr32 10yr54 10yr56 10yr56 10yr51		10yr51 10yr54			Y	MCL MCL HCL MSL C	5 2 0	HR HR HR	M P M	N		Y Y	15	-20	3a	III	3a	3a	Drought/Wet	
-	ГМ 4	10598	69907	16	3	NW	WHT	0 25 65 75	25 65 75 120	25 40 10 45	10yr32 10yr54 10yr51	CD CD	10yr51 10yr56	CD	10yr58	Y Y	HCL C C	10	HR CH CH CH	P P	N		Y Y	1	-18	3a	III	3b	3b	Wet	
1	ΓM 4	10599	70006	17	3	NW	WHT	0 25 55	25 55 120	25 30 65	10yr32 10yr56	CD	10yr51	CD	10yr68	Y	HCL C		HR 5 CH) CH	P P	N	С	Y	-1	-22	3a	III	3b	3b	Wet	
	ГМ 4	10702	70008	22	0		WHT	0 25 40 60	25 40 60 120	25 15 20 60	10yr32 10yr54 10yr54	FD FD	10yr52 10yr51	CD	10yr56	Y	MCL HCL HCL HCL	15	HR HR 5 CH	P P	N	С	Y Y	-4	-26	3a	III	3a	3a	Drought/Wet	
-	ΓM 4	10602	70108	16	4	NW	WHT	0 25 40 45	25 40 45 120	25 15 5 75	10yr32 10yr54 10yr54	CD CD	10yr52 10yr61	FD FD	10yr56 10yr58	Y Y	MCL HCL HCL HCL	15 20	HR 5 HR 0 CH 0 CH	P P P	S		Y Y	-6	-29	3a	Ш	2	3a	Drought	
-	ΓM 4	10699	70109	19	0		FLW	0 25 110	25 110 120	25 85 10	10yr32 10yr54 10yr51	CD	10yr51	CD	10yr65	Y Y	MCL HCL C	5 4 10		P P	N	С	Y Y	-1	-22	3a	III	3a	3a	Drought/Wet	
	ΓM 4	10701	70206	19	2	W	ARA STB	0 25 60 75	25 60 75 120	25 35 15 45	10yr32 10yr61 10yr61	CD CD	10yr52 5y54	CD CD	10yr66 10yr56	Y Y	MCL SCL HCL HCL			M P P	N		N Y	7	-15	3a	II	2	3a	Drought	
	ΓM 4	10616	70308	22	2	NW	ARA STB	0 25 50 80	25 50 80 90	25 25 30 10	10yr32 10yr51 10yr56 10yr51	CD CD CD	10yr56 10yr51 10yr56			Y Y Y	HCL C HCL MSL	10 20	HR CH CH	I	N M		Y	8	-17	3a	III	3b	3b	Wet	

oint	Grid ı	ref.			Alt	Grad	Aspec	t Lar	nd use	Dept	h (cm)		Soil matrix	Mott	le 1	Mott	le 2	Gley	Texture	St	ones	SUBS STR	Calc	. Mn (SPL	Drou	ght		Wet	C	Classification	Point notes
	Sqr.		N				'			Тор		Thicl 30		Form	Munsell colour 10yr56		Munsell colour	Υ	С	%	Type CH	P			Υ	MBw	/ МВр	Gd	wc	Sw G	Grade Limitation	
.0	TM	406	98 70	70307	27	3	NW	AR	A STB	0 25 100	25 100 120	25 75 20	10yr32 10yr56 10yr56	CD FD	10yr52 10yr52	CD CD	10yr46 10yr46	Y Y	MCL SCL LMS	8 2 0	HR	M M	N			16	-11	3a	I 1	L 3	3a Drought	
1	ТМ	408	02 70	70310	22	0	NW	AR	A STB	0 25 35 75 80	25 35 75 80 120	25 10 40 5 40	10yr32 10yr53 10yr64 10yr61	CD CD CD	10yr56 10yr51 10yr64	CD CD	10yr52 10yr58	Y Y	HCL MCL HCL C	25		M P P	V	F	Y	1	-21	3a	III 3	3a 3	3a Wet	subsoil clods on surface
2	ТМ	405	95 70	70408	21	2	NW	AR	A STB	0 25 80	25 80 120	25 55 40	10yr32 10yr54	CD	10yr52	CD	10yr56	Y	HCL C	5 2 50	HR CH CH	P P	N	F	Y	1	-18	3a	III 3	Bb 3	Bb Wet	
3	TM	406	98 70	70408	27	2	NW	AR	A STB	0 20 40 65	20 40 65 120	20 20 25 55	10yr32 10yr54 10yr51	CD CD	10yr51 10yr58	CD	10yr56	Y Y	HCL HCL HCL	1		P P	N	F	Y Y	-3	-25	3a	III 3	Bb 3	3b Wet	
4	TM	408	01 70	70390	20	0		AR		0 25 55 70 85 100	25 55 70 85 100 120	25 30 15 15 15 20	10yr32 10yr54 10yr54 10yr51 10yr56 10yr56	CD CD CD CD	10yr52 10yr52 10yr58 10yr51 10yr51	FD FD	10yr56 10yr56	Y Y Y Y	MCL HCL SCL C SCL LMS	4 4 4 10 2 2	HR CH	P M P M	M	F	Y	4	-19	3a	III 2	2 3	3a Drought	
5	ТМ	406	40 70	70470	24	2		AR	A STB	0 26 63 85 IMP	26 63 85 110	26 37 22 25	10YR32 10YR52 10YR54 Gley1 4N	CF CF FD	10YR58 10YR58 5YR46			Y Y Y	CL CL SC C	1 1 1 5	HR HR CH CH	P P	S M V	Y	Y Y	-8.01	15.7	' 3a	III 2	2 3	3a Drought	Stop @ stiff clay
ō	ТМ	407	41 70	70457	26	2		AR	A STB	0 40 85 IMP	40 85 110	40 45 25	10YR42 10YR41 10YR61	CD CD	10YR46 10YR56	MP	10YR51	Y Y	ZCL C C	1 5 15	CH CH CH	P P	S V V	Y	Υ	5.54	-6.52	2 2	II 1	. 2	2 Drought	Stop @ stiff clay
7	TM	408	41 70	70457	27	0		AR	A STB	0 30 74 IMP	30 74 110	30 44 36	10YR44 10YR64 GLEY1 7N	FD FD	7.5YR68 7.5YR68			Y Y	CL C	1 5 10	CH CH CH	P P	S V V	Y	Y	-5.54	-19.8	3 3a	III 2	2 3	3a Drought	Stop @ stiff clay
8	TM	405	56 70	70558	27	0		AR		0 35	35 80	35 45	10YR32 10YR44	CF	10YR58			Υ	C C	2 2		P	S M	Υ	Υ	2.63	-22	3a	III 3	Ba 3	Ba Drought/Wet	

Point	Grid	l ref.			Α	lt l	Grad	Aspe	ct Lan	d use	Depti	h (cm)		Soil matrix	Mott	tle 1	Mot	tle 2	Glev	Texture	Sto	ones	SUBS STR	Calc	. Mn (SPL	Drought	W	et	Class	ification	Point notes
	Sqr.			N	Τ΄	-							Thic			Munsell colour		n Munsell colour	1,			Туре	1		' ' '	-	MBw MBp Gd					1
	J.	1-	'			,		1	1		80	115		10YR51	CF	Gley1 5N	FF	10YR56	Υ	С) CH	Р	v	Υ		INDW IMPP TOO	"	c joi	0.00	e permitation	
											IMP																					Stop @ - stiff clay
19	TM	40	641	7056	54 2	.8	2		ARA	STB	0	27	27	10YR44						С	2	HR		1			-30.3 -20.5 3b	III	3a	3b	Drought	
											27	60	33	2.5Y71	CD	10YR68			Υ	С	2	HR	Р	S	Υ	Υ						
											60	67	7	2.5Y61	CD	10YR58			Υ	С	1) CH	Р	S	Υ	Υ						
											67	75	8	10YR72	CD	7.5YR58			Υ	С	80) CH	P	S								
											IMP																					Stop @ - stiff clay
20	тм	40	741	7055	57 3	0	0		ARA	STB	0	25	25	10YR33						CL	2	HR					-17.1 -16.6 3a	Ш	2	3a	Drought	
												70	45	10YR54	CF	10YR58	FP	10YR62	Υ	С	2		P	V	Υ	Υ						
											70	92	22	Gley1 7N	CD	10YR56			Υ	С	15	CH CH	Р	V		Υ						
											IMP																					Stop @ - stiff clay
21	TM	40	843	7056	52 3	0	0		ARA	STB	0	30	30	7.5YR33						CL	2	HR					-9.14 -14.3 3a	III	2	3a	Drought	
											30	80	50	10YR62	CF	7.5YR68			Υ	С	1	HR	Р		Υ	Υ						
											80	100	20	10YR61	CF	7.5YR58			Υ	С	5	CH	Р	V	Υ	Υ						
											IMP																					Stop @ stiff clay
22	TM	40	970	7051	12 2	1	2		ΔΡΔ	STB	0	30	30	10YR32	+					CL	1	HR		-	+	-	-9.46 -14.5 3a	-	2	3a	Drought	
~~	' ' ' '	70	370	705.	12 3		_		AIV	(310	30	70	40	Gley1 6N	CD	7.5YR68			l _v	C	5		P	V		Y	5.40 -14.5 30	'''	2	ا	Diougiit	
											70	105	35	Gley1 6N	CD	10YR58			Υ	c	1) CH	P	v		Y						
											IMP																					Stop @ - stiff clay
					_														_											_		
23	TM	41	046	7058	38 2	.8	2		ARA	STB	0	30	30	7.5YR41	CD.	400000			,	ZC	2	HR	_		l _v	v	23.2 -17.7 3a	III	3a	3a	Drought/Wet	
											30 60	60 86	30 26	2.5Y54 5Y71	CD CD	10YR68 10YR58			V V	C	10	0	P D	S V	V V	Y						
											86	120	34	7.5YR68	CD	Gley17N			,	sc		HR/CH	G	v	'	ľ						Intimate clay and sand lenses
												120	34	7.511100		dicy1714			ľ			my cm		1								intimate day and sand lenses
24	TM	40	556	7055	58 2	6	2		ARA	STB	0	35	35	10YR42						С	1	HR					-7.14 -15.4 3a	Ш	3a	3a	Drought/Wet	
											35	90	55	10YR53	CF	10YR56	CD	10YR54	Υ	С	2		P	M	Υ	Υ						
											90	105	15	10YR41	FD	5YR46			ļΥ	С	2	HR	Р	S	Υ							S. S. 198
											IMP																					Stop @ - stiff clay
25	ТМ	40	647	7065	55 3	1	1	SW	ARA	STB	0	23	23	10YR44	+		1		 	CL	2	HR		S	+	+	1.56 -18 3a	III	3a	3a	Drought/Wet	
											23	60	37	Gley1 7N	CD	7.5YR58			Υ	С	2	CH	Р	s	Υ	Υ					· ·	
											60	120	60	Gley1 6N	CD	7.5YR68			Υ	С	10) CH	Р	V	Υ	Υ						
																					1											
26	TM	40	738	7065	56 3	4	1	WSW	ARA	STB	0	25	25	10YR32	+		+			CL	1	HR		+	Υ	+	55.3 -13.5 3a	III	3a	3a	Drought/Wet	
					- [25	65	40	10YR53	FF	7.5YR58	CF	7.5YR71	Υ	SC	1		Р	v	Υ	Υ					3 , 31	
											65	75	10	10YR56						sc	10) CH	G	М	1							Sand Lense
											75	105	30	10YR56	FF	7.5YR58			Υ	С	1		Р	V	1	Υ						
											105	120	15	10YR61	CD	7.5YR56			Υ	С	5	CH	Р	V	1							
	1																1			1	1		1	1		1						

<u></u>		at at as			Τ.	14 6	l	A +	I and oran	D +1	l- ()		C-II	ls 4 - ++	1- 4	Ts 4 - ++	1- 2	CI	T	C+-		CLIDG CTD	C-1-	ls 4 C	CDI	In			١,	41-4	To	N	Daint mater
IP.	int G	ria re	ЭТ.		<u>''</u>	ut le	irad	Aspect	Land use					Mott		Mott		Gley	Texture	Sto	nes	SUBS STR	Caic.	livin C	. SPL				_	Net_			Point notes
	S	qr. E		N						Top	Bttm	Thick	Munsell colour	Form	Munsell colour	Form	Munsell colour			%	Type					MΒ	w N	1Bp G	id ۱	NC G	w G	Grade Limitation	
2	T	M 4	10941	1 706	47 2	9 0)		ARA STB	0	30	30	10YR42						SC	5	HR					-0.7	8 -:	19.4 3	a I	II 3	a 3	a Drought/Wet	
										30	80	50	10YR54	CD	10YR32	FF	10YR58	lγ	С	2	HR	Р		lγ	Y		•						
											90	10	10YR53	CF	10YR66	l	2011.50	ı.	sc	15		M	V	ľ.	Ι΄.								Sand lense
										80		10		1				l'.	30	1		I VI	1.	'									Sallu lelise
										90	98	8	Gley1 6N	CF	10YR66			ĮΥ	C	10	CH	P	V										
										IMP								1															
2	ĪΤ	M 4	11037	7 706	52 2	9 0)		ARA STB	0	28	28	10YR32						CL				s			32.8	3 -:	15.2 3	a I	II 3	a 3	a Drought/Wet	
Ī	l'				-					28	62	34	10YR54	CD	Gley1 6N			l _v	C	12	HR	D	s	l _v	V				- ·		_ _		
										1						l		Ľ.	-	²		_	1	l.'.	l.'.								
										62	97	35	10YR54	CD	Gley1 6N	FD	7.5YR58	ĮΥ	C		CH / HR	1	V	ĮΥ	Υ								
										97	115	18	Gley1 4N	CD	10YR56	CD	7.5YR58	Y	C	15	CH / HR	P	٧	Y									
										IMP								1															Stop @ - stiff clay
																																	, - ,
2		N /	10522	3 707	46 3	0 0			ARA STB	0	25	25	10/022						SC	1	HR			1	+	20.0	, ,	32.2 3	h 1	II 3	a 3	lh Draught	
2	- '	IVI 4	10523	3 /0/	40 2	8 0	'		AKA SIB	0			10YR32					l	SC	1		L		l.,	l.,	38.5	j -:	32.2 3	ין מ	11 3	a 3	b Drought	
										25	85	60	10YR44	CD	5YR58	CF	10YR61	ĮΥ	C	2	HR	P		ĮΥ	Y								
										85	105	20	10YR66						SC	10	HR	G	М										
										105	120	15	2.5Y61	CD	10YR66			lγ	lc	10	CH	P	lv	lγ									
																			1														
╙	- 1												1	l		1		i	1	l			ı	I	1	1							

Auger Log key

Depth - Top

GH

GS

<u>xx</u> Underlining denotes depth to the top of a slowly permeable layer

Gravel composed of non-porous (hard) stones

Gravel composed of porous (soft) stones

Land use		Mottle	1,2 - Form	Texture		Limitat	ions
ARA	Arable	FF	Few Feint	CS	Coarse Sand	NN	None
CER	Cereal	FD	Few Distinct	MS	Medium sand	OC	Overall climate
WHT	Wheat	FP	Few Prominent	FS	Fine Sand	AE	Aspect
BAR	Barley	CF	Common Feint	LCS	Loamy Coarse Sand	EX	Exposure
MZE	Maize	CD	Common Distinct	LMS	Loamy Medium Sand	FR	Frost risk
OAT	Oats	СР	Common Prominent	LFS	Loamy Fine Sand	GR	Gradient
OSR	Oilseed rape	MF	Many Feint	CSL	Coarse Sandy Loam	MR	Microrelief
LIN	Linseed	MD	Many Distinct	MSL	Medium sandy loam	FL	Flood risk
FBE	Field beans	MP	Many Prominent	FSL	Fine Sandy Loam	TX	Texture
POT	Potatoes	VF	Very many Feint	CSZL	Coarse Sandy Silt Loam	DP	Soil depth
SBT	Sugar beet	VD	Very many Distinct	MSZL	Medium Sandy Silt Loam	CH	Chemical
BRA	Brassicas	VP	Very many Prominent	FSZL	Fine Sandy Silt Loam	WE	Wetness
FOD	Fodder crops			ZL	Silt Loam	WK	Workability
FRT	Soft and top fruit			SCL	Sandy Clay Loam	DR	Droughtiness
HRT	Horticultural crops			MCL	Medium Clay Loam	ER	Erosion risk
PAS	Pasture			HCL	Heavy Clay Loam	WD	Wetness/Droughtiness
LEY	Ley grass			MZCL	Medium Silty Clay loam	ST	Topsoil stoniness
PGR	Permanent pasture			HZCL	Heavy Silty Clay Loam		
RGR	Rough grazing			SC	Sandy Clay		
SCR	Scrub			ZL	Silty Clay		
HTH	Heathland			С	Clay		
BOG	Bog or marsh			Р	Peat		
DCW	Deciduous Woodland			SP	Sandy Peat		
CFW	Coniferous woodland			LP	Loamy Peat		
PLO	Ploughed			PL	Peaty Loam		
STB	Crop stubble			PS	Peaty Sand		
FLW	Fallow (inc. set aside)			MZ	Marine Light Silts		
SAS	Set aside (where known)			IMP	Impenetrable to roots		
OTH	Other						

Stones -	Туре	Subs S	tr (subsoil structural condition)	Calcare	eousness	Mn C (ferrimanganous concretions)
						_	_
HR	All hard rocks and stones	G	Good	N	Non-calcareous (<0.5% CaCO3)	F	Few
MSST	Soft, medium or coarse grained sandstone	M	Moderate	VS	Very slightly calcareous (0.5 - 1% CaCO3)	С	Common
SI	Soft weathered igneous or metamorphic rock	Р	Poor	S	Slightly calcareous (1 - 5% CaCO3)	M	Many
SLST	Soft oolitic or dolomitic limestone			M	Moderately calcareous (5 - 10% CaCO3)	V	Very many
FSST	Soft, fine grained sandstone			V	Very calcareous (>10% CaCO3)	Υ	Common or greater
ZR	Soft, argillaceous or silty rocks			Υ	Calcareous (>1% CaCO3)		
CH	Chalk or chalk stones						

NOT PROTECTIVELY MARKED

APPENDIX B: APPENDIX **DISTRIBUTION SHEETS**

10A1: PARTICLE

SIZE

Building better energy together

Analysis Results (SOIL)

Customer

ARCADIS (UK) LIMITED

THE MILL

BRIMSCOMBE PORT

STROUD GL5 2QG Distributor

ARCADIS (UK) LTD

THE MILL

BRINSCOMBE PORT

30/07/2019 (Date Issued: 05/08/2019)

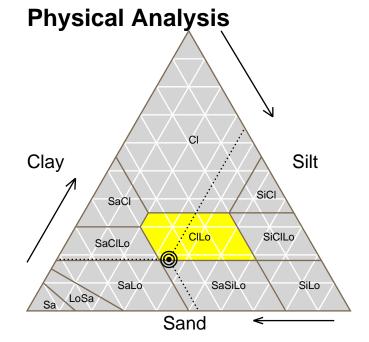
BRINSCOMBE STROUD

GLOS GL5 2QG

Sample Ref

DARSHAM TS 13

Sample No


E337879/25

Crop

Date Received

Analysis	Result (%)
Sand	46.93
Silt	34.71
Clay	18.36
Very Fine Sand	6.06
Fine Sand	14.72
Medium Sand	22.01
Coarse Sand	4.13
Very Coarse Sand	< 0.01
Stones >2mm	2.80
Soil Type	CILo
	Clay Loam

Property	Assessment
Available Water	Medium to High
Drainage Rate	Medium to Slow
Inherent Fertility	Medium to High
Potential C.E.C.	Medium to High
Leaching Risk	Moderate to Low
Warming Rate	Medium

